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Introduction

Challenges in the diagnosis: The need to identify new AD bio-
markers

Alzheimer’s disease (AD) is the most common cause of dementia 
[1]. Despite considering progress of AD research, the vast majority 
of clinical trials for therapies have failed to affect disease progression 
[2,3]. AD diagnosis is complex, the only gold standard being the 
direct observation of amyloid plaques and neurofibrillary tangles in 
postmortem brain tissue, which are specific features of AD. Due to the 
difficult accessibility of these observations, in vivo diagnosis requires 
a cluster of information describing the pathophysiological characters 
of the disease at a cognitive, morphological, and molecular levels. 
National Institute on Aging and Alzheimer’s Association (NIA-AA) 
guidelines [4] recommend validated AD diagnostic criteria, which 
include imaging techniques and cerebrospinal fluid (CSF) biomarkers. 
These guidelines aim to capture neurofibrillary tangles formation and 
cortical amyloid plaques deposition, together with their physiological 
consequences. However, these recommended techniques have the 
disadvantage of being costly, as for brain imaging, or invasive and 
risky, as for lumbar puncture. In this context, researchers are seeking 
alternative methods of investigation such as i) quantification of known 
biomarkers of AD in more available body fluids (blood [5], saliva [6]) 
or sampling (eye observation [7], skin [8], EEG [9]), ii) identification 
of yet unknown and noninvasively accessible biomarkers [10] of AD 
early stage [11], which could take place decades before the apparition 
of the cognitive symptoms [12]. However, the utility in clinical practice 
of these diagnostic alternatives were not yet convincingly demonstrated 
as their results are often not reproductible due to technical and/or 
physiological reasons [13].

Identification of early pathophysiological mechanisms in AD
Until recently, the most credited idea was that the onset and the 

evolution of AD probably involve two interplaying phenomena [14], 
i.e. progressive cortical accumulation of amyloid plaques through 
amyloid biochemical cascade [15] associated with cholinergic synaptic 
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 Abstract
Current research highlighted a degeneration of the dopaminergic and noradrenergic systems in the brain, i.e. 

the ventral tegmental area (VTA) and the locus coeruleus (LC) at an early stage of Alzheimer’s disease (AD), and 
alterations of catecholamines concentrations in different body fluids (CSF, plasma and urine) of AD patients and 
animal models. These findings imply a potential utility of catecholamines in the molecular and mechanistic AD 
comprehension. Following our previous work on plasma noradrenaline in the context of AD, this retrospective study 
includes a cohort of 105 patients (43 AD, 29 with other dementia and 32 without dementia) from the cognitive neurology 
center of Lariboisière (Paris) who consulted for memory complaints. We show for the first-time different relations 
between plasma catecholamines and AD biomarkers at cognitive (MMSE score) and molecular (CSF biomarkers 
concentrations) levels. Our ROC analyses illustrate the good potential of plasma catecholamines to discriminate 
AD from non-AD patients with a relatively low or high MMSE score. Taken together, our results support the idea that 
plasma catecholamines could be blood molecules implicated in AD physiopathology, opening new frontiers in the 
development of a blood-based AD diagnosis.

dysfunction [16]. These hypotheses have been called into question since 
therapeutic molecules targeting amyloid metabolism or cholinergic 
pathway could not slow down disease evolution [2,3]. This suggests that 
those signaling events may be too advanced in AD pathophysiology. 
The observation of early alterations in subcortical brain nuclei, i.e. 
the locus coeruleus (LC) and the ventral tegmental area (VTA), at a 
prodromal stage of the disease [17-19] opened new perspectives in the 
pathophysiological description of AD. LC and VTA are among the main 
brain sources of noradrenergic and dopaminergic neurons, respectively 
[20,21]. With the improvement of imaging techniques focusing on LC 
[22], a decreased contrast and volume of the LC in MCI and AD patients 
[23-27] has been described, which is consistent with LC neuronal loss 
and deregulated NA levels observed in post-mortem brain tissue of 
AD patients [27-29]. Moreover, LC alterations seem to correlate with 
Braak stages [30] which describe the presence of neurofibrillary tangles 
in different brain regions during AD development [31]. Concerning 
the dopaminergic system, in MCI and advanced AD patients, VTA 
size and its connectivity with the hippocampus were associated with 
hippocampal size and memory competence [32,33]. In murine model 
of AD, VTA [34-36] and LC [37] damage and altered NA levels 
were observed [37]. Moreover, VTA neuronal death correlates with 
reduced D outflow in the hippocampus, synaptic plasticity in the CA1, 
memory performance and food-reward processing. In line with these 
observations, it has been observed that the VTA-hippocampus-NAc 
circuit, essential for spatial, novelty and persistent memory formation, 
is early impaired in AD mice. Similarly, it was also demonstrated that 
provoked lesions of the LC in mice impact working memory [38,39]. 
Further, pharmacological LC activation was able to rescue the main 
cognitive and behavioral deficits [37,40]. Finally, it has been shown that 
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neurons from the LC can co-secrete dopamine (D) with noradrenaline 
(NA) in the hippocampus [41,42], indicating that NA and D might 
cooperate in learning and memory processes [43]. Taken together, those 
results support the idea that brain catecholamines circuits are impaired 
at an early phase of AD, with a loss of LC and VTA neurons correlating 
with memory, but also behavioral deficits (depression, anxiety, apathy, 
sleep-wake cycle disruption, etc.) usually observed in AD patients long 
before amyloid plaques and neurofibrillary tangles formation [44].

