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Editorial
Plants respond to different pests and pathogens by activating a set of

resistance genes that involve in substantial transcriptional
reprogramming integrating hormonal, metabolic, and physiological
movements [1]. These cumulative downstream defense responses
alleviate pathogen and pest by subsequent local or systemic induced
resistance. Hormone signaling and trans-acting regulatory factors/
Transcription factors (TFs) are the major factors that facilitate
downstream defense responses in plants [2]. Approximately, 7% of
plant genome coding sequences represent TFs [3]. Among many
different type of TFs available in plants, the most common TFs mainly
belong to six groups; AP2/ERF, MYB, BZIP, WRKY, MYC and NAC
[4]. There is no exact mechanism or correlation between the type of
TFs and plant defense signaling. AP2/ERF TFs were found to be
mainly involved in Jasmonic acid (JA) and ethylene (ET) signal
transduction while, WRKY and bZIP TFs were mostly involved in
salicylic acid (SA) mediated signal transduction. TFs encoding genes
may be differentially regulated (up or down) by different stresses and
substantial overlap occurs in the defense pathways allow integration of
different defense signal and thereby, fine tune the Plant defense to
pathogen/pest attack.

AP2/ERF
AP2/ERF (Apetala2/ethylene responsive factor) class of

transcription factors constitute plant specific large family of TFs which
is well-known for regulating biological responses to environmental
stimuli [5]. AP2/ERF TFs constitutes ~163 members in rice and ~140
members in Arabidopsis [5]. The presence of one or two highly
conserved 60 amino acid AP2 domain is the characteristic of AP2/ERF
transcription factors [6,7]. AP2-like transcription factors are known to
contain two AP2 domains while ERF-like factors has one AP2 domain.
Ethylene-response elements (ERE), also known as the GCC-box
(GCCGCC) binds with AP2/ERF proteins with a single AP2-domain
in response to ET [8]. The GCC-box has been identified in many
promoters of defense-responsive genes that are inducible by ET. The
GCC-box is also found in the promoters of SA-inducible pathogenesis-
related (PR) genes, suggesting likely cross-talk between ET and SA
pathways. In Arabidopsis, AP2/ERF proteins are also involved in JA-
inducible gene expression and known as octadecanoid-responsive
AP2/ERF (ORA). Arabidopsis ORA59 positively regulates expression
of JA- and ET-mediated defense-related genes [9]. ORA47 regulate JA
biosynthetic genes via positive feedback regulation. AP2/ERF proteins,
in combination with other transcription factors may regulate the cross-
talk and differential defense gene regulation. For example, OsEBP2
(Oryza sativa ethylene-responsive-element binding protein 2)
expression was identified as a downstream component of a signal
transduction pathway in response to rice-blast fungus interaction and
also found to be transiently induced by MeJA, ABA and ET treatments
[10]. Other TF, OsEREBP1 was reported to be induced in rice and

bacterial pathogen, Xanthomonas oryzaepv. oryzae (Xoo) interaction.
Transcriptome analysis via Microarray and SSH cDNA library showed
AP2 transcription factor were differentially up-regulated in
incompatible rice-gall interactions [11-13].

MYB
MYB factors in plants have been implicated in JA signaling

pathways that bind to (T/C)AAC(T/G)G and G(G/T)T(A/T) G(G/T)T
type of DNA sequences [14]. The role of MYB TFs is mostly
documented in regulating the biosynthesis primary and secondary
metabolites [15]. Secondary metabolites such as glucosinolates and
flavonoid are implicated in hypersensitive response (HR) against
herbivores and microorganisms. MYB34/Arabidopsis P450 reductase
(ATR1) and MYB29/PMG2 have been implicated in the regulation of
glucosinolates [16]. AtMYB30 has been implicated as an activator of
HR-related cell death and resistance against bacterial pathogen
Xanthomonas campestris pv. campestris [17]. The BOTRYTIS
SUSCEPTIBLE 1(BOS1)/AtMYB108 was found to be involved in
resistance against necrotrophic pathogens like B. cinerea and A.
brassicicola [18]. MYB transcription factors also play roles in the
defense response against insects. AtMYB44 was shown implicated in
the plant defense against aphid [19]. Similarly, AtMYB102 has been
reported to be effective in defense against the insect herbivore Pieris
rapae via upregulation of a large number of genes that are involved in
cell wall modifications [20]. MYB15 and WRKY40 TFs may play
important roles in the transcriptional regulation of carbohydrate
metabolism in citrus–HLB interactions [21,22]. AtMYB96-mediated
abscisic acid (ABA) signals enhanced pathogen resistance response by
inducing SA-biosynthesis via ABA-SA cross-talks [23].

