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Abstract

Aim: The purpose of this study was to investigate prospectively the predictive value of positron emission
tomography with proton magnetic resonance spectroscopic imaging (MRSI) and 18F-fluorodeoxyglucose (FDG-PET)
performed the 1st month after surgery and before radio- chemotherapy in 43 patients with glioblastoma (GBM).

Patients and methods: Metabolite concentrations were quantified using LCModel. Overall survival (OS) and
progression free survival (PFS) were calculated including all 43 patients using Kaplan-Meier curves, and the Cox
proportional hazard model was used to calculate the predictor of survival.

Results: At the end of the follow-up period, all patients died within a period of 1–70.2 months. In 32 patients
(74.4%), increased FDG-uptake was seen around the resection cavity and abnormal metabolic profiles on MRSI,
indicative of residual disease, were present in all patients. There was no significant difference between the median
OS in patients with hypometabolic FDG lesions compared to patients with hypermetabolic FDG lesions. On
univariate analysis, normalized choline-containing compounds/creatine (nCho/Cr) and normalized lactate/creatine
(nLac/Cr) were significantly predictive of OS and nLac/Cr and normalized N-Acetylaspartylglutamate and N-
Acetylaspartate/creatine (NAA/Cr) were significantly predictive of PFS.

Conclusions: nCho/Cr and nLac/Cr ratio after surgery and before radio- chemotherapy were independent
metabolic predictive factors of OS times in newly diagnosed patients with GBM.

Keywords: Brain; Glioma; Glioblastoma; MR spectroscopy; FDG-
PET; Radiotherapy; Chemotherapy; Prognosis

Introduction
Glioblastoma (GBM) is the most common (approximately 50%) and

most aggressive primary brain tumor [1]. Despite recent developments
in surgical technique and the current standard-of-care radiotherapy
plus concomitant and adjuvant temozolomide chemotherapy, the
prognosis to date remains poor, with a median survival range of 15-18
months and a 2 year survival rate of 26.5% [2-5].

GBMs have a propensity for infiltration, especially along white
matter tracks, and surgical removal of the entire lesion is often not
achievable because of the tumor’s large size or difficult surgical location
of the neoplasm. It is inevitable that a large percentage of patients will
have residual disease after surgical resection and the tumor
progression in the vicinity of the original GBM site remains the most
prevalent form of failure after treatment [6]. It is important to define

the full extent of residual tumor in order to adapt adjuvant therapies,
mainly radiotherapy target volumes. However, the ability of contrast-
enhanced conventional anatomic imaging (MRI, CT) to differentiate
between surgery-induced changes and residual tumor is limited [6-8].

In recent years, integrating metabolic imaging such as FDG-PET
and MRSI into imaging-guided surgery or physical imaging for
radiation treatment planning has been suggested [6,8-13]. FDG-PET is
the most widely used imaging technique that provides glucose
metabolism information in brain tumours. FDG, a glucose analog, is
actively transported across the blood–brain barrier into the cell, and
therefore a disturbance of the blood–brain barrier does not influence
FDG-uptake in the tumor. MRSI is another non-invasive imaging
technique that is able to characterize the spatial distribution of
pathologic biochemical changes in the tumor on the basis of the levels
of tissue metabolites. Metabolic imaging has revealed a clear
discordance between the GBM target volumes that result from
metabolic imaging and those derived from anatomic imaging.
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The aim of this study was to determine, in a prospective longitudinal
study of a homogenous group of patients with GBM, the predictive
values of FDG-PET and MRSI performed the 1st month after surgery
and before radio- chemotherapy on clinical outcome.

Patients and Methods

Patient population
Forty-three consecutive patients with a histologically confirmed

GBM (grade IV astrocytoma, according to the histological criteria of
the World Health Organization classification) were included in this
prospective study, from March 2004 to October 2007. All patients
underwent a gross surgical resection and the 1st month after surgery
(before radio- chemotherapy) MRI/MRSI and FDG-PET were
performed within 72 h. All patients received the same standard
radiation protocol (60 Gy) plus concomitant and adjuvant
temozolomide treatment [14,15]. The follow-up consisted of a clinical
and MRI evaluation.

MRI and MRSI
All MRI and MRSI investigations were performed on a 1.5 Tesla MR

unit (AVANTO, Siemens Medical Systems, Erlangen, Germany). MRI
sequences included conventional sagittal spin-echo T1-weighted, axial
turbo spin-echo proton density, T2-weighted and axial fluid-attenuated
inversion recovery (FLAIR) images. Multiplanar spin-echo T1-
weighted and 3D magnetization-prepared rapid-acquisition gradient-
echo (MPRAGE) images with intravenous injection of 0.2 mmol/kg of
gadolinium contrast agent were obtained following MRSI. The spatial
resolution was 1 × 1 × 1 mm for the 3D MPRAGE sequence and 1 × 1
× 5 mm for all 2D sequences.