A renewed interest for plasma catecholamines in AD
Early studies on alterations in LC structure and in catecholamines 

levels within brain, CSF and plasma from AD patients, were followed 
by a long disinterest for this topic. A recent renewed attention for 
the role of catecholamines in the context of AD was motivated 
by the recent observations in MCI patients of noradrenergic and 
dopaminergic systems alterations before amyloid plaques deposition. 
NA, D and adrenaline (A) are the three main catecholamines. These 
molecules are linked through several enzymatic steps. In the brain, 
they act as neurotransmitters and locally as a hormone by diffusion. 
At the peripheral level, they are synthesized by adrenal medulla and 
sympathetic noradrenergic neurons, and act as hormones. The need 
to identify AD biomarkers in alternative more accessible body fluids 
motivated a large number of studies on catecholamines fluctuations 
in urine [45,46] and plasma [47-49] of AD patients and mouse model 
of AD. Despite conflicting, this field of research showed interesting 
results. Our retrospective study examined the relationship between 
plasma catecholamines concentrations and concomitant diagnostic 
criteria such as Mini Mental Sate Examination (MMSE) score and 
CSF biomarker profile (Aβ1-42, Tau and p-Tau). As described in our 

previous report for plasma NA [50], we wanted to determine i) whether 
other plasma catecholamines concentrations could be correlated with 
clinical parameters which reflect disease stages at cognitive (MMSE 
score) and molecular (Aβ1-42, Tau and p-Tau CSF biomarkers) levels, 
and ii) whether the combination of these putative biomarkers could be 
exploited for the early diagnosis of AD pathology.

Materials and Methods

Study population
All patients presented to the Cognitive Neurology Center of 

Lariboisière (Paris) for their first consultation between 2017 and 2019. 
Patients involved in this study were between 53 and 72-years old at 
the time of blood sampling. MMSE score and lumbar puncture were 
performed the day of blood sampling or less than one month later. 
More details on MMSE cutoffs are given in our previous article [50]. 
Sample size was calculated with the same method of our previous 
article [50]. In this retrospective study, 104 patients were included: 
43 AD patients (diagnoses were performed according to NIA-AA 
guidelines [4]), 29 patients with other dementia (OD; frontotemporal 
dementia, vascular dementia or dementia with Lewy bodies), and 32 
neurological control (NC) patients. NC patients were defined as those 
with memory complaints, mental depression, or anxiety but for whom 
no dementia was diagnosed. Two NC patients were removed from the 
study because of their extremely low MMSE score (3 and 8). As we 
previously described [50], cutoff values for Aβ1-42 (<550 pg/mL), total-
Tau (>400 pg/mL), and p-Tau (>50 pg/mL) were used to identify AD 
dementia. Table 1 synthetizes all information concerning demographic, 
cognitive, physiological, and co-medications data.

