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Introduction
The recent interest in tau and its role in neurodegenerative 

disease (NDD) has been part of a sea change in how we view protein 
aggregate toxicity in NDD pathogenesis. The longstanding focus on 
protein aggregate formation as a common mechanism linked to NDD 
pathogenesis remains largely intact, but there has been a shift away 
from large cellular and extracellular aggregates [neurofibrillary tangles 
(NFTs), senile plaques (SPs), Lewy Bodies (LBs) and the like) toward 
the importance of oligomers and other aggregate intermediates [1-3]. 
We have also seen an expansion of the hitherto largely cellular focus 
on toxicity to include interneuronal aspects of the pathogenesis of 
diverse NDDs, including Alzheimer’s Disease, Parkinson’s Disease, ALS 
and non-AD tauopathies such as corticobasal degeneration and Pick’s 
Disease. This has been accompanied by an increasing understanding 
of the importance of micro RNA and mRNA-mediated mechanisms 
[4-7] as well as other cellular and intercellular mechanisms and the 
cytopathogenesis of multiple neurodegenerative syndromes [8-10]. 
This expansion of research scope at both cellular and intercellular levels 
of analysis has had particularly notable effects on research into basic 
and disease-associated functions of tau protein and have elucidated 
the hitherto shadowy zones separating the traditional cellular focus of 
tauopathy research (protein aggregate formation) from other important 
disease features involving cell cycle re-entry [11-14], signal transduction 
abnormalities [15,16], and the disruption of protein turnover [17] 
localization [18] and secretion [19-21] mechanisms. Perhaps the 
largest influence on the direction of recent NDD research has been the 
idea that oligomer formation may itself be the agent of interneuronal 
lesion spreading via a “prionlike” mechanism [22-26]. In the case of 
tauopathy, this concept has tended to both expand and narrow the 
scope of recent investigations as it focuses attention the link between 
molecular [templated misfolding] and global (lesion spreading) aspects 
of tauopathy at the expense of cellular considerations. All of these 
developments were reflected in the focus of last year’s Cantoblanco 
meeting in Madrid.  While that meeting was ostensibly focused on 
the title subject “Is Tau a prionlike protein?” it also brought together 
current research on a variety of novel cellular and intercellular facets 
of tau biology and pathobiology, which I will attempt here to frame in 
a larger context.

Back to the Future – Developmental Tau Functions are 
Relevant Again

The largely neuronal [27] expression of tau during development 
and the marked localization of tau to the axon initially drew a great deal 
of attention to the developmental functions of tau and especially its role 
in the development of axonal identity. Indeed, the best-characterized 
and most studied function  of tau outside of its regulation of MT 
dynamics [28] before 1991 was its contribution to the generation of 
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axonal identity in developing neurons [29,30]. Later studies revealed 
important and MT-independent roles for tau in various other aspects of 
axonal differentiation, including outgrowth, growth cone motility and 
myelination [31-33]. The nuclear localization of tau and its ability to 
selectively bind double stranded DNA [34,35] has led to suggestions 
that tau may play roles in cell cycle regulation/early developmental fate 
that are relevant to both AD-associated aberrant cell cycle re-entry and 
even certain types of carcinogenesis [36].  An additional new function 
– the involvement of a small amount of tau localized to the postsynaptic 
density in synaptic plasticity -appears particularly relevant to NDD
pathogenesis mechanisms [37].

The sudden interest in tau that came with its identification as the 
major component of NFTs in the late 1980s produced what might 
be called a molecular identity crisis for tau that has had important 
consequences. Tau became a “disease protein” and interest in its normal 
functions, particularly those functions associated with neuronal 
development, was largely effaced by the effort to understand the role of 
tau in NFT formation and AD pathogenesis. In addition, the absence of 
a link between tau and established secretion pathways restricted interest 
in tau secretion and tau-related interneuronal disease mechanisms. The 
recent broadening of research scope to include intercellular aspects of 
tauopathy pathogenesis was prompted by demonstrations that a) A beta 
cytotoxicity is largely mediated by tau in both cell culture and murine 
model systems [38-40] b) the demonstration of tau secretion and uptake 
[19,21,41-43] and extracellular tau toxicity [44-46] and most of all, c) the 
application of what might be called the “prionlike hypothesis” [47-49] 
to account for what appeared to be transsynaptically connected patterns 
of lesion evolution in AD [50] and other tauopathies [51]. The prior 
demonstration by Gloria Lee and co-workers that the amino teminal 
“projection” domain mediates interactions with key signal transduction 
elements such as fyn kinase [52] now also appears to be a key element 
in our newly expanded appreciation of the roles played by tau in NDD 
pathogenesis, since tau-fyn interactions, especially in dendrites [18] 
now appear to play an essential role in mediating A beta toxicity as well 
[53]. This, together with links between tau dendritic localization and 
dendritic cytoskeletal disruption [19,41,54,55], localized tau secretion 
[19,41] and synaptic dysfunction [56] illustrate the importance of tau 
localization and possibly of neuronal polarity disruption in tauopathy 
[57,58]. Finally, demonstrations that N terminal tau fragments can 
themselves be toxic and can mediate A beta toxicity [59-62] highlight 
the need to link the molecular and systemic studies of prionlike lesion 
propagation mechanisms with cellular studies of tau pathobiology.
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The Meeting
The meeting (comprising oral presentations from 24 invited 