MRSI spectra were obtained using a double-spin echo point-
resolved spectroscopy sequence (PRESS) with 2D or 3D 16 × 16 phase-
encodings depending on the resection cavity. Measurement parameters
were as follows: TR, 1500 ms; TE, 135 ms; excitations, 2; slice
thickness, 15 mm; FOV, 240 mm; data points, 1024; and acquisition
time, 7 min and 14 min for 2D and 3D sequences, respectively. The 2D
or 3D of acquisition volume was positioned to cover the edges of the
resection cavity and the majority of abnormalities and contralateral
normal-appearing tissue.

All 2D and 3D spectra chemical-shift imaging (CSI) data were then
analyzed using LCModel version 6.3-1K [16]. For each case a subset of
the voxels in the slice were selected and analyzed by LCModel in one
multivoxel run according to LCModel and LCMgui user’s manual. A
file containing the basis set of model metabolite spectra for PRESS with
TE=135 ms freely available with LCModel was used for analyzing our
data. Different metablolites concentrations including alanine, Cr,
glutamine, glutamate, glutamine, Cho, glutathione, inositol, taurine,
Lac, NAA were calculated with LCModel. For each metabolite
concentration ratios to Cr were calculated. Only metabolites with
estimated standard deviations (%SD) equal or less than 15% (Cho,
NAA and Lac) were used for statistical analysis.

FDG-PET
FDG-PET imaging was performed using the Discovery ST

combined PET/CT (GE Medical System, Milwaukee, USA). 18F-FDG
was injected intravenously at 2.5 MBq/kg after a fast of at least 6 h
(with the exception of ad libitum water intake) and capillary glycemia

lower than 6.6 mmol/l. Image acquisition was initiated 30 min and 4 h
after FDG injection, including low-dose non-contrast transmission CT
scan followed by a 3D PET scan with an acquisition time of 15 min.
Fusioned PET/CT images were obtained after attenuation correction
using CT scans with the Ordered Subset Expectation Maximization
(OSEM) algorithm with two full iterations of 21 subsets. The image
reconstruction matrix was 128 × 128 with a transverse field of view of
60 × 60 cm. The PET component of the scanner had an in-plane spatial
resolution of 4.7 mm.

For semi quantitative analysis of FDG-uptake, we used the
maximum standardized uptake value (SUVmax) per focus defined as:
SUVmax = [maximum value of radioactivity concentration (kBq/ml)] /
[injected dose (MBq) / patient weight (kg)].

A metabolic index, normalized SUVmax (nSUVmax), was calculated,
at 30 min and 4 h, as the ratio of maximum residual tumor FDG-
uptake obtained using the region of interest (ROI) covering the entire
residual tumor on trans axial slices to contralateral normal brain 18F-
FDG-uptake. An nSUVmax value greater than 1 is considered
hypermetabolic; less than or equal to 1 is considered hypometabolic.

A retention index was calculated as follow: RI = [SUV (at 4 h)] –
SUV (at 30 min)] / SUV (at 30 min).

Statistical analysis
Overall survival (OS) time was defined as the interval from the date

of diagnosis to the date of death. Progression-free survival (PFS) was
defined as the interval from the date of surgery to the date of the first
clinical and/or MRI evidence of disease progression. Data were
analysed using the SPSS system. Receiver Operating Characteristic
(ROC) curve analyses were performed to estimate the sensitivity and
the specificity at the optimal nSUV threshold and all MRSI parameters
for distinguishing the two extreme survival groups.

For univariate analysis, survival curves were constructed using the
Kaplan-Meier method. A log rank test was used to delineate which
covariates independently influenced the patient’s outcome. All
variables significant at p<0.05 in the univariate analysis were included
in Cox regression model.

Results

Clinical outcome
The median age of the patients at the time of surgery was 64 years

(range, 18-79 years). There were 15 women (35%) and 28 men (65%).
At the end of the follow-up period, the 43 patients had died within a
period of 1-70.2 months (median, 13 months). The median PFS was
6.7 months. According to OS time, patients were divided into three
subgroups: group 1 with a low survival rate (<9 months) included 14
patients, group 2 with a high survival rate (>18 months) included 15
patients, and the last with intermediary survival included 14 patients.