Total number of patients
NC OD AD p-value

32 29 43 -

Sex % of female patients 40.63 41.38 58.14 0.2257

Age Age median (IQR) in year 62.5 (59.25-69) 67 (61.50-69) 68 (63-70) 0.0619

MMSE MMSE score median (IQR) 27 (26-28) 24 (19-26) 20 (15-26) <0.0001

CSF Aβ1-40
concentration$

CSF Aβ concentration 
median
(IQR)

12449 (8961-14868) 10865 (8924-14561) 11878 (8707-15338) 0.8656

CSF Aβ1-42 concentration CSF Aβ concentration 
median (IQR) 1133 (938-1333) 1112 (976-1390) 575 (463-667) <0.0001

CSF Tau concentration CSF Tau concentration 
median (IQR) 195.5 (158.5-227) 227 (190.5-301) 492 (373-672) <0.0001

CSF p-Tau concentration CSF p-Tau concentration 
median (IQR) 34 (19.26-47.75) 39.5 (26.43-50.40) 77.7 (59-105) <0.0001

Plasma NA concentration Plasma NA concentration 
median (IQR) 2064 (1556-3117) 2295 (1855-3034) 2499 (1826-3086) 0.3809

Plasma A concentration Plasma A concentration 
median (IQR) 276 (146-442) 222 (172-428) 318 (216-478) 0.2493

Plasma D concentration Plasma D concentration 311 (110.5-494.8) 239 (206.5-370) 201 (100-363) 0.1216

median (IQR)

311 (110.5-494.8) 239 (206.5-370) 201 (100-363) 0.1216 1 month

Anti-Alzheimer, 
neuroleptics, 

antidepressants
15.625 20.69 16.667 0.8595

Lipid-lowering agents, oral
antidiabetics 18.75 27.586 19.048 0.6273

Anti-hypertensive agents 21.875 31.034 35.714 0.4338
#co-medication information are missing for 1 AD patient; $Aβ1-40concentration is missing for 1 AD patient

Table 1: Demographic and physiologic data of studied cohort.
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Quantification of NA, A and D in plasma
Blood sampling was performed on 12h-fasted patients in supine 

position, as described in our previous article [50]. Samples purification 
and analysis were performed with Chromsystems kit (order #5000) for 
plasma catecholamines high-performance liquid chromatography (HPLC) 
analysis. Briefly, after blood-stabilization with glutathione and direct 
centrifugation (less than 60 min after sampling) to isolate the plasma, 
samples were frozen and stored at-80°C. 1 mL of thawed plasma was 
used for catecholamines dosage by HPLC coupled with electrochemical 
detection. Quantification of catecholamines was made without knowing 
the patient group of samples. For plasma D concentration ([D]plasma), values 
under the range of detection were considered as equal 100 pmol/L.

Quantification of Aβ1-42, total Tau, and p-Tau in the CSF
As we previously described [50], CSF samples were obtained by lumbar 

punctures on fasted patient. Then, they underwent 10 min centrifugation (1 
g, 4°C) within 4h after collection. 500 µL-polypropene tubes were used for 
aliquoting and -80°C storage. Sandwich ELISA INNOTEST® kit (Fujirebio 
Europe NV, formerly Innogenetics NV) was used for AD biomarkers 
quantification in the CSF (Aβ1-42, total Tau, and p-Tau).

Data analysis and statistical tests
Similarly to what performed in our previous study [50], we first 

tested normality (D’Agostino-Pearson normality test) to determine 
results illustration and statistical test choice. For normally distribution, we 
presented mean with standard deviation (SD) in figures and used Student’s 
t-test (two-tailed) to compare two groups. In the absence of normal 
distribution, we presented median with interquartile range (IQR: 25-75th 
percentiles) (95% confidence interval in figures) and used Mann-Whitney 
test (two-tailed) to compare two groups or Kruskal-Wallis test to compare 
distribution of their data. For multiple group comparisons we performed 
one-way ANOVA. Linear correlations were tested using Pearson’s 
correlation test or Spearman’s correlation test for normally or not-normally 
distributed data, respectively. All analyses and multiple logistic regressions 
were performed with GraphPad Prism 9.0.0 software. We used Medcalc 
software to apply the empirical nonparametric method from Delong et al. 
[51] to compare AUCs from ROC curves. No outliers were identified in 
our cohort (p-value>0.01) by performing Rosner’s Extreme Studentized 
Deviate test for multiple outliers (using log-normal distribution and two-
side test). AUC were compared using the empirical nonparametric method 
by Delong et al. [51] with Medcalc software. Cutoff for p-value was 0.05 to 
identify statistical significance.

Results

Cohort description
We found no difference concerning age, sex or pharmacological 

treatments between NC, OD and AD groups that differed by MMSE 
score and CSF biomarkers (one-way ANOVA, p-values are mentioned 
in Table 1). Patients’ clinical diagnosis was established by the neurologist 
accordingly to NIA-AA guidelines [4].

