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Introduction
The agricultural and industrial revolutions in the last few decades 

have resulted in increased concentration of toxins in our environment 
that are the major causes of toxicity in plants and animals. Among 
different toxins, increasing levels of salts, heavy metal, pesticides and 
other chemicals are posing a threat to agricultural as well as natural 
ecosystems of the world. Human activities have dramatically been 
changing the composition and organization of the soil on earth. 
Industrial and urban wastes, in particular the uncontrolled disposal 
of waste and the application of various substances to agricultural soils, 
have resulted in the contamination of our ecosystem. The heavy metal 
pollution includes point sources such as emission, effluents, and solid 
discharge from industries, vehicle exhaustion, smelting and mining, 
and nonpoint sources such as soluble salts (natural and artificial), use 
of insecticides/pesticides, disposal of industrial and municipal wastes 
in agriculture land, and excessive use of fertilizers. Each source of 
contamination has its own damaging effects on plants, animals, and 
ultimately on human health. Heavy metals of soil and water are of 
serious concern to the environment due to their non-degradable state. 
They cannot be destroyed biologically but are only transformed from 
one oxidation state or organic complex to another. Therefore, heavy 
metal pollution poses a great threat to the environment and human 
health.

Phytoremediation is the use of plants to treat/clean contaminated 
sites [1-7] and it can be defined as the use of green plants to remove 
pollutants from the environment or to render them harmless [8,9]. It is 
also referred to as green technology and can be applied to both organic 
and inorganic pollutants present in soil (solid substrate), water (liquid 
substrate) or the air [2,10]. Phytoremediation takes advantage of the 
natural ability of plants to extract chemicals from water, soil and air 
using energy from sunlight. It’s some of the advantages are that it is 
less expensive, is passive and solar driven, has high public acceptance, 
retains topsoil, and has less secondary waste generation. In this respect, 
plants can be compared to solar driven pumps capable of extracting 
and concentrating certain elements from their environment [11]. This 

technology is being considered as a highly promising technology for the 
remediation of polluted sites.

The plant used in the phytoremediation technique must have a 
considerable capacity of metal absorption, its accumulation and strength 
to decrease the treatment time. Many families of vascular plants have 
been identified as metal hyperaccumulator [12,13], and many of them 
belongs to Brassicaceae and Amaranthaceae. These hyperaccumulator 
are metal selective, having slow growth rate, produce small amounts of 
biomass and can be used in their natural habitats only [14].

In the present study, it is aimed to analyze the impact of arsenic 
on the morphometric characters, biochemical, enzymatic features, 
accumulation factor, translocation factor and mobility index of 
Abelmoschus esculentus, L. (hypoaccumulator) and hyperaccumulator 
Brassica juncea, Hk. F. and T. 

Materials and Methods 
Seeds of Abelmoschus esculentus L., and Brassica juncea, Hk. F. 

and T. were procured from local seed center, Sivakasi. Abelmoschus 
esculentus L. Var. S7 (Family; Malvaceae) was chosen as experimental 
plant, whereas the Brassica juncea, Hk. F. and T. (Family; Brassicaceae) 
was chosen as hyperaccumulator plants for this study. The effect of 
various concentrations of arsenic on the morphometric characters, 
biochemical, enzymatic features, accumulation factor, translocation 
factor and mobility index were analyzed on the selected plants.

Experimental design 

*Corresponding author: Selvaraj K, Department of Botany, Sri S Ramasamy
Naidu Memorial College (Autonomous), Sattur – 626 203, Tamilnadu, India, Tel:
+91 9789240653; E-mail: kselvarajphd@gmail.com 

Received June 26, 2015; Accepted July 15, 2015; Published July 22, 2015

Citation: Selvaraj K, Sevugaperumal R, Ramasubramanian V (2015) 
Phytoextraction: Using Brassica as a Hyper Accumulator. Biochem Physiol 4: 172. 
doi: 10.4172/2168-9652.1000172

Copyright: © 2015 Selvaraj K, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Phytoextraction: Using Brassica as a Hyper Accumulator
Selvaraj K1*, Sevugaperumal R2 and Ramasubramanian V2 
1Department of Botany, Sri S Ramasamy Naidu Memorial College (Autonomous), Sattur – 626 203, Tamil Nadu, India
2Department of Botany, Ayya Nadar Janaki Ammal College (Autonomous), Sivakasi – 626 124 Virudhunagar District, Tamil Nadu, India

Abstract
Phytoextraction is a cost-effective method that could be an alternative to remediate polluted sites. Growth performance, 

biochemical, enzymatic activity, accumulation, translocation and mobility of arsenic form soil to root and leaves were 
studied in co-cultivated hyper accumulator (Brassica juncea) and hypo accumulator (Abelmuscus esculentus) at various 
levels of arsenic. B.juncea accumulated fourfold and fivefold arsenic in roots, shoots and leaves, respectively than 
Abelmuscus esculentus L. A. esculentus seedlings when cultivated alone were seen sensitive to arsenic with decrease 
growth, poor values of accumulation factor, translocation factor and mobility of metal. But the same plant when co-
cultivated with Brassica juncea there is no toxicity symptoms and reduction of growth, values of Accumulation factor, 
translocation factor and mobility of metal. This is well understand that Brassica juncea showing higher accumulation of 
nickel, more translocation of arsenic from root to shoot and good mobility of arsenic was increased form level 1 to level 3, 
It was revealed that the accumulation of arsenic was more in root and shoot of B. juncea than A. esculentus. It is inferred 
from the present study that A. esculentus is a hypo accumulator and is sensitive to arsenic. When co-cultivated with 
Brassica juncea showing less of metal toxicity because Brassica juncea being hyper accumulator of arsenic, accumulate 
more metal and save Abelmuscus esculentus.
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Heavy metals stress on Abelmoschus, Brassica: The heavy metals 
arsenic was treated separately in the experimental plants with different 
concentrations viz., 2 mM, 4 mM, 6 mM, 8 mM and 10 mM (w/v) in 
five replicates. The aqueous solutions of heavy metals were applied to 
the soil after the development of first leaves in the seedlings. Then the 
plants were watered with the respective concentration of metals on 
every alternate days. A set of plants without heavy metal treatment was 
maintained as control.

Ten surface sterilized seeds of Abelmoschus esculentus L., and 
Brassica juncea, Hk. F. and T. were sown uniformly in all the pots for 
the experimental purpose. Morphometric, biochemical, enzymatic 
parameters and metal concentration in plants such as accumulation, 
translocation factor and mobility index were analyzed on the 35th day 
after planting (DAP).