FDG-PET analysis
In 32 patients (74.4%), higher levels of FDG-uptake (nSUVmax at 30

min) were seen around the resection cavity showing residual disease
(Figure 1) and in 11 (25%) patients, was less than or equal to 1 (Figure
2).
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Figure 1: Matched temporal level transverse slices showing
multimodal brain imaging in a representative case from residual
hypermetabolic tumor. Note the perfect correlation between MRSI
(high Cho/Cr level) and FDG-PET (intense hyper metabolism) at
the residual tumor: post contrast T1-weighted (A) and fluid-
attenuated inversion recovery (B) MRI, FDG-PET images 30 min
(D) and 4 h after FDG injection (H), fused MRI/PET images (C, G),
MRSI Cho/Cr mapping (E), and MRS spectrum (F).

Figure 2: Matched temporal level transverse slices showing
multimodal brain imaging in a representative case from FDG hypo
metabolism on the edges of the resection cavity. Note a focus with a
relatively low increase in Cho/Cr level on MRSI, which is
hypometabolic on FDG-PET: post contrast T1-weighted (A) and
fluid-attenuated inversion recovery (B) MRI, FDG-PET images 30
min (D) and 4 h after FDG injection (H), fused MRI/PET images
(C,G), MRSI Cho/Cr mapping (E), and MRS spectrum (F).

There was no significant difference between the median OS in
patients with hypometabolic FDG lesions compared to patients with
hypermetabolic FDG lesions. The Kaplan-Meier plot showed that the
median OS was not significantly different between group 1 and group
2 (p=0.138, log-rank) (Figure 3). There was also no significant
relationship between nSUVmax (4 h), RI and OS.

Figure 3: Kaplan-Meier curves of overall survival of patients with a
postoperative nSUVmax (at 30 min) <1 (black line) and >1 (dotted
line). There is a non-significant difference in OS between the two
groups (p=0.138 log-rank).

MRSI analysis
An optimal n(Cho/Cr) cut-off level (2.56) clearly differentiating the

two prognostic groups, with good sensitivity and specificity of 71.40%,
and 73.30% was obtained from the ROC curves. The Kaplan-Meier
curves (Figure 4) showed that the OS of patients with n(Cho/Cr)
greater than or equal to 2.56 was significantly less than the survival of
patients with n(Cho/Cr) less than 2.56 (p=0.02, log-rank). The Kaplan-
Meier curves of PFS for n(Cho/Cr) showed no significant relationship
(p=0.14, log-rank).

Figure 4: Kaplan-Meier curves of overall survival of patients with a
postoperative nCho/Cr ratio <2.56 (black line) and ≥ 2.56 (dotted
line). There is a significant difference in OS between the two groups
(p=0.022 log-rank).

An optimal n(Lac/Cr) cut-off level (1.64) separating the two
prognostic groups, with good sensitivity and specificity of 85.7%, and
71.4% was obtained from the ROC curves. The Kaplan-Meier curves
(Figure 5) showed that the OS of patients with n(Lac/Cr) greater than
or equal to 1.64 was significantly lower compared to the survival of
patients with n(Lac/Cr) less than 1.64 (p=0.02, log-rank). The Kaplan-
Meier curves of PFS for n(Lac/Cr) showed that the PFS of patients with
n(Lac/Cr) greater than or equal to 1.64 was significantly lower than the
PFS of patients with n(Lac/Cr) less than 1.64 (p=0.03, log-rank).

Citation: Sellem DB, Waissi W, Dormishian M, Bund C, Dietemann JL, et al. (2016) Predictive Value of 1 Month Postoperative MRSI and FDG-
PET Evaluations of Glioblastomas. OMICS J Radiol 5: 220. doi:10.4172/2167-7964.1000220

Page 3 of 7

OMICS J Radiol
ISSN:2167-7964 ROA an open access journal

Volume 5 • Issue 2 • 1000220



Figure 5: Kaplan-Meier curves of overall survival of patients with a
postoperative nLac/Cr ratio <1.64 (black line) and >1.64 (dotted
line). There is a significant difference in OS between the two groups
(p=0.025 log-rank).

An optimal n(NAA/Cr) cut-off level (0.6) separating the two
prognostic groups with sensitivity and specificity of 64.3% and 78.6%,
respectively was obtained from the ROC curves. The Kaplan-Meier
curves (Figure 6) showed that the OS of patients with n(NAA/Cr) less
than 0.6 was lower than the survival of patients with n(NAA/Cr)
greater than or equal to 0.6 but the difference was not significant
(p=0.06, log-rank). The Kaplan-Meier curves of PFS for n(NAA/Cr)
showed that the PFS of patients with n(NAA/Cr) less than 0.6 was
significantly lower than the PFS of patients with n(NAA/Cr) greater
than or equal to 0.6 (p=0.01, log-rank).