Relations between catecholamines and AD CSF biomarkers
Consistent with our previous results in a different cohort [50], we found 

that AD patients with a MMSE score above 23 (the cutoff value for dementia 
in the old population [52]) (n=19) had a higher [NA]plasma than non-AD 
patients with similar MMSE score (n=49, 31 NC and 18 OD patients) 
(Mann Whitney test, p-value=0.0485) (Figure 1A). On the other hand, AD 
patient with a MMSE score under 23 (n=24) had a comparable [NA]plasma 
than non-AD patient (n=12, 11 OD and 1 NC patients) (Mann Whitney 
test, p-value=0.4969) (Figure 1B). Knowing that NA is the precursor of 

the other catecholamine adrenaline, we wanted to know if there was a 
correlation between [NA]plasma and [A]plasma in order to determine if A could 
potentially be associated with specific AD features, just as NA. Interestingly, 
we found a significant positive linear correlation between [NA]plasma and 
|A]plasma of AD patients (n=43) (Spearman’s correlation, r=0.5130 (95% 
CI: 0.2428 to 0.7093), p-value=0.0004, equation: Y=0.1119*X +72.33) 
(Figure 1C), which was inexistent in OD (n=29) (Spearman’s correlation, 
r=0.3153 (95% IC:-0.06925 to 0.6182, equation: Y=0.04465*X +217.6), 
p-value=0.0957) and NC (n=32) (Spearman’s correlation, r=0.1881 (95% 
IC:-0.1823 to 0.5117), p-value=0.3026, equation: Y=0.01520*X +297.1) 
patients (Figure 1C). As we previously described for NA [50], we examined 
whether there was a correlation between [A]plasma distance from the NC 
patient median-defined as the absolute value of [A]plasma-<[A]plasma/NC>, with 
<[A]plasma/NC> the median value of [A]plasma from NC patients (276 pmol/L)-
and the CSF biomarkers profile. Indeed, we observed that |[A]plasma-<[A]
plasma/NC>| for extreme [A]plasma values-meaning below 1st tercile value (33% 
percentile: 162.5 pmol/L) and above 3rd tercile value (67% percentile: 
421 pmol/L) of [A]plasma from NC patients was significantly higher in AD 
patients (n=19) than in control patients (n=21) (Mann Whitney test, 
p-value=0.0096) (Figure 1D), which was not the case when comparing 
NC and OD patients (n=12) (Mann Whitney test, p-value=0.6118) (data 
not shown). Parallelly, concerning patients with an [A]plasma closer to the 
median control (meaning between 1st tercile value and 3rd tercile value of 
[A]plasma from NC patients), we found no significant difference between 
NC (n=11) and AD (n=24) (Mann Whitney test, p-value=0.9788) (Figure 
1D) or NC and OD (n=17) (Mann Whitney test, p-value=0.6516) patients 
for |[A]plasma-<[A]plasma/NC>| (data not shown). Taken together, this suggests 
that, unlike for OD patients, AD cohort presents more extreme high or 
low [A]plasma values than NC patients. We found a significant negative linear 
correlation between|[A]plasma-<[A]plasma/NC>| and [Aβ1-42]CSF in AD patients 
(n=43) (Spearman’s correlation, r=-0.3895 (95% IC:-0.6232 to-0.09190), 
p-value=0.0098, equation: Y=-0.3186*X +655.4) (Figure 2A), which was 
not the case in OD (n=29) (Spearman’s correlation, r=-0.08594 (95% IC:-
0.4478 to 0.3001), p-value=0.6576, equation: Y=0.05645*X +1151) and 
NC patients (n=32) (Spearman’s correlation, r=0.01148 (95% IC:-0.3481 to 
0.3681), p-value=0.9503, equation: Y=0.03872*X + 1170) (Figure 2A). To 
understand the relation between raw [A]plasma values and CSF biomarkers 
concentrations, we looked at negative and positive relative distance from 
<[A]plasma/NC>, i.e. when [A]plasma is respectively lower or higher than <[A]
plasma/NC>. We found opposite correlations between [A]plasma and [Aβ1-42] 
CSF when comparing AD cohort with negative and positive distance from 
<[A]plasma/NC>. Indeed, in AD cohort with negative relative distance from 
<[A]plasma/NC>, we observed a non-significant positive linear correlation 
for negative distance (n=19) (Spearman’s correlation, r=0.2544 (95% IC:-
0.2396 to 0.6438), p-value=0.2933, equation: Y=0.7615*X+464.4) and a 
significant negative correlation in AD for positive distance (Spearman’s 
correlation, r=-0.4478 (95% IC:-0.7270 to-0.04161), p-value=0.0282, 
equation: Y=-0.3419*X +769.6) (Figure 2B). We found no significant 
linear correlation between |[A]plasma-<[A]plasma/NC>| and [p-Tau]CSF and 
[Tau]CSF (data not shown). However, we found a significant positive linear 
correlation between [A]plasma and the ratio (p-Tau/Tau)CSF in AD patients 
(n=32) (Spearman’s correlation, r=0.3293 (95% IC: 0.02300 to 0.5791), 
p-value=0.0311, equation: Y=(4.863*10-5)*X +0.1386)) (Figure 2C), a 
significant negative linear correlation in NC patients (n=32) (Spearman’s 
correlation, r=-0.3984 (95% IC:-0.6621 to-0.04702), p-value=0.0239, 
equation: Y=(-2.439*10-5)*X +0.1781)), and no significant correlation in 
OD patients (n=29) (Spearman’s correlation, r=0.09681 (95% IC:-0.2901 to 
0.4565), p-value=0.6174, equation: Y=(2.716*10-5)*X + 0.1556)) (Figure 
2C). We found no correlation between negative and positive distance with 
(pTau/Tau)CSF in AD patients (data not shown). However, (pTau/Tau)CSF 
tended to be lower in 2nd tercile (n=15) of [A]plasma from AD patients ([A]
plasma 33% percentile: 235.1 pmol/L and 67% percentile: 432 pmol/L) in 
comparison with 1st tercile (n=14), without reaching significance (Student’s 
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t-test, p-value=0.1894), and was significantly lower in comparison with 3rd 
tercile (n=14) (Student’s t-test, p-value=0.0129), without difference between 
1st and 3rd terciles (Student’s t-test, p-value=0.2470) (Figure 2D). Taken 
together, those results suggest that, like [NA]plasma, [A]plasma could be related 
to CSF biomarkers profile in AD patients. The recent studies emphasizing 
the implication of VTA and dopaminergic neurons in an early stage of AD 
evolution prompted us to determine whether [D]plasma could be related as 
well to CSF AD biomarkers. Interestingly, we found a significant positive 
linear correlation between [D]plasma and |[A]plasma-<[A]plasma/NC>| in AD 
patients (Spearman’s correlation, r=0.3057 (95% IC:-0.003251 to 0.5614), 
p-value=0.0462, equation: Y=0.3751*X + 189.6), which was not the case 
for NC (Spearman’s correlation, r=-0.1198 (95% IC:-0.4582 to 0.2490), 
p-value=0.5137, equation: Y=0.2295*X + 309.5) or OD (Spearman’s 
correlation, r=0.2691 (95% IC:-0.1193 to 0.5860), p-value=0.1581, 
equation: Y=0.1432*X+ 285.8) patients (Figure 3A). Moreover, we could 