Phytoremediation treatment

Co-cultivation of the hypoaccumulator and hyperaccumulator: 
Optimum number of surface sterilized seeds of Abelmoschus 
esculentus L. (hypo accumulator) and Brassica juncea, Hk. F. and T. 
(hyperaccumulator) were sown uniformly in all pots. Appropriate 
amount of arsenic were given separately for the experimental plants 
with different concentration as 2 mM, 4 mM, 6 mM, 8 mM and 10 
mM (w/v) in five replicates. Morphometric, biochemical, enzymatic 
parameters and metal concentration in plants such as accumulation 
factor, translocation factor and mobility index were analyzed on the 35th 
day after planting (DAP).

Morphometric parameters

For all the morphometric characteristics, root length, shoot length, 
leaf area, fresh weight and dry weight were analyzed, the seedlings 
numbering ten have been taken from both experimental and control 
sets and the results indicate the average of ten seedlings along with their 
standard error.

Biochemical and enzymatic features

For all the biochemical analysis, the result indicates the average of 
five samples taken from both control and treated sets.

The biochemical characters and enzymatic charters were analyzed 
by the following methods. Chlorophyll and carotenoids [15], 
anthocyanin [16], total soluble sugar and amino acid [17], Protein 
content [18], leaf nitrate [19]. In vivo nitrate reductase activity [20], 
peroxidase and catalase [21]. 

Accumulation Factor (AF)

The Accumulation Factor (AF) was considered to determine the 
quantity of heavy metals absorbed by the plant from soil. This is an 

index of the plant to accumulate a particular metal with respect to its 
concentration in the soil and is calculated using the formula [22,23]:

 ( )Accumulation Factor AF  Metal Concentration in tissue of whole plant
Initial concentration of metal in substrate (soil)

=

Translocation Factor (TF)

To evaluate the potential of plant species for phytoextraction, the 
Translocation Factor (TF) was considered. This ratio is an indication of 
the ability of the plant to translocate metals from the roots to the aerial 
parts of the plant [24]. It is represented by the ratio:

( )Translocation Factor TF  Metalconcentration in stems leaves
Metelconcentration in roots

=
+

Mobility Index (MI)

Mobility Index (MI) was considered to determine the biomobility 
and transport of heavy metals in different plant parts. The whole 
experiment was divided into three categories: Level 1 (Soil – Roots), 
Level 2 (Roots – Stems) and Level 3 (Stems – leaves). It was calculated 
by the methods of Kumar et al. [25].

( )Mobility Index MI  Concentration of metalin the receiving level
Concentration of metalin thesourcelevel

=

Results
The results on the effect of arsenic on the morphometric characters 

of co-cultivated hypoaccumulator Abelmoschus esculentus L. and hyper 
accumulators Brassica juncea, Hk. F. and T. have been presented in the 
Tables 1and 2.

The reduction in root length of hyperaccumulators was found to 
be 26% in Brassica at 10 mM concentration of arsenic. However, at 
the same concentration the reduction in Abelmoschus was only 4% 
after co-cultivation, and 65% before co-cultivation. Shoot length has 
also followed a similar declining trend, in the hyper accumulator 
Brassica juncea, Hk. F. and T. the reduction was about 18% compared 
to the control plants; In contrary, the Abelmoschus showed only 15% 
reduction when co-cultivated with Brassica. Before co-cultivation, 
the Abelmoschus showed a reduction of 68% in arsenic treatment. The 
increasing concentration of metal application has caused significant 
reduction in the leaf area of hyperaccumulators and was about 26% 
(Brassica) under 10 mM concentration of arsenic treatment. At the 
same concentration, the reduction in Abelmoschus was only 11% after 
co-cultivation, which was 67% before co-cultivation. The fresh weight 
was also reduced in the hyper accumulator Brassica juncea, Hk. F. and T. 
with the increasing concentrations of arsenic. Arsenic has reduced the 

Metal 
Concentration

Root Length (cm) Shoot Length (cm) Leaf Area (cm2)

Arsenic Stress on 
Abelmoschus esculentus, L.

After Co–Cultivation Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Control 29.7 ± 0.921 (100) 29.9 ± 0.357 (100) 20.80 ± 0.465 (100) 25.4  ± 0.437 (100) 26.1 ± 0.173 (100) 25.0 ± 0.197 (100) 12.54  ± 0.524 (100) 13.2 ± 0.306 (100) 15.1 ± 0.519 (100)

2 mM 27.92 ± 0.817 a* (94) 29.60 ± 0.164 a# (99) 19.76 ± 0.195 a* (95) 22.1 ± 0.150 a* (87) 25.32 ± 0.197 a# (97) 24.5 ± 0.413 a* (98) 10.45 ± 0.793 a* (83) 12.9 ± 0.520 a# (98) 15.02 ± 0.387 a* (96)

4 mM 23.17 ± 0.911 a* (78) 29.0 ± 0.289 a# (97) 18.72 ± 0.373 a* (90) 18.29 ± 0.245 a* (72) 24.27 ± 0.194 a# (93) 23.5 ± 0.419 a* (94) 8.52 ± 0.263 a* (68) 12.7 ± 0.192 a# (96) 14.66 ± 0.128 a* (93)

6 mM 19.90 ± 0.676 a* (67) 28.70 ± 0.157 a# (96) 17.68 ± 0.176 a* (85) 14.99 ± 0.193 a* (59) 23.23 ± 0.314 a* (89) 22.5 ± 0.571 a* (90) 7.17 ± 0.753 a* (57) 12.4 ± 0.164 a* (94) 13.53 ± 0.184 a* (86)

8 mM 14.85 ± 0.737 a*  (50) 29.01 ± 0.176 a#  (97) 16.43 ± 0.452 a*  (79) 10.92 ± 0.546 a*  (43) 22.97 ± 0.715 a*  (88) 21.5 ± 0.326 a*  (86) 5.84 ± 0.291 a*  (46) 11.9 ± 0.157 a* (90) 12.74 ± 0.371 a*  (81)

10 mM 10.40 ± 0.809 a*  (35) 28.70 ± 0.159 a# (96) 15.39 ± 0.291 a*  (74) 8.13 ± 0.437 a*  (32) 22.19 ± 0.362 a*  (85) 20.5 ± 0.425 a* (82) 4.13 ± 0.564 a*  (33) 11.6 ± 0.613 a*  (89) 11.68 ± 0.129 a* (74)

Values in parenthesis indicate percent activity Values are an average of five observations.  Values in parentheses are percentage activity with respect to control. Mean ± SE 
a – refers to value compared with control in various concentrations of metals, a* – refers to significant (P ≤ 0.05 – Tukey test). 
Table 1: Impact of arsenic chloride on the morphometric characteristics of hyper accumulator (Brassica juncea, Hk. F. and T.) and hypoaccumulator (Abelmoschus 
esculentus L.).
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fresh weight up to 79% in Brassica than the control plants. There was 
no reduction in fresh weight in Abelmoschus when co-cultivated with 
Brassica (hyperaccumulators), under the 10 mM arsenic treatment, 
the Abelmoschus showed only 3% reduction when co-cultivated with 
Brassica when Abelmoschus alone grown, the reduction was 57% under 
the same concentration of arsenic treatment. The dry weight was 
analyzed in the control and heavy metal treated plants of co-cultivated 
hypoaccumulator and hyperaccumulator. The reduction was about 
82% in Brassica under 10mM concentration of arsenic treatment. 
Whereas, Abelmoschus when co-cultivated with Brassica showed 10% 
reduction However, the reduction was about 80% when Abelmoschus 
was cultivated individually. The results on the effect of arsenic on the 
pigment contents of co-cultivated hypoaccumulator Abelmoschus 
esculentus, L. and hyper accumulators Brassica juncea, Hk. F. and T. 
have been presented in the tables 3 and 4.