Figure 6: Kaplan-Meier curves of overall survival of patients with a
postoperative nNAA >0.6 (black line) and <0.6 (dotted line). There
is a non-significant difference in OS between the two groups
(p=0.061 log-rank).

Cox univariate analysis confirmed the association between OS and
the n(Cho/Cr) and n(Lac/Cr) levels. According to PFS, n(Lac/Cr) and
n(NAA/Cr) were significant prognosis factor in univariate analysis
(Table 1).

Univariate analysis

Overall Survival Progression Free Survival

p value HR CI 95% p value HR CI 95%

nSUV (at 30 min) 0.326 0.716 [0.368-1.394] 0.504 0.798 [0.412-1.545]

n(Cho / Cr) 0.024 2.09 [1.101-3.985] 0.171 1.556 [0.826-2.930]

n(Lac / Cr) 0.028 2.08 [1.082-4.028] 0.050 1.927 [0.999-3.716]

n(NAA / Cr) 0.065 1.89 [0.962-3.711] 0.023 2.228 [1.118-4.439]

Table 1: Statistical results for OS and PFS times.

Discussion
Several prognostic factors have been identified in patients with

GBM: age, Karnofsky performance status, pathologic grade, tumor
location, the extent of surgery, neurological status, genetic and
molecular biomarker status, and concomitant chemotherapy [17-22].

Major efforts have been undertaken within recent years to apply
metabolic imaging such as FDG-PET and MRSI to GBM that will add
an understanding of the metabolic and cellular picture of the tumor to
the anatomic or structural information derived from conventional
imaging techniques such as MRI and CT [6,9,21-23].

In this current study, we investigated the prognostic values of two
functional imaging modalities, FDG-PET and MRS, in patients with
GBM after surgery and before radio- chemotherapy. FDG-PET, which

reflects glucose metabolism, has been widely used in patients with
malignant brain tumours for more than a decade. However, its utility
remains controversial: it depends on the purpose to achieve. It has
been used before treatment [21,24,25] to guide stereotactic biopsies of
intracerebral tumours [26,27]. It has been correlated with glioma grade
[28,29], gadolinium enhancement on MR images [30], and MRSI
findings [31]. FDG-PET imaging was predictive of the progression of
low-grade gliomas to a higher grade [32]. FDG-PET was also used to
define the volume for radiation dose escalation of GBMs [33]. And to
clearly distinguish between GBM recurrent tumors and radiation
necrosis [34,35].

The prognostic utility of FDG-PET remains controversial. Many
studies have demonstrated an inverse statistical correlation between
deoxyglucose trapping by the tumor and survival. Tralins et al. showed
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that the volume of FDG-PET avid tumor is predictive of survival and
time to tumor progression [9]. More recently, Colavolpe et al. [36]
demonstrated that FDG uptake before surgery is an independent
prognostic factor in high-grade glioma. In a prospective pilot study, De
Witte et al. compared MRI and FDG-PET in a group of ten patients, as
a postoperative assessment of the extent of resection. They emphasized
that, even after complete surgical resection, signs of residual tumor on
either MRI or FDG-PET were associated with a high probability of
recurrence within 6 months [21]. Disagreement regarding the value of
FDG-PET studies is often related to heterogeneity in the patient
cohort.

In the present study, we investigated only patients with a
histologically confirmed GBM, imaged 1 month after surgery, before
radio- chemotherapy. We found that residual tumor was
hypermetabolic in 74.4% of cases and hypometabolic in 25% of cases.
The median OS was 11 months in patients with hypometabolic lesions
and 15 months in patients with hypermetabolic lesions. In fact, GBMs
are characterized histologically by the presence of necrosis, which
derives from the mismatch between rapid cell growth and insufficient
endothelial development. Kubota et al. have shown that prenecrotic
cells are hypermetabolic [37]. Intensity of necrosis may differ among
GBMs: in tumours where macroscopic necrosis largely predominates,
metabolism may be reduced. In such patients, we found that there was
a non-significant trend toward shorter OS compared to those with
hypermetabolic lesions.

However, due to the FDG uptake in normal brain, the sensitivity of
detecting recurrent or residual tumor is low. In the last decade, studies
have focused on other radio-markers or on the coregistration of PET
and MRI, which has increased sensitivity over using either modality
alone [35]. Therefore, the specificity of distinguishing gliomas from
normal tissue could be increased from 68% with the use of MRI alone
to 97% with the use of MRI in conjunction with 18F-
fluoroethyltyrosine (FET-PET) and MRSI [38].