identify that AD patients present a lower [D]plasma than non-AD (NC and 
OD) patients (Mann Whitney test, p-value=0.0435) (Figure 3B) with 
a significant different cumulative distribution (Kolmogorov-Smirnov 
test, p-value=0.0389) (Figure 3C). We found no significant correlation 
between [D]plasma and CSF biomarkers (data not shown). However, we 
found a significant difference of (Aβ1-42/Aβ1-40)CSF ratio between AD 
patients under 1st tercile value of AD [D]plasma (168 pmol/L) (n=13) and 
AD patients above this value, i.e. 2nd and 3rd tercile (n=29) (Student’s 
t-test, p-value=0.0201) (Figure 3D). In summary, we could identify in our 
cohort that [D]plasma seems altered in AD patients and that AD patients 
with the lowest values of [D]plasma differed from other AD patients with a 
significantly smaller (Aβ1-42/Aβ1-40)CSF ratio. Altogether, our results strongly 
suggest that plasma catecholamines-NA, A and D-are potential informative 
molecules that could mirror CSF biomarkers alterations illustrating brain 
AD physiopathology.

Figure 1: Plasma noradrenaline concentration in AD patients is related to MMSE score and plasma adrenaline concentration, which extreme high and low 
values are more distanced from median control, in AD patients. A-B: [NA]plasma in AD (orange) and non-AD (blue) patients with MMSE score above 23 (A) and 
below 23 (B). C: Correlation between [NA]plasma and [A]plasma in AD (orange) patients but not in NC (dark blue) and OD (light blue) patients. D: Distance |[A]
plasma-[A]plasma/NC| from patients with extreme [A]plasma values (right) and [A]plasma close to median control (left) in AD (orange) and NC (blue) patients.*means 
p-value<0.05; ***means p-value<0.001.