In the hyperaccumulators, the reduction in total chlorophyll content 
was about 27% in Brassica compared to the control plants. However, 
after co-cultivation the reduction was about 5% in Abelmoschus with 
Brassica which was 55% before co-cultivation. The carotenoid content 
of Abelmoschus has slightly decreased to about 4% decrease were 
seen in Abelmoschus grown with Brassica after the application of 10 

mM concentration of arsenic treatment, whereas the reduction was 
about at 78% at 10 mM arsenic concentration before co-cultivation. 
In hyperaccumulators, the carotenoid content also decreased to 20% 
reduction in the carotenoids was observed on the Brassica at 10 mM 
concentration of arsenic treatment than the control plants. In contrary 
to the photosynthetic pigments, the anthocyanin content was increased 
with the increasing concentrations in both the metals when co-cultivated 
with hyperaccumulators. But in hypoaccumulator, anthocyanin content 
was not increased in all the concentrations and it was more are less 
equal to the control plant. In hyperaccumulator plants, the application 
of 6 mM concentration of arsenic has significantly increased the 
anthocyanin content to about 19% in Brassica than the control plants. In 
hypoaccumulator (Abelmoschus), anthocyanin content was increased to 
only 1% when co-cultivated with Brassica. Before co-cultivation it was 
104% increase (Table 5).

The reduction of total soluble sugar content was 16% on Brassica 
arsenic treatment at 10 mM concentration. At the same concentration 
of arsenic treatment, in the hypoaccumulator (Abelmoschus) in all 
concentrations total soluble sugar content was more or less similar 
to control plants when co-cultivated with Brassica, whereas it was 
53% before co-cultivation. In the co-cultivation set, supply of 10 

Metal Con-
centration

Fresh Weight (gm.) Dry Weight (gm.)

Arsenic Stress on 
Abelmoschus esculentus, 

L.

After Co–Cultivation
Arsenic Stress on 

Abelmoschus esculentus, L.

After Co–Cultivation
Abelmoschus 
esculentus, L.

Brassica juncea, Hk. F. 
and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Control 16.09  ± 0.179 (100) 16.17 ± 0.419 (100) 19.87 ± 0.357 (100) 10.15  ± 0.371 (100) 10.37 ± 0.163 (100) 14.07 ± 0.174 (100)
2 mM 14.91 ± 0.947 a* (93) 16.03 ± 0.715 a# (99) 19.42 ± 0.419 a# (97) 9.04 ± 0.134 a* (89) 10.14 ± 0.756 a# (98) 13.82 ± 0.543  a* (98)
4 mM 13.47 ± 0.731 a* (84) 15.92 ± 0.452 a# (98) 18.71 ± 0.164 a* (94) 7.92 ±0.316 a* (78) 9.84 ± 0.867 a# (95) 13.16 ± 0.294 a* (94)
6 mM 11.70 ± 0.398 a* (73) 15.90 ± 0.194 a# (98) 17.82 ± 0.518 a* (90) 5.14 ± 0.675 a* (51) 9.91 ± 0.512 a# (96) 12.87 ± 0.359 a* (91)
8 mM 8.36 ± 0.671 a*  (52) 15.73 ± 0.456 a#  (97) 16.98 ± 0.473 a*(85) 3.83 ± 0.219 a*  (38) 9.52 ± 0.149 a# (92) 12.24 ± 0.783 a*  (87)
10 mM 6.98 ± 0.738 a* (43) 15.69 ± 0.129 a#  (97) 15.73 ± 0.431 a*  (79) 2.07 ± 0.519 a*  (20) 9.37 ± 0.542 a* (90) 11.53 ± 0.648 a*  (82)

Values in parenthesis indicate percent activity Values are an average of five observations.  Values in parentheses are percentage activity with respect to control. Mean ± SE 
a – refers to value compared with control in various concentrations of metals, a* – refers to significant (P ≤ 0.05 – Tukey test). a# – refers to non-significant.

 Table 2: Impact of arsenic chloride on the biomass of hyperaccumulator (Brassica juncea, Hk. F. and T.) and hypoaccumulator (Abelmoschus esculentus, L.).

Metal Con-
centration

Chlorophyll .a (mg/gLFW) Chlorophyll .b (mg/gLFW) TotaL. Chlorophyll (mg/gLFW)

Arsenic Stress 
on Abelmoschus 
esculentus, L.

After Co–Cultivation Arsenic Stress 
on Abelmoschus 
esculentus, L.

After Co–Cultivation Arsenic Stress 
on Abelmoschus 
esculentus, L.

After Co–Cultivation

Abelmoschus 
esculentus, L.

Brassica juncea, 
Hk. F. and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Control 5.76 ± 0.197 (100) 6.14 ± 0.362 (100) 9.76 ± 0.097 (100) 4.13 ± 0.914 (100) 4.42 ± 0.568 (100) 7.31 ± 0.473 (100) 9.89 ± 0.771 (100) 10.56 ± 0.761 (100) 17.07 ± 0.128 (100)

2 mM 5.10 ± 0.108 a* (89) 5.98 ± 0.419 a# (97) 9.12 ± 0.165 a* (93) 3.52 ± 0.793 a* (85) 4.37 ± 0.317 a# (99) 6.84 ± 0.136 a* (94) 8.62 ± 0.314 a* (87) 10.35 ± 0.516 a# (98) 15.96 ± 0.139 a* (93)

4 mM 4.23 ± 0.461 a* (73) 5.95 ± 0.716 a# (97) 8.86 ± 0.119 a* (91) 2.99 ± 0.147 a* (72) 4.33 ± 0.479 a# (98) 6.12 ± 0.307 a* (84) 7.22 ± 0.658 a* (73) 10.28 ± 0.815 a# (97) 15.0 ± 0.213 a*

