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Abstract

Pharmacogenomic analysis of tuberculosis in PharmGkb resulted in the association of the pharmacokinetic
property of rifampin with the gene SLCO1B1. Transcription factor and microRNA association of SLCO1B1 in
miRTarBase resulted in the identification of HNF1A and hsa-miR-511-5p and the possible regulatory network to
understand the pharmacokinetic association of rifampin involves the gene SLCO1B1 with the transcription factor
HNF1A and the miRNA hsa-miR-511-5p. Till date, HNF1A and has-miR-511-5p were not considered as vital targets
for tuberculosis. In future, more experimental evidences are required address the association of tuberculosis with
HNF1A and hsa-miR-511-5p. The miRNA hsa-miR-511-5p was validated experimentally. Since there is a lack of a
complete crystal structure for HNF1A, homology modeling was performed in Galaxy web and the modelled structure
contains 97% of amino acids in the allowed region of Ramachandran plot. The modeled structure will serve as vital
target for the drug discovery of rifampin based analogs. Virtual Screening was performed in USR-VS server for
identifying the best compound from the analogs of rifampin and it was identified that the analog with Zinc database
Id 71049520 contain a relatively lower molecular weight compared to the parent molecule. Then the screened
molecule was docked with the modeled protein using MTI AutoDock and the best pose was detected from MTI
AutoDock with a minimum energy of -5.96.

Introduction
In the initial era of pre-genomics, it was estimated that about 8.7

million cases with tuberculosis were reported globally and that is an
approximate of 125 cases reported per 100,000 individuals, and
approximately about 1.4 million people died of the disease [1]. In order
to The Stop the spread of TB, WHO recommends a standard 6-month
regimen of four-drugs as the first-line therapy [2-4]. However, in some
cases, the specified number cannot be administered within the targeted
time period because of drug toxicity [2,5]. Furthermore, the drug
induced injury in liver (DILI) can cause morbidity [6-8]. These adverse
drug events can confer a substantial and additional costs associated
with increased frequency of outpatient visits, laboratory tests and
hospitalization in more serious cases. Second-line anti-TB medications
could cause greater toxicity-related problems and are often less
effective than the medications in first line and the treatment could be
prolonged in spite of the attendant challenges to ensure compliance. As
a result, there was a risk of treatment failure and relapse.

In the initial era of Post genomics [9], Pharmacogenetics (PGx)-
based testing was anticipated to be vital across all specialties in the
medical field, as a pillar towards the movement of the personalized
medicine [10]. The PGx-based testing involves the assessment of risk
with respect to the likelihood of patient response to a given drug to
facilitating the selection of drug and its dosage [11]. The PGx-based
testing is a relatively new field and will have an impact in the treatment
of latent TB infection (LTBI).

Rifamycin was consistently utilized against Mycobacterium
tuberculosis in both in vitro and in vivo models [12-15]. There
variation of concentrations in rifamycin among patients on the

standard therapy for tuberculosis and the basis for variation is not well
understood. Advanced HIV infection has been associated with the low
concentrations of rifampin, but marked as a difference in patients with
tuberculosis and without HIV (Figures 1-3) [16-19].

Figure 1: Predicted Structure of HNF1A by Homology Modeling in
Galaxy Server.
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Figure 2: Validation of HNF1A in Rampage Server (97% of residues
in allowed region of Ramachandran Plot).

Figure 3: Docked complex of Rifampin Analog (Zinc database Id
71049520) with the predicted structure of HNF1A in MTI
AutoDock with a minimum energy of -5.96.

A novel approach to identify a therapeutic target was initiated in
this manuscript. In this approach, two novel therapeutic targets
(HNF1A and hsa-miR-511-5p) to diagnose and treat tuberculosis were
identified by a rational approach of data mining with bioinformatics.
Since we do not have a crystal structure of HNF1A, homology
modeling was done and the best analog of rifampicin (Zinc database Id
71049520) was docked with HNF1A to find the compatibility of
binding and the molecule have a maximum probability to be
considered as a lead molecule in the process of ration drug design of
tuberculosis.
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