Figure 2: Plasma adrenaline concentration distance from median control correlates with CSF biomarkers Aβ1-42 concentration and p-Tau/Tau ratio in AD 
patients. A: Correlation between |[A]plasma-<[A]plasma/NC >|and [Aβ1-42]CSF in AD patients (orange) but not in NC (dark blue) and OD (light blue) patients. B: Linear 
correlations between negative (in pink) and positive (in blue) values of|A]plasma-<[A]plasma/NC> with [Aβ1–42]CSF in AD patients. C: Correlation between |[A]
plasma-<[A]plasma/NC>|and (p-Tau/Tau)CSF in AD patients (orange) but not in NC (dark blue) and OD (light blue) patients. D: (p-Tau/Tau)CSF values in 1st, 2nd and 3rd 
[A]plasma terciles of AD patients.*means p-value<0.05 ; **means p-value<0.01.
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Figure 3: Plasma dopamine concentration in AD patient, related to plasma adrenaline concentration distance from median control and to CSF Aβ1-42/Aβ1-40 
ratio, is lower than in non-AD patient population. A: Correlation between |[A]plasma-<[A]plasma/NC >|and [D]plasma in AD patients (orange) but not in NC (dark blue) 
and OD (light blue) patients. B: [D]plasma in AD (orange) non-AD (blue) patients. C: Cumulative distribution of [D]plasma between AD (orange) and non-AD (blue) 
patients. D: (Aβ1-42/Aβ1-40)CSF ratio values in 1st, 2nd and 3rd [D]plasma terciles of AD patients.*means p-value<0.05; **means p-value<0.01.

Utility of plasma catecholamines to discriminate AD from non-
AD patients

We recently highlighted in our studies relations between plasma 
catecholamines concentrations and AD biomarkers at cognitive (MMSE 
score) and molecular (CSF biomarkers) levels. These results prompt us 
to test whether plasma catecholamines could help in AD diagnosis in the 
context of a first neurological consultation for memory complaints. We 
pooled the two cohorts of our previous [50] and present studies (75 AD, 51 
OD and 49 NC patients) to perform multiple logistic regressions from two 
different models: a model based on one parameter [Aβ1-42]CSF and another 
taking into account parameters obtained from plasma catecholamines 
concentrations, i.e. [NA]plasma, [A]plasma, [D]plasma, |[NA]plasma-<[NA]plasma/

NC>|, |[A]plasma-<[A]plasma/NC>|, |[D]plasma-<[D]plasma/NC>|, (NA/A)plasma ratio, 
(NA/D)plasma ratio, (A/D)plasma ratio, to discriminate AD from non-AD 
patients. Considering the whole cohort, we found that AUCs from the two 
different ROC curves were significantly different (Delong’s methodology, 
difference between areas=0.252, p-value<0.0001) (Figure 4A). However, 
knowing that [NA]plasma is related to MMSE score, we performed multiple 

logistic regression in three different groups based on 33% and 64% 
percentiles of MMSE score in the cohort (<22, between 22 and 26, >26). 
The different multiple logistic regressions models use the same parameters, 
but the model adapts to the cohort defined by the MMSE score. We found 
that AUCs from two different ROC curves were not different in groups 
with extreme MMSE scores, meaning under 22 (Delong’s methodology, 
difference between areas=0.110, p-value=0.2999) and above 26 (Delong’s 
methodology, difference between areas=0.0342, p-value=0.6741), and 
were significantly different in the middle group (Delong’s methodology, 
difference between area=0.235, p-value=0.0022) (Figures 4B-D). This 
implies that plasma catecholamines parameters could help to discriminate 
AD patients with similar performances as [Aβ1-42]LCR in an advanced or 
early stage of AD evolution from a cognitive view point. In other words, 
plasma catecholamines parameters could potentially help to distinguish 
advanced AD patients from other demented patients with a relatively low 
MMSE score and identify mild AD patients among non-demented patients 
with a relatively high MMSE score. Taken together, our observations open 
the road for the use of plasma catecholamines in the diagnosis of AD.