6 mM 3.49 ± 0.640 a* (60) 5.86 ± 0.134 a# (95) 8.16 ± 0.306 a* (84) 2.08 ± 0.186 a* (50) 4.26 ± 0.294 a# (96) 5.38 ± 0.096 a* (74) 5.57 ± 0.025 a* (56) 10.12 ± 0.143 a#  (96) 13.54 ± 0.518 a* (79)

8 mM 2.78 ± 0.517 a*  (48) 5.80 ± 0.617 a*  (94) 7.73 ± 0.177 a*  (79) 1.65 ± 0.492 a*  (40) 4.27 ± 0.915 a*  (96) 4.72 ± 0.149 a* (65) 4.43 ± 0.158 a*  (45) 10.07 ± 0.205 a# (95) 12.45 ± 0.375 a* (73)

10 mM 1.98 ± 0.376 a*  (33) 5.77 ± 0.237 a*  (94) 6.87 ± 0.253 a*  (70) 1.07 ± 0.315 a*  (26) 4.21 ± 0.518 a*  (95) 3.911 ± 0.465 a* (54) 2.99 ± 0.213 a* (30) 9.98 ± 0.314 a*  (95) 10.84 ± 0.197 a*  (64)

Values in parenthesis indicate percent activity Values are an average of five observations. Values in parentheses are percentage activity with respect to control. Mean ± SE 
a – refers to value compared with control in various concentrations of metals, a* – refers to significant (P ≤ 0.05 – Tukey test). a# – refers to non-significant.
Table 3: Impact of arsenic chloride on the photosynthetic pigment contents of hyperaccumulator (Brassica juncea, Hk.F. and T.) and hypoaccumulator (Abelmoschus 
esculentus, L.).

Metal 
Concentration

Carotenoids (mg/gLFW) Anthocyanin (µg /gLFW) Total Soluble Sugar (mg/gLFW)

Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Control 3.78 ± 0.236 (100) 3.84 ± 0.173 (100) 6.75 ± 0.093 (100) 1.65 ± 0.832 (100) 1.58 ± 0.276 (100) 2.67 ± 0.086 (100) 7.63 ± 0.147 (100) 7.61 ± 0.326 (100) 12.38 ± 0.367 (100)

2 mM 3.04 ± 0.197 a* (80) 3.80 ± 0.419 a# (99) 6.62 ± 0.086 a# (98) 2.09 ± 0.334 a* (127) 1.60 ± 0.241 a# (101) 2.72 ± 0.384 a* (102) 6.51 ± 0.313 a* (85) 7.59 ± 0.257 a# (100) 12.04 ± 0.283 a# (97)

4 mM 2.47 ± 0.360 a* (65) 3.76 ± 0.237 a# (98) 6.31 ± 0.098 a* (93) 2.81 ± 0.151 a* (170) 1.62 ± 0.378 a# (103) 2.91 ± 0.399 a* (109) 5.47 ± 0.173 a* (72) 7.56 ± 0.721 a# (99) 11.80 ± 0.176 a* (95)

6 mM 1.86 ± 0.314 a* (49) 3.77 ± 0.581 a# (98) 6.04 ± 0.136 a* (89) 3.36 ± 0.249 a* (204) 1.59 ± 0.352 a# (101) 3.17 ± 0.674 a* (119) 4.83 ± 0.842 a* (63) 7.49 ± 0.342 a# (98) 11.46 ± 0.354 a* (93)

8 mM 1.12 ± 0.527 a*  (30) 3.73 ± 0.729 a#  (97) 5.87 ± 0.142 a*  (87) 3.99 ± 0.167 a* (241) 1.64 ± 0.247 a*  (107) 3.45 ± 0.413 a*  (129) 4.16 ± 0.760 a* (55) 7.58 ± 0.346 a# (100) 10.97 ± 0.602 a*  (87)

10 mM 0.849 ± 0.674 a*  (22) 3.70 ± 0.365 a#  (96) 5.39 ± 0.479 a*  (80) 4.63 ± 0.184 a* (280) 1.63 ± 0.187 a# (103) 3.72 ± 0.638 a*  (139) 3.56 ± 0.221 a* (47) 7.53 ± 0.148 a#  (99) 10.45 ± 0.567 a* (84)

Values in parenthesis indicate percent activity Values are an average of five observations.  Values in parentheses are percentage activity with respect to control. Mean ± SE 
a – refers to value compared with control in various concentrations of metals, a* – refers to significant (P ≤ 0.05 – Tukey test). a# – refers to non-significant.

Table 4: Impact of arsenic chloride on the pigments of hyper accumulator (Brassica juncea, Hk. F. and T.) and hypo accumulator (Abelmoschus esculentus, L.).
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mM concentration of arsenic decreased the total soluble protein 
content of Brassica 19% when compared to the control plants. In 
hypoaccumulator (Abelmoschus) the reduction was only 3% when co-
cultivated with Brassica under 10 mM arsenic treatment. At the same 
concentration, it was about 64% before co-cultivation. A reduction in 
soluble protein level eventually leads to an increase in free amino acid 
content. The results of the study show that the free amino acid content 
of hyperaccumulator, Brassica where the maximum increase of 24% at 
10 mM arsenic treatment than the control plants. Arsenic treatment 
in Abelmoschus, the increase was 2% when co-cultivated with Brassica 
but the increase was 96% before co-cultivation. Only 8% increase of 
proline content was seen in Abelmoschus co-cultivated with Brassica 
under the 10 mM arsenic treatment. At the same concentration of 
arsenic treatment, it was 147% more than control before co-cultivation. 
Arsenic treatment in the Brassica has increased the nitrate level to 40%, 
whereas, no increase in leaf nitrate content when co-cultivated with 
Brassica. In all concentrations, the leaf nitrate content was about equal 
to control plant, whereas it was 98% before co-cultivation (Table 6).

The results of the present study shows (Table 7) that, in vivo nitrate 
reductase activity of the leaves was significantly inhibited at 10 mM 

concentration of arsenic to about 50% in Brassica when compared 
to the control. In contrary, the hypoaccumulator Abelmoschus when 
co-cultivated with Brassica, no reduction in nitrate reductase activity 
under 10 mM arsenic treatments. Catalase activity was found to be 
increased in hyperaccumulators of all the experimental plants than the 
control. The increase was respectively, about 76% when compared to 
the control plants. In Abelmoschus, there was only 5% increase when 
co-cultivated with Brassica under arsenic treatment, which was 206% 
when grown alone. Peroxidase is another antioxidant enzyme that also 
showed an increasing trend as catalase in hyperaccumulators and in 
hypoaccumulator it showed on par activity with control. In arsenic 
treatment, Brassica an activity of about 46% more respectively at 6 mM 
concentration when compared to the control. At the same concentration 
of arsenic, the reduction was about 7% in hypoaccumulator when co-
cultivated with Brassica. This was 284% when grown alone.

