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Editorial

Current agricultural productivity will soon be unable to meet the
food demands of a continuously increasing population. Agricultural
productivity is greatly affected by unfavourable environmental factors,
to which crops are exposed. According to FAO, the overall area
covering saline and sodic land is about 444 million hectares [1].
Breeders have taken up their approach to coax this situation by their
own methods of breeding between the best-suited varieties for
generating high-yielding salinity-stress tolerant varieties. On the other
hand, crop biotechnologists are engaged in manipulation of different
“candidate genes” for producing stress tolerant transgenic plants.
Molecular biologists have even taken up an alternative route of gene
pyramiding, where more than one transgene, involved in the same or
different stress related pathways are introduced and expressed together
in plants. Transcript profiling under non-stress and stress conditions
using genetically different genotypes (stress sensitive vs. stress
tolerant) can also be helpful in identification of the “candidate
gene(s)”. Xerophytes and prokaryotic extremophiles have also been
used as a source of “candidate genes”; as they can survive under the
conditions where plants cannot sustain themselves.

Rice is the staple food crop for approximately half the world’s
population and constitutes approximately 20% of the global daily
calorie uptake [2]. Global transcript profiling in rice has shown that
salinity stress regulates a large set of genes. One such gene, which
showed up-regulation under salinity stress, was cyclophilin, OsCyp2
[3]. Cyclophilins, a subfamily of peptidyl-prolyl isomerases (PPIase),
are highly conserved ubiquitous set of proteins, which act as folding
catalysts. These proteins were discovered as ligands for
immunosuppressive drugs in bovine thymocytes, and later for their
PPIase activity [4]. These peptidyl-prolyl cis-trans isomerases catalyze
slow conformational change from cis to trans isoforms of Xaa-proline
peptide bonds in case of short peptide sequence, which is one of the
rate-determining steps in protein folding [5]. Plant Cyclophilins were
first identified in 1990 with the isolation of cyclophilin cDNA
sequences from tomato (Lycopersicon esculentum), maize (Zea mays),
and Brassica napus [6]. In Oryza sativa, we have reported 29
cyclophilin gene members with diverse structure and possibly diverse
functions [7].

One of the most notable features of plant cyclophilin genes is their
induced expression in response to various stresses which have been
reported in several plant species as bean, maize, sorghum, pigeon pea,
arabidopsis, tomato, wheat, rice and even the algae [8-16].

Cyclophilins are one of the key groups of stress-induced proteins
believed to exert cellular protection, helping the plant to adapt to
specific unfavorable changes in environment. A single domain
cyclophilin gene, OsCyp2, isolated from rice has shown differential
transcript abundance in various abiotic stresses [7]. The rapid increase
in the transcript abundance was observed as an early response [7],
indicating its role as a stress chaperone in response to multiple
stresses. There was a record of 9 OsCYP genes upregulated under salt
and desiccation stress, 4 of rice Cyclophilins respond to both salinity
and drought stress, while others responded only to salt stress [17].
OsCyp2 transgenic seedlings displayed lower levels of lipid
peroxidation products and higher activities of antioxidant enzymes
than wild-type seedlings, suggesting that the involvement of OsCyp2
in providing salt tolerance by controlling ROS levels in plants [15].
Heterologous expression of rice cyclophilin gene, OsCyp2, has been
shown to enhance stress tolerance in E. coli and S. cereviseae as well
[3]. Ectopic expression of this gene in tobacco has also shown its stress
mitigating nature by contributing towards ion homeostasis and
restricting ROS accumulation [7]. Overexpression of the ThCyp1 in
BY2 tobacco cell suspension line and yeast show stress tolerance
towards multiple abiotic stresses [18]. AtCyp20-2, which is the
ortholog of OsCyp20-2, the only CYP to show PPIase activity in the
thylakoid lumen, increased when plants were exposed to strong light
or low temperature [19]. Several PPIases have been reported to work
in concurrence with different protein kinases to control the activity or
stability of key regulatory components and several other transcription
factors in stress [20]. Cyclophilins, thus stand out as suitable candidate
genes for crop engineering providing multifaceted stress tolerance to
plants.

The universal presence and diverse roles of Cyclophilins in plant
system serves as an impetus for several studies related to plant
Cyclophilins worldwide [21]. A positive correlation between this
protein family and stress protection have been deciphered but the
exact mechanism which is targeted by cyclophilin proteins to bring
about stress protection is yet to be chalked out. A hypothetical model
proposing the probable mechanism of function of Cyclophilins in
various cellular processes is given in Figure 1. Tracing out their
interacting partners as well as experiments on ‘loss of function’
mutants would provide greater insight into the role of Cyclophilins in
abiotic stress tolerance.
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Figure 1: A hypothetical model proposing the diverse functions of
cyclophilins operative at cellular level during stress. Cyclophilins
possibly operate through diverse strategies to prevent stress-
induced injury via its gene regulatory and cellular protection
pathways. 1. Signaling via membrane localized receptors, 2. Folding
and refolding of aggregated proteins, 3. ROS scavenging, 4. RISC
assembly and PTGS of target genes, 5. Transcription and pre
mRNA processing, 6. Ubiquitin dependent protein degradation, 7.
Ion homeostasis, 8. Mitochondrial protein folding and stabilization,
9. Histone modification and remodeling, 10. Cellular protection
and damage repair.
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