Radiolabeled amino acids have been of particular interest, especially
for the identification of low-grade tumor extent because they show
high uptake in biologically active tumor tissue and low uptake in
normal brain. Their use for tumor imaging is based on the observation
that amino acid transport and/or metabolism are up regulated in
malignant transformation [38]. The radiolabeled amino acids
commonly used in clinical studies are 11C-methionine (MET-PET),
18F-dihydroxyphenylalanine (F-DOPA), and FET-PET. The rate of
uptake is correlated with expression of Ki-67 proliferating cell nuclear
antigen [39] and micro vessel density [40,41]. Therefore, Kim et al.
found that in contrast to FDG-PET, MET-PET was found to be an
independently significant prognostic factor, and MET uptake was
correlated with cellular proliferation [36]. More recently, Kinoshita et
al. [42] developed a novel image analysis method using matched FDG-
PET and MET-PET scans to calculate a decoupling score.

The second metabolic technique we have investigated is MRSI,
which allows non-invasive exploration of the spatial distribution of
metabolic differences in brain lesions during an MRI examination. It
can characterize biochemical, metabolic, and pathologic changes in
brain tissue [42,43]. It provides information on tumor activity on the
basis of the levels of cellular metabolites, including Cho, Cr, NAA, and
Lac/lipid [6]. Cho is a membrane component, and it is thought to be a
marker of increased membrane turnover or higher cellular density. It is
increased in tumours and reflects the hyper cellularity and hyperplasia
of the tumor [44]. NAA is a neuronal metabolite marker, not present in
other central nervous system cells. It is decreased in tumours due to

neuronal loss or dysfunction [6,44]. Cr is necessary for cellular bio-
energetic processes and osmotic balance and might be a potential
marker for cell energetics. Lactate is an end-product of modulated
aerobic glycolysis in tumoral cell, which is characterized by pyruvate
generated from glucose metabolism preferentially converted to lactate
as opposed to entering the tricarboxylic acid cycle [45]. Lipid peaks
generally correlate with necrosis and represent cellular breakdown [6].

Spectra associated with tumor are distinguished from those
associated with normal tissue by the characteristic increase in the
resonance peak of Cho and reduction in the NAA peak [44,46]. In fact,
a significant finding from a study by Dowling et al. [42] showed that
100% of biopsy specimens obtained from regions where Cho was
elevated more than two SDs above normal and the NAA was decreased
at least two SDs below normal contained tumor. In our study,
abnormal metabolic profiles on MRSI, indicative of residual tumor,
were present in all patients. A decrease in the NAA peak was observed
in all patients. An increase in the Cho peak was noted in 75.6% of
cases. A decrease in the Cr peak was observed in 80% of patients. The
range of Cho increase and NAA decrease is compatible with the range
of tumor infiltration [46].

Before treatment, this was used to define the sites of metabolically
active tumor inside and outside MRI lesions and to assess their
infiltration of the brain [12,47-50]. Guillevin et al. have suggested that
MRSI was a reliable tool to evaluate the proliferation activity of WHO
grade II glioma and to identify potentially more aggressive clinical
behaviour [48]. Laprie et al. [12] have demonstrated that areas of
metabolic abnormalities inside tumours were predictive of the site of
relapse compared with regions of normal Cho/NAA. This predictive
value of MRSI has also been described in association with perfusion
and diffusion MRI, providing additional information on T1 contrast
enhancing images [51]. It was shown that there is a clear relationship
between high cerebral blood volume, a low apparent diffusion
coefficient, and high Cho for GBMs.

After surgical resection and before radio- chemotherapy, it was
suggested that MRSI would be a valuable diagnostic tool for the
assessment of residual disease, clearly demonstrating that MRSI
provides additional information regarding the tumour’s spatial extent
[6,49,50]. In general, the tumor volume determined by MRSI is greater
than that shown by MRI [6]. Even if surgical removal of the entire
lesion is often not achievable because of the lesion’s large size or a
difficult surgical location of the neoplasm, incorporating MRSI data
into postoperative treatment planning may improve target definition.
Analysis of MRSI metabolites may help differentiate regions of aerobic
from regions of anaerobic metabolism, thus detecting hypoxic areas.
The regions with low Cr and high Lac will require a greater dose of
radiotherapy if poor oxygenation is causing such effects. This study
investigated the prognostic factor of MRSI metabolites. We found that
n(Lac/Cr) and n(Cho/Cr) values were independent metabolic
predictive factors of OS time in newly diagnosed patients with GBM
after surgery and before radio- chemotherapy.
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