Heavy metal concentrations  

To evaluate the heavy metal accumulation, translocation 
and mobility in the plant tissue, the Accumulation Factor (AF), 
Translocation Factor (TF) and Mobility Index (MI) was calculated on 

Metal 
Concentration

Total Soluble Protein(mg/gLFW) Amino acid (µ mole/g LFW) Proline (µ mole/g LFW)

Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation Arsenic Stress on 
Abelmoschus esculentus, 

L.

After Co–Cultivation Arsenic Stress on 
Abelmoschus esculentus, 

L.

After Co–Cultivation

Abelmoschus 
esculentus, L.

Brassica juncea, 
Hk. F. and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Control 4.76 ± 0.412 (100) 4.79 ± 0.168 (100) 7.61 ± 0.275 (100) 3.57 ± 0.301 (100) 3.63 ± 0.079 (100) 6.57 ± 0.450 (100) 1.968 ± 0.386 (100) 1.984 ± 0.116 (100) 3.84 ± 0.176 (100)

2 mM 4.05 ± 0.216 a*  (85) 4.73 ± 0.214 a#  (99) 7.53 ± 0.318 a#  (99) 4.13 ± 0.379 a*  (115) 3.69 ± 0.428 a#  (102) 6.69 ± 0.428 a*  (102) 2.325 ± 0.228 a*  (118) 2.047 ± 0.173 a#  (103) 4.12 ± 0.215 a*  (107)

4 mM 3.41 ± 0.237 a*  (72) 4.75 ± 0.346 a#  (99) 7.34 ± 0.425 a*  (96) 4.96 ± 0.657 a*  (138) 3.64 ± 0.754 a#  (100) 6.88 ± 0.534 a*  (105) 2.941 ± 0.206 a*  (149) 2.125 ± 0.234 a#  (107) 4.57 ± 0.161 a*  (119)

6 mM 2.83 ± 0.677 a*  (59) 4.69 ± 0.872 a#  (98) 6.91 ± 0.638 a*  (91) 5.34 ± 0.138 a*  (149) 3.67 ± 0.082 a#  (101) 7.19 ± 0.251 a*  (109) 3.579 0.382 a*  (182) 2.113 ± 0.315 a#  (107) 5.25 ± 0.755 a*  (137)

8 mM 2.10 ± 0.136 a*  (44) 4.64 ± 0.311 a# (97) 6.65 ± 0.346 a*(87) 6.19 ± 0.463 a*  (173) 3.72 ± 0.486 a#  (102) 7.53 ± 0.682 a*  (115) 4.184 ± 0.472 a* (213) 2.167 ± 0.324 a#  (109) 5.98 ± 0.183 a*  (156)

10 mM 1.72 ± 0.254 a*  (36) 4.66 ± 0.267 a#  (97) 6.18 ± 0.212 a* (81) 6.98 ± 0.249 a*  (196) 3.70 ± 0.512 a#  (102) 8.14 ± 0.743 a*  (124) 4.866 ± 0.637 a*  (247) 2.148 ± 0.167 a*  (108) 6.32 ± 0.198 a*  (165)

Values in parenthesis indicate percent activity Values are an average of five observations.  Values in parentheses are percentage activity with respect to control. Mean ± SE 
a – refers to value compared with control in various concentrations of metals, a* – refers to significant (P ≤ 0.05 – Tukey test). a# – refers to non-significant.
Table 5: Impact of arsenic chloride on the biochemical features of hyper accumulator (Brassica juncea, Hk. F. and T.) and hypoaccumulator (Abelmoschus esculentus, L.)

Metal 
Concentration

Leaf Nitrate (µ mole/g LFW) Nitrate Reductase activity (µ mole/g LFW)

Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation
Abelmoschus 
esculentus, L.

Brassica juncea, Hk. F. 
and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. F. 
and T.

Control 3.52 ± 0.308 (100) 3.55 ± 0.273 (100) 7.57 ± 0.085 (100) 8.03 ± 0.781 (100) 8.14 ± 0.126 (100) 12.53 ± 0.364 (100)
2 mM 4.06 ± 0.432 a* (115) 3.59 ± 0.126 a# (101) 7.84 ± 0.093 a* (104) 6.87 ± 0.160 a* (86) 8.00 ± 0.634 a# (98) 11.86 ± 0.803 a* (95)
4 mM 4.84 ± 0.467 a* (138) 3.58 ± 0.264 a# (101) 8.39 ± 0.148 a* (111) 6.24 ± 0.284 a* (78) 7.93 ± 0.518 a# (97) 10.62 ± 0.516 a* (85)
6 mM 5.49 ± 0.510 a* (156) 3.51 ± 0.325 a# (99) 8.96 ± 0.102 a* (118) 5.21 ± 0.418 a* (65) 8.12 ± 0.193 a# (100) 9.27 ± 0.234 a* (74)
8 mM 6.27 ± 0.521 a*  (178) 3.54 ± 0.314 a#  (100) 9.42 ± 0.386 a*  (124) 3.879 ± 0.367 a*  (48) 8.16 ± 0.509 a#  (100) 7.84 ± 0.732 a*  (63)
10 mM 6.98 ± 0.549 a*  (198) 3.56 ± 0.431 a#  (100) 10.61 ± 0.257 a* (140) 3.132 ± 0.319 a*  (39) 8.09 ± 0.341 a# (99) 6.31 ± 0.747 a*  (50)

Values in parenthesis indicate percent activity Values are an average of five observations.  Values in parentheses are percentage activity with respect to control. Mean ± SE 
a – refers to value compared with control in various concentrations of metals, a* – refers to significant (P ≤ 0.05 – Tukey test). a# – refers to non-significant.
 Table 6: Impact of arsenic chloride on the biochemical and enzymatic features of hyper accumulator (Brassica juncea, Hk. F. and T.) and hypo accumulator (Abelmoschus 
esculentus, L.).

Metal 
Concentration

Catalase activity (µ mole/g LFW) Peroxidase activity (µ mole/g LFW)

Arsenic Stress on 
Abelmoschus esculentus, 

L.

After Co–Cultivation Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation

Abelmoschus esculentus, L. Brassica juncea, Hk. F. 
and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. 
F. and T.