speakers and 34 posters) was organized around the concept of tau as 
a “prionlike” protein i.e. capable of communicating toxicity between 
cells via interneuronal transfer followed by conformation–altering 
interactions with “normal” tau proteins. Many of the presentations 
dealt with this topic directly; describing new cellular (Diamond) and/or 
rodent models of tau lesion spreading or cellular interactors associated 
with tau misfolding and oligomerization.  Attempts were made to 
integrate aspects of tau function relevant to characteristic features of 
non AD tauopathies, such as tau splice variants (Zilka) and in injury 
associated tauopathy (Kayed) and argyrophilic grain disease (Rabano). 
A major additional theme was directed at imaging and biomarker 
related diagnostic development and possible therapeutics (Gozes).  
However, nearly half of the presentations were on topics that were only 
tangentially related or unrelated to templated misfolding-mediated 
lesion spreading of tau. Most of these were directed at the as yet poorly 
understood cellular aspects of  tauopathy outlined above that will need to 
be integrated with the concept of the “prionlike” mechanism of toxicity 
and/or lesion spreading at the cellular level before the actual relevance 
and contribution of  this mechanism to human NDD pathogenesis can 
be ascertained. A major advantage of the meeting is that it combined 
exponents and modelers of “prionlike” tau lesion spreading (Diamond, 
Buee, Kayed, Zilka, Sergeant, Duff, Avila) with a range of investigators 
involved in non “prionlike” aspects of tau pathobiology, including key 
contributors to what we now know about both tau aggregation and 
hyperphosphorylation (Sahara, Spillantini, Sergeant, Iqbal, Alonso, 
Mandelkow, Mudher, Avila), tau/MT interactions (Gozes, Alonso, 
Iqbal), and other NDD relevant aspects of  tau function such as A-beta 
interactions (Gotz, Bloom, Perry) exosomal (Hall) and non-exosomal 
modes of tau secretion and uptake (Avila, Hanger, Diamond, Duff), 
tau localization (Gotz,  E. Mandelkow), toxicity (E. M. Mandelkow) 
and turnover (Cuervo, Myeku). While most of the presentations 
involved studies using conventional cellular and rodent models, 
exponents of other models that have made important contributions to 
our understanding of diverse aspects of tauopathy, such as the fruit fly 
(Mudher) and the sea lamprey (Hall) were also present. Finally, several 
presentations described recent advances in imaging (Sahara, Duff), 
immunotherapy (Sigurdssen) and functionally directed therapeutic 
approaches (Kosik, Gozes, Bhat). In the end, a broad sample of the 
current perspectives, method and research foci in the field were 
reflected among the invited speakers and attendees, despite the tight 
organizational focus of the meeting.

Summary
Current studies of tau associated dysfunction in NDD are finally 

starting to integrate  our hitherto fragmented view of tauopathy 
pathogenesis into a more comprehensive picture of how diverse tau 
functions associated with NDD-associated events (e.g. oligomerization, 
cell cycle re-entry, apoptotic changes, signal transduction pathway 
disruption, polarity loss, lesion spreading etc.) can account for global 
as well as cellular features of neurodegenerative tauopathies. Somewhat 
ironically, this synthesis has been occurring as a single novel idea – that 
of toxicity transfers via protein: protein conformational templating – 
has taken hold in the field. This state of affairs was exemplified by the 
Cantablanco tau meeting of 2013, which went significantly beyond 
its stated focus on “prionlike” speading mechanisms in tauopathy 
and crystallized many of the disparate threads of interest and effort 
that currently make up international tau and tauopathy-directed 
basic research. This broad, integrative approach combined with a 

well defined, but not exclusive, focus on a plausible common disease 
mechanism of great current interest seems likely to foster synergistic 
interactions among the participants and represents a distinct break 
from historical norms in the field. It is both a hopeful metaphor for the 
current state of tauopathy research and (in the eyes of this participant) 
a worthy “template” for future progress. 

Perhaps we “tauists” are finally applying the lessons we learned 
during the “war” [63].
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