Figure 4: ROC curves from multiple logistic regressions reveal the utility of plasma catecholamines to discriminates AD from non-AD patients with similar MMSE score. 
A-D: ROC curves of multiple logistic regressions discriminating AD from non-AD patients. ROC curves were generated from two models for all patients (A), patients 
with MMSE score under 22 (35 AD and 22 non-AD patients) (B), between 22 and 26 (26 AD and 34 non-AD patients) (C) and above 26 (14 AD and 44 non-AD patients) 
(D)-model 1 (red): [Aβ1-42]LCR; model 2 (blue): plasma catecholamines concentrations, their distance from NC median, [NA]plasma/[A]plasma, [NA]plasma/[D]plasma, [A]plasma/[D]plasma 
ratios. Comparison of AUC with Delong’s method: p-value<0.0001****, p-value<0.01:**, not significant ns.
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Discussion
In this retrospective study, we showed for the first-time relations 

between LCR AD biomarkers and [A]plasma and [D]plasma. We also found 
a higher concentration of [NA]plasma in AD patients with a high MMSE 
score in comparison with other non-AD patients with a similar MMSE 
score, which is consistent with our previous independent study [50-53]. 
Moreover, we observed that [A]plasma correlated with [NA]plasma and was 
related to [D]plasma, significantly lower in AD cohort in comparison with 
other patients. We could then highlight the potential discrimination 
power of plasma catecholamines by comparing ROC analysis based on 
Aβ1-42 or plasma catecholamines signature to differenciate AD from non-
AD patients. We observed that AUC from the two models were similar 
for patients with extreme MMSE scores (<22 or >26), suggesting that 
the catecholamines signature is informative in cognitively advanced or 
early stage of AD cognitive evolution.

AD early mechanisms linked to catecholaminergic system?
As mentioned in the introduction, many evidences show that 

subcortical catecholaminergic nuclei, i.e. LC and VTA, are among the 
first affected by tau protein abnormalities [53]. This, together with the 
fact that noradrenergic and dopaminergic neurons form a vast and 
complex network throughout the brain, contribute to the hypothesis 
of an early “prion-like” spreading of Tau pathology, from subcortical 
nuclei to cortex and other brain regions [54]. A reasons explaining 
why catecholaminergic neurons would be first impacted during the 
disease is their strong vulnerability in comparison with other CNS 
neurons [55]. Anatomically, their projections to other brain regions are 
long and poorly myelinated, which make them fragile. They contain 
neuromelanin, a heavy metal chelator resulting of catecholamine 
oxidation, whose accumulation becomes toxic. Moreover, they have a 
stronger energetic demand which could expose them to cellular and 
oxidative stress. Lastly, their large contact surface with blood vessels 
and ventricles exposes them to a high amount of toxins and pathogens. 
Such phenomenon could then indirectly participate in amyloid plaques 
formation and inflammation in AD. Moreover, NA system deregulation 
in the CNS has a role in amyloid pathology [56], neuronal metabolism 
[57], and neuroinflammation [58]. It is probable that NA system and 
those mechanisms interact in a synergic vicious-circle manner during 
AD. These features make catecholaminergic neurons the first potential 
actors in AD onset. Finally, it is important to mention that imaging of 
human brain showed an early disconnection of VTA, but not LC, with 
other brain structures [32]. This evidence suggests that D circuits might 
also participate in the onset of early non-cognitive behavioral and 
psychological symptoms of AD, such as irritability, or sleep disorders.

Peripheral catecholamines in AD
Adolfsson et al. first identified an altered concentration of D and NA 

in human postmortem brain tissue of AD patient in comparison with 
age-matched control, which correlated with dementia score in some 
brain regions [59]. This is consistent with a recent article reporting on 
similar results, and also including a correlation between MMSE score 
and cortical NA level (BA22) [60]. Other studies also show reduced 
cerebral NA [61,62] and D concentration in AD patients [63,64], with 
sometimes no change in D [65], which could depend of the observed 
brain regions. Parallelly, despite conflicting results showing both 
increased [66,67] and decreased [68] levels, NA CSF concentrations in 
AD patients seem to be altered. Moreover, Yohimbine-induced increase 
of CSF NA levels was greater in AD patients in comparison with their 
age-matched controls [69]. Interestingly, it was also demonstrated 
that cognitive performances and CSF NA concentration do correlate 
[70]. Finally, higher CSF concentrations of D [66] and A [71] have 
been measured in AD patients, and it seemed that CSF A increased 