Control 2.67 ± 0.472 (100) 2.54 ± 0.376 (100) 5.48 ± 0.433 (100) 1.63 ± 0.207 (100) 1.56 ± 0.087 (100) 3.60 ± 0.231 (100)
2 mM 2.99 ± 0.587 a* (112) 2.59 ± 0.147 a# (102) 5.97 ± 0.670 a* (109) 2.08 ± 0.324 a* (128) 1.61 ± 0.096 a# (103) 3.94 ± 0.436 a* (109)
4 mM 3.48 ± 0.542 (130) 2.63 ± 0.139 a# (104) 6.49 ± 0.481 a* (118) 2.88 ± 0.469 a* (177) 1.63 ± 0.125 a# (104) 4.59 ± 0.485 a* (127)
6 mM 4.35 ± 0.419 a* (163) 2.68 ± 0.272 a# (106) 7.65 ± 0.143 a* (140) 3.14 ± 0.479 a* (193) 1.59 ± 0.149 a# (102) 5.27 ± 0.354 a* (146)
8 mM 4.92 ± 0.205 a* (184) 2.61 ± 0.897 a#  (103) 8.94 ± 0.376 a*   (163) 3.92 ± 0.273 a* (240) 1.66 ± 0.182 a#   (106) 6.63 ± 0.417 a*  (184)
10 mM 5.49 ± 0.059 a* (206) 2.66 ± 0.643 a#   (105) 9.62 ± 0.265 a*   (176) 4.63 ± 0.167 a* (284) 1.67 ± 0.195 a#   (107) 7.28 ± 0.163 a*  (202)

Values in parenthesis indicate percent activity Values are an average of five observations.  Values in parentheses are percentage activity with respect to control. Mean ± SE
a – refers to value compared with control in various concentrations of metals, a* – refers to significant (P ≤ 0.05 – Tukey test). a# – refers to non-significant.
Table 7: Impact of arsenic chloride on the enzymatic features of hyper accumulator (Brassica juncea, Hk.F. and T.) and hypoaccumulator (Abelmoschus esculentus, L.).
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the effect of arsenic on co-cultivately grown Abelmoschus esculentus L., 
with Brassica juncea, Hk. F. and T. and tabulated in tables 8 and 9.

The accumulation factor was significantly increased in 
hyperaccumulators with the increasing concentrations of arsenic. With 
the increasing concentrations of arsenic, the accumulation factor also 
increased in the hyperaccumulator and more accumulation factor was 
recorded in Brassica (1.824) when grown in 10 mM arsenic solution. The 
accumulation factor was not recorded much in the hypoaccumulator, 
Abelmoschus. The seedlings of Abelmoschus esculentus, L. when co-
cultivated with hyperaccumulator Brassica under the influence of 
arsenic up to 4 mM the accumulation factor was below detectable 
level (BDL) and 6 mM to 10 mM it was ranging from 0.015 to 0.003 
in arsenic treatment. In the hyperaccumulators, the translocation 
factor was increased with the increasing concentrations of arsenic. 
Translocation factor was recorded in Brassica and when grown in 10 mM 
arsenic solution. It was found to be 1.32. When the hypoaccumulator 
Abelmoschus was co-cultivated with the hyperaccumulator, Brassica 
the translocation factor was in the range of 0.765 to 0.711 in arsenic 
treatment.

The mobility index was divided into three parts; Level 1- Soil to 
Root; Level 2- Root to Stem and Level 3- Stem to Leaf. For Level 1, the 
mobility index was 0.803 in Brassica when grown in 10 mM arsenic 
solution. The hypoaccumulator, Abelmoschus when co-cultivated with 
Brassica did not show the mobility index. For Level 2, in the 
hyperaccumulators, mobility index was 0.535 in Brassica when grown 
in 10 mM arsenic solution, Abelmoschus when co-cultivated with 
Brassica up to 4 mM, the mobility index was below the detectable 
level for arsenic treatment and in 6 mM to 10 mM concentration, 
the mobility index was ranging from 0.073 to 0.058. For Level 3, the 
mobility index was 1.904 in Brassica under 10 mM arsenic treatment. 

The hypoaccumulator, Abelmoschus when co-cultivated with Brassica 
up to 4 mM, the mobility index was below detectable level for arsenic 
treatment The Abelmoschus when co-cultivated with Brassica, the 
mobility index was 0.516 in 10 mM arsenic.

Discussion
Phytoextraction is a soil remediation technology that makes use 

of the plants to extract metals from contaminated soils. When using 
non-hyperaccumulators as phytoextractors, one of the greatest factors 
limiting the success of this technology is the solubility of metals in 
the soil solution. Since plants can only accumulate metals in the labile 
fraction of the soil, the success of phytoextraction would be restricted 
by the unavailability of soil metals. Generally, at high contaminant 
concentrations in soil or water, plants are able to metabolize these 
harmful elements. However, some plants can survive and even grow 
well when they accumulate high concentration of toxic elements, as 
is the case of the hyperaccumulator plants. So, the co-cultivation of 
hypoaccumulator with hyperaccumulator has been analyzed in this 
chapter.

Results on the co-cultivation of hypoaccumulator Abelmoschus 
esculentus, L. with hyper accumulators Brassica juncea, Hk. F. and T. 
under various concentrations of arsenic are being discussed below.

Heavy metals either retard the growth of the whole plant or plant 
parts [26,27]. The plant parts normally the roots which have direct 
contact with the contaminated soils exhibit rapid and sensitive changes 
in their growth pattern. Significant effects of number of metals (Cu, Ni, 
Pb, Cd, Zn, Al, Hg, Cr, As, Fe) on the growth of above-ground plant 
parts is well documented [28]. 

In the present investigation, arsenic has caused considerable 

Metal Con-
centration

Accumulation Factor (AF) Translocation Factor (TF)

Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation
Abelmoschus 
esculentus, L.

Brassica juncea, Hk. F. 
and T.

Abelmoschus 
esculentus, L.

Brassica juncea, Hk. F. 
and T.

Control BDL BDL BDL BDL BDL BDL
2 mM 0.490 ± 0.0014 BDL 1.483 ± 0.0064 0.125 ± 0.0008 BDL 1.103 ± 0.0018
4 mM 0.301 ±  0.0029a* BDL 1.520 ± 0.0072a* 0.121 ± 0.0038a* BDL 1.158 ± 0.0093a*

6 mM 0.251 ±  0.0071a* 0.005 ± 0.0026a# 1.586 ± 0.0048a* 0.119 ± 0.0073a* BDL 1.196 ± 0.0008a*

8 mM 0.235 ± 0.0026a* 0.004± 0.0013a# 1.654 ± 0.0013a* 0.112 ± 0.0010a* 0.765 ± 0.0021 a# 1.272 ± 0.0037a*

10 mM 0.213 ±  0.0037a* 0.001± 0.0061a# 1.824 ± 0.0004a* 0.103 ± 0.0042a* 0.711 ± 0.0034a# 1.327 ± 0.0016a*

Values are an average of three observations. Mean ± SE, a – refers to value compared with control in various concentrations of metals, a* – refers to significant (P ≤ 0.05 
– Tukey test). a# – refers to non-significant. 
BDL – Below Detectable Level, S – R: Soil to Root, R – S: Root to Stem, S – L: Stem to Leaf

Table 8: Impact of arsenic chloride concentration in hyper accumulator (Brassica juncea, Hk. F. and T.) and hypo accumulator (Abelmoschus esculentus, L.).