bZIP
bZIP transcription factors are characterized by their basic leucine

zipper (bZIP) domain which is involved in DNA binding [24].
Regularly spaced leucine residues are found in the vicinity of bZIP
which are important for the homo and heterodimerization of the bZIP
proteins. Lesions simulating disease resistance 1 (LSD1), a plant-
specific zinc-finger protein is known to regulate cell death negatively
by limiting nuclear translocation of AtbZIP10 [25]. AtbZIP10, a
positive regulator of resistance gene-mediated hypersensitivity and
reactive oxygen-induced cell death. Arabidopsis TGA family of bZIP
transcription factors has been demonstrated in innate immunity [26].
The role of TGA has been documented in systemic acquired resistance
(SAR) via SA-regulated redox change which allows interaction with
NPR1 [27]. Rice rTGA2.1 has a negative impact on SAR by interacting
with OsNPR1 and altering accumulation of the PR genes in response
to bacterial pathogen Xanthomonas oryzae pv. oryzae (xoo) [28]. In
contrast, OsbZIP1 may play a positive role in the SA-dependent signal
transduction after Magnaporthe grisea attack [29]. Rice-gall midge
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incompatible interaction characterized by hypersensitive-mediated and
non-hypersensitive related defense pathway [30-33]. Rawat et al. [34]
found that TGA domain was mutated in the upstream promoter
regions of PR10a in non-hypersensitive gall midge resistance,
suggesting its role in HR mediated cell death. Arabidopsis TGA2 and
TGA3 have diverse mechanism as TGA2 represses expression of PR-1
promoter in, while TGA3 acts as a transcriptional activator of PR-1
expression, in vivo [35].

WRKY
WRKY proteins represent a large class of DNA-binding proteins in

plants and have specific binding affinity for the consensus W-box motif
TTGAC(T/C) followed by a typical zinc-finger domain [36]. The
genome of rice and Arabidopsis contains around 100 WRKY genes and
70 WRKY genes, respectively. WRKY factors were shown to have
strong negative effect conferred by W-box motif for SA-mediated PR-1
gene expression in Arabidopsis [37]. In Arabidopsis, PAMP signaling
and MAPK cascade (MEKK1–MKK4/MKK5–MPK3/MPK6) involve
WRKY22 and WRKY29 proteins as transcriptional regulator after
recognition of the flagellin fragment flg22 [38]. These WRKY factors
are proposed to augment their expression levels by building a positive
feedback loop via several WRKY binding sites in their own promoters.
The induced expression of these WRKY factors would then allow
induction of resistance to both bacterial and fungal pathogens [38].
WRKY33 is known for positive regulation of JA-induced defense genes
and negative regulation of SA-related defense genes. WRKY28 is the
only TF that is known to be suppressed by both JA and ET was found
up-regulated after flg22 treatment [39]. Eight WRKY proteins
(WRKY18, 38, 53, 54, 58, 59, 66, and 70) have been recognized as
direct targets of NPR1 [40,41]. Up-regulation of OsWRKY13 gene in
rice, after bacterial blight Xanthomonas oryzae pv oryzae (Xoo) and
fungal blast Magnaportha grisea pathogens, leads to enhanced
resistance in rice plant [42]. OsWRKY62 is a negative regulator of both
types of plant immunity (PTI and ETI) [43].

MYC
MYC2 is a member of the basic Helix-Loop-Helix (bHLH) family of

TFs that consists ~60 amino acids bipartite bHLH domain [44]. This
domain contains a region with a large number of basic residues at the
N-terminal side, which is involved in DNA binding. Like ZIP domains,
the HLH domain play a role in homo-and/ or heterodimerization.
Among various MYC TFs, MYC2 transcription factors is known to
regulate JA-dependent physiological processes, drought tolerance,
circadian clock and light signaling [45]. However, only a limited
number of bHLH transcription factors such as AtMYC2/JIN1 have
been found to be involved in JA- and ABA-regulated signaling induced
by wounding and herbivory.

NAC
NAC (NAM, ATAF1/2, and CUC2) is a plant-specific family of

transcription factors include a large family of proteins which contain a
variable C-terminal domain and a highly conserved N terminal
domain [46]. More than 100 NAC genes have been documented in the
genomes of Arabidopsis and rice. NAC proteins appear to be unique
transcription factors in plants and no homolog has been identified in
other eukaryotes thus far [46]. NAC genes have been reported to be
induced by pathogen infection in rice, Arabidopsis and other plant
species [47]. ATAF1 and its barley homolog HvNAC6 positively

regulate penetration against fungus B. graminis f. sp. hordei [48].
Virus-induced silencing of NAC TFs (ONAC122 and ONAC131) in
rice increased susceptibility to blast disease suggesting their positive
regulation in disease resistance against M. grisea [49]. A number of
NAC proteins such as OsNAC4 have been reported inducing HR and
cell death by activating PR genes [50].
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