with disease severity. Parallely, in other peripheral body fluids, it was 
previously shown that urine catecholamines concentrations in AD 
patients [45] and rat model of AD [46] are decreased. On the other 
hand, previous studies showed altered [47,48] or unchanged [49] NA 
and A plasma concentrations in AD patients. Conflicting results could 
be explained by different disease stages, as well as age and gender ratio 
presented in those articles. The correlations that we found between 
plasma catecholamines in AD patients were not observed in non-AD 
patients from our cohort. Correlations between [A]plasma and [NA]plasma 
were previously described in horses during and after intense physical 
exercises [72]. The coefficient of correlation between [NA]plasma and 
[A]plasma decreased as the intensity of exercise decreased, suggesting 
a different process in release, distribution and clearance of these 
molecules and/or a different proportion in sympathetic nervous system 
and surrenal medulla involvement. Interestingly, LC and VTA are 
involved in the regulation of sympathetic system activity [20]. Hence, it 
is tempting to speculate that the different correlations between plasma 
catecholamines concentrations measured in AD patients, but not in 
non-AD subjects, could be due to an alteration of the sympathetic 
system caused by LC and VTA dysregulation. Moreover, autonomic 
dysfunction seems to be implicated in AD [73].

The potential role of plasma catecholamines in the under-
standing of AD pathology

According to our observations, plasma catecholamines should not 
be considered as classical biomarkers with a defined cutoff helping in 
AD identification, but rather as an additional information to the clinical 
picture (MMSE score, memory complaints, education, age, etc.) of the 
patient. It is also important to precise that LC neurodegeneration is 
not specific to AD, as it also occurs during aging and other dementia. 
However, AD-related neuronal loss in the LC follows a rostro-caudal 
gradient, unlike for other neurodegenerative diseases where neuronal 
loss is scattered in the LC [23,27,30,37,55]. Knowing that LC neurons 
are regionalized depending on the targeted brain region [20], we could 
imagine that some loss of function and compensation mechanisms 
(such as oversecretion of catecholamines or network reorganization) 
in LC and VTA brain areas are specific to AD [19]. These potential 
compensation mechanisms due to a defined neuronal loss pattern, 
could explain, for example, the lower concentration of NA observed 
in cortical postmortem tissue of AD patients in comparison with age-
matched controls without dementia or with other dementia [60,62]. 
Moreover, VTA deregulation seems to occur before LC degeneration 
[35,74], suggesting that D might participate in a specific physiological 
response, relative to other dementia, during AD evolution.

Study limitations
The first limitation that we identified in our work is the relatively 

small size of our cohort. Future studies in larger cohorts will allow 
to validate the observed relations between plasma catecholamines 
and CSF biomarkers, and the good potential of those molecules in 
discriminating AD from non-AD patients, as shown by multiple logistic 
regression analysis. Secondly, our study lacks longitudinal observations 
to investigate the dynamics of plasma catecholamines concentrations 
overtime during disease evolution. This would help understanding 
their potential utility as predictors of MCI to AD conversion. Finally, 
the relation between brain catecholamines dysregulation and plasma 
catecholamines alteration during AD is currently not clear. Hitherto, it 
is still difficult to assess whether plasma catecholamines could be a good 
mirror of catecholaminergic dysregulation in the brain. It is important 
to notice that Raskind et al. found a linear correlation between [NA]
CSF and [NA]plasma in their study (AD and controls subjects), which is 
consistent with the correlation that we found between plasma and CSF 
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concentration for NA and D in 10 AD patients from a cohort of our 
previous article [50]. This result supports the idea that catecholamines 
alterations in the brain and CSF could be also observed in the plasma. 
However, further studies are necessary to assess the relation between 
brain and plasma catecholamines in the context of AD. More details 
on our hypothesis linking [NA]plasma alterations and brain dysregulation 
in AD, that could be extend to A and D, are discussed in our previous 
article [50]. The dysregulation of plasma catecholamines concentrations 
during AD is a complex phenomenon as it might be the consequence 
of multiple interconnected physiological events (stage of the disease, 
compensation phenomenon, cognitive reserve effect, sympathetic 
system activity, etc.).

Conclusion
Based on our results and on previous literature, catecholamines 

seem to be good candidate to ameliorate early diagnosis. However, 
further investigations are needed to define a specific use of plasma 
catecholamines within the diagnostic pathway of AD. Our results 
open the possibility to explore new molecular mechanisms in order 
to better understand the physiopathology of this complex disease, 
and, by extension, to improve AD diagnosis, potentially helping the 
development of new drugs aimed at slowing down and/or stopping 
disease evolution.
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