Metal 
Concentration

Mobility Index (MI)
Level 1 (Soil to Root) Level 2 (Root to Stem) Level 3 (Stem to Root)

Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation Arsenic Stress 
on Abelmoschus 

esculentus, L.

After Co–Cultivation
Abelmoschus 
esculentus, L.

Brassica juncea, 
Hk. F. and T.

Abelmoschus 
esculentus, L.

Brassica juncea, 
Hk. F. and T.

Abelmoschus 
esculentus, L.

Brassica juncea, 
Hk. F. and T.

Control BDL BDL BDL BDL BDL BDL BDL BDL BDL
2 mM 0.437 ± 0.0068 BDL 0.681 ± 0.0074 0.055 ±  0.0039 BDL 0.380 ± 0.0018 1.630 ± 0.0072 BDL 1.378 ± 0.0090
4 mM 0.268 ± 0.0002a* BDL 0.705 ± 0.0002a* 0.053 ± 0.0017 a* BDL 0.432 ± 0.0039a* 1.496 ± 0.0015a* BDL 1.512 ± 0.0043a*

6 mM 0.224 ± 0.0034a* 0.001 ± 0.0055a# 0.704 ± 0.0018a* 0.050 ±  0.0011a* BDL 0.436 ± 0.0082a* 1.235 ±  0.0073a* BDL 1.656 ± 0.0042a*

8 mM 0.212 ± 0.0075a* 0.003 ± 0.0012a# 0.753 ± 0.0069a* 0.050 ±  0.0047 a* 0.505 ± 0.0012a# 0.528 ± 0.0010a* 1.065 ± 0.0020 a* 0.585 ± 0.0064a* 1.766 ± 0.0043a* b*

10 mM 0.193 ±  0.0031a* 0.003 ± 0.0078a# 0.803 ± 0.0083a* 0.046 ± 0.0053a* 0.449 ± 0.0034a# 0.535 ± 0.0083a* 1.030 ±  0.0014a* 0.516 ± 0.0026a* 1.904 ± 0.0016a*

Values are an average of three observations. Mean ± SE, a – refers to value compared with control in various concentrations of metals, a* – refers to significant (P ≤ 0.05 
– Tukey test). a# – refers to non-significant. 
BDL – Below Detectable Level, S – R: Soil to Root, R – S: Root to Stem, S – L: Stem to Leaf

Table 9: Impact of arsenic chloride concentration in hyper accumulator (Brassica juncea, Hk. F. and T.) and hypoaccumulator (Abelmoschus esculentus, L.).
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reduction on the seedling length and leaf area of hyperaccumulators 
Brassica. However, not much reduction in the hypoaccumulator 
Abelmoschus was recorded when compared with plant treated with metal 
alone. Inhibition of the root and shoot lengths at higher concentration 
of the metals is due to the high levels of toxicity present in arsenic, 
which interfered and inhibited the uptake of other essential elements 
like potassium, calcium, phosphorus and magnesium by the plants 
[29]. Sahai et al. [30] and Dolar et al. [31] reported that, the retardation 
of plant growth was due to excess quantities of micronutrients and 
other toxic chemicals. 

Reduction of leaf growth is an important visible symptom of heavy 
metal stress. In many plants, the reduction in leaf area in response to 
arsenic treatment was also related to accumulation of arsenic in leaves, 
where the size of the leaf was also decreased [32].

The observed pronounced inhibition of shoot and root growth 
and leaf area is the main cause for the decrease in fresh weight and 
dry weight of seedlings. In plants, uptake of metals occurs primarily 
through the roots, so roots are the primary site for regulating the 
accumulation of metals [33]. The biomass accumulation represents 
overall growth of the plants. In the present investigation, the total fresh 
weight of hyperaccumulator (Brassica) was gradually reduced with the 
increase in concentration of metal, but in the hypoaccumulator, no 
reduction was found and the plants were as like as control plants. This 
may be due to the removal of metal toxicity by the hyperaccumulator 
(Brasssica). Similar observation was reported by Quartacci et al. [34] in 
phytoextraction of cadmium by the Indian mustard.

Inhibition of biomass accumulation is directly related to the 
photosynthetic processes which, in turn, rely upon the pigment 
level. Considerable reduction in the pigment level was noticed in 
hyperaccumulator (Brassica) on the arsenic treatment, which was not 
in the hypoaccumulator (Abelmoschus). Heavy metal stress reduces 
nutrient and water uptake, impairs photosynthesis and inhibits growth 
of the plants [35-37].

Plants exhibit morphological and metabolic changes in response 
to metal stress that are believed to be adaptive responses [38]. For 
instance, metal stress not only inhibits growth [39,40], but also brings 
about changes in various physiological and biochemical characteristics 
such as water balance, nutrient uptake [41,42] and photosynthetic 
electron transport around photosystems I and II [43-45]. The reduction 
in growth and biomass due to arsenic stress may result in many 
biochemical, physiological and molecular changes in the plants. Heavy 
metal stress in plants has been reflected as stunted growth, leaf chlorosis 
and alteration in the activity of key enzymes of various metabolic 
pathways [35,46-48].

The chlorophyll content, which is an indicator of the photosynthetic 
efficiency of the plant, showed a marked reduction in all the treatments 
in the hyperaccumulator plant but not in hypoaccumulator plant. In 
plants increasing concentrations of heavy metal and its toxic effects 
on the plant chlorophyll content was reported. Similar reduction in 
pigment level was observed in many plants by various heavy metal 
treatments [49-51].

Reduction in the chlorophyll content paralleled with the reduction 
in dry weight and the net photosynthesis were reported. In this 
study, there was a reduction in root length and chlorophyll content 
associated with the reduction in dry matter in hyperaccumulator, 
which did not occur in hypoaccumulator (Abelmoschus). It may be 
due to the hyperaccumulator accumulating all the toxicity, so the 
Abelmoschus esculentus L. is free from metals toxicity. In heavy metal 

treated plants, the reduction in chlorophyll content could be due 
to a block in the chlorophyll biosynthetic pathway or induction of 
chlorophyll degradation by chloropyllase [40,52-54]. In the present 
study, similar declining trend was observed in the carotenoid content 
in hyperaccumulator. 

The anthocyanin content was, however, found increasing in 
the hyperaccumulator, whereas there was no change found in the 
hypoaccumulator (Abelmoschus) when co-cultivated with Brassica in 
arsenic treatment. The protective function of plant anthocyanin against 
the stress condition is fairly clear [55]. The anthocyanin accumulated in 
the leaves exposed to heavy metal or pollutants could act as scavengers, 
before it reaches the sensitive targets such as chloroplast and other 
organelle [56-58].

There was a considerable reduction in the levels of protein and 
sugar in the leaves of Brassica treated with various concentrations of 
arsenic. In contrary, no reduction of sugar and protein contents was 
observed in the Abelmoschus when co-cultivated with the Brassica. The 
result coincides with the result of Marchiol et al. [59].  

As a result of protein degradation, the availability of free amino 
acids is significantly high in Brassica. The free amino acid content is 
increased with increasing concentration of the arsenic. It may be due to 
the destruction of protein or increase in the biosynthesis of amino acids 
from the nitrate source, which were not utilized in the protein synthesis 
[60]. The degradation of protein may lead to an increase in free amino 
acid content. It is an adaptive mechanism employed by the plant cell to 
overcome post stress metabolism [61].

Proline accumulation is considered to be a protective mechanism 
for the plants to preserve water, which is necessary to tide over any 
internal water deficit. Accumulation of amino acids, organic anions 
and quaternary ammonium compounds such as glycine, betaine and 
proline are considered as osmotic adjustments in higher plants during 
water stress [62,63]. Rout and Shaw [64] analyzed the possibility of 
proline accumulation as a consequence of impaired protein synthesis. 

Under stress, inhibition of growth of cells, leaves and the whole 
plant is accompanied by an accumulation of nitrate in plant tissue 
particularly in leaves [65]. The leaf nitrate content was analyzed and 
found to be more in Brasssica, than in the Ablemoschus plants. In all the 
treatments the leaf nitrate content was more or less similar to the control 
plant. Indeed, the accumulation of leaf nitrate content was found to be 
paralleled with the reduction in nitrate reductase (NR) activity. Similar 
increase in leaf nitrate content, reduction in in vivo nitrate reductase 
activities with increase in concentration of cadmium treatment on 
Vigna radiata was observed by Jayakumar and Ramasubramanian [66] 
and industrial effluent on Abelmoschus esculentus by Jeyarathi and 
Ramasubramanian [67].

Nitrate Reductase (NR) enzyme is one of the cytoplasmic substrate 
inducible enzymes. The NR activity was found to be decreased in both 
the Brassica in both metal treatments. In metal stressed plants, lowering 
of nitrate reductase activity reflects a decreased rate of enzyme synthesis 
or an increased rate of enzyme degradation [68]. Thus, it is possible 
to assume that, a mechanism similar to this might have operated in 
the arsenic stressed Brassica thereby causing a reduction in the nitrate 
reductase activity. While arsenic toxicity was observed in the Brassica, 
no such reduction in nitrate reductase activity in the hypoaccumulator 
Abelmoschus esculentus L. was observed.

Physiological stress manifests itself in metabolic disturbance and 
oxidative injury by producing reactive oxygen species. Resistance to any 
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stress is exhibited by the antioxidant capacity or increased level of one 
or more antioxidants which can prevent stress damage [69]. Hence, in 
the present study, activities of enzyme like catalase and peroxidase were 
analyzed. Peroxidase is an enzyme which utilizes hydrogen peroxide as 
a substrate and it also oxidizes a wide range of hydrogen donors such 
as phenolic substances, cytochrome-c-oxidase. The peroxidase activity 
was observed to be increased with the increasing concentrations of the 
arsenic in the Brassica. The increased peroxidase activity caused a major 
impact on the chlorophyll degradation.

Catalase is another anti-oxidant scavenging enzyme. It is also 
analyzed in the present study and found to be increased with the 
increasing concentrations of nickel. Catalase is a special type of 
peroxidative enzymes which catalyses the degradation of H

2
O

2
, which 

is a natural metabolite toxic to plants. Nashikkar and Chakrabarti [70] 
reported that increasing concentrations of sodium chloride has caused 
enhanced catalase activity. However, in Abelmoschus plants, both the 
catalase and peroxidase activities were found to be on par with control 
pant indicating stress relived nature.

The accumulation factor and translocation factor of both metals 
show a gradual increase in the Brassica with increasing concentrations 
of arsenic. But in the Abelmoschus, the accumulation factor (AF) and 
translocation factor (TF) were very less even in 4mM concentration 
of metal treatment. Both factors were recorded below the detectable 
level which coincides with the findings of Ma et al. [71]. Comparatively 
low TF values of chromium and high TF values of mercury reveal very 
low and high translocation of these metals indicating the translocation 
potential Brassica diffusa. 

More or less similar results have been reported in the accumulation 
pattern of heavy metals in Bidens tripartita [72]. Those authors suggested 
that accumulation potential of plants towards heavy metal depends on 
the availability of the metals in the soil/ growth media as well as on the 
plant genotype. But in the present study, the accumulation factor and 
translocation factor were less in the hypoaccumulator (Abelmoschus). 
This may be due to the hyperaccumulator accumulating more metals 
and leave hypoaccumulator free from metal toxicity. 

If the accumulation factor (AF) and translocation factor (TF) values 
are above one, the plant is suitable for phytoremediation [23,72]. In 
the present investigation, accumulation factor (AF) and translocation 
factor (TF) values are above one, in Brassica, suggesting that they are 
best suited for phytoextraction of arsenic toxicity.

The mobility index (MI) of Brassica is higher than one for Level 3, 
the mobility index was more than 0.6 for Levels 1 and 2, indicating the 
moderate rate of mobility of metals form soil to roots, higher mobility 
rate in stem to leaves, and low from roots to stem. Thus, the present 
results are well corroborated with the observations of Hunter et al. 
[73-75]. In contrary, in the hypoaccumulator Abelmoschus these levels 
are not noticed, because the hyperaccumulator plants absorbed the 
metals freed the hypoaccumulator Abelmoschus. Similar findings were 
provided by Yusuf et al. [76] and An et al. [77].

Thus, from the above findings it is clear that, the plant Brassica 
juncea, Hk. F. and T. chosen for the study, are acting as hyperaccumulator. 
This is proved by the results obtained on accumulation factor (AF), 
translocation factor (TF) and mobility index (MI) studies. Because of 
the phytoextraction capability of Brassica, (hypoaccumulator) plant 
could grow well in metal stressed environment when it is co-cultivated. 

Based on the result obtained on accumulation factor (AF), 
translocation factor (TF) and mobility index (MI), it is suggested that 

Brassica juncea, Hk. F. and T. is best suited for remediating nickel.
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