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Abstract

The DNA Damage Response (DDR) pathway represents a signalling mechanism that is activated in eukaryotic 
cells following DNA damage and comprises of proteins involved in DNA damage detection, DNA repair, cell 
cycle arrest and apoptosis. This pathway consists of an intricate network of signalling interactions driving the 
cellular ability to recognise DNA damage and recruit specialised proteins to take decisions between DNA repair 
or apoptosis. ATM and ATR are central components of the DDR pathway. The activities of these kinases are vital 
in DNA damage induced phosphorylational induction of DDR substrates. Here, firstly we have experimentally 
determined DDR signalling network surrounding the ATM/ATR pathway induced following double stranded 
DNA damage by monitoring and quantifying time dependent inductions of their phosphorylated forms and their 
key substrates. We next involved an automated inference of unsupervised predictive models of time series data to 
generate in silico (molecular) interaction maps. We characterized the complex signalling network through system 
analysis and gradual utilisation of small time series measurements of key substrates through a novel network 
inference algorithm. Furthermore, we demonstrate an application of an assumption-free reverse engineering of 
the intricate signalling network of the activated ATM/ATR pathway. We next studied the consequences of such 
drug induced inductions as well as of time dependent ATM kinase inhibition on cell survival through further 
biological experiments. Intermediate and temporal modelling outcomes revealed the distinct signaling profile 
associated with ATM kinase activity and inhibition and explained the underlying signalling mechanism for dual 
ATM functionality in cytotoxic and cytoprotective pathways.

1 Inroduction

For the survival and normal functioning of a cell and 
ultimately of the whole organism, conservation and 
protection of the native DNA sequence and structure is 
necessary. However, our bodies are constantly exposed to 
diverse types of genotoxic insults from various sources 
that can damage cellular DNA and threaten the survival 
[1]. In order to maintain genomic integrity, eukaryotic 
cells have developed intricate DNA damage sensing and 

repair mechanism that combats the diverse sources of 
DNA damage and ensures survival [2]. The signalling 
responses that are triggered following DNA damage from 
endogenous or exogenous sources give rise to a pathway 
called DNA Damage Response (DDR) pathway [3]. The 
DDR pathway has evolved to be a complex, yet sensitive, 
highly integrated and interconnected pathway. Critical 
features of this highly robust repair mechanism are the 
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ability to specifically recognize different types of DNA 
lesions and efficiently remove them [4]. Additionally, 
the different repair responses that are generated and the 
resulting network signalling triggered within the cell not 
only repairs the DNA lesion,  but  is  also  tightly  linked  
with  the cellular machinery that governs cell-fate decision 
e.g. cell cycle arrest to promote survival or apoptosis for 
programmed cell death [5]. Depending upon the scale and 
type of DNA damage, different repair responses can be 
activated with different outcomes for the cell (Fig.  1).

Central to DDR are the Ataxia telangiectasia mutated 
gene that codes for Ataxia Telangiectasia Mutated 
protein (ATM) and Ataxia Telangiectasia Mutated Rad3 
related gene coding for ATR. ATM and ATR are Serine/
Threonine kinases, functioning as core components of 
the DDR signalling pathway [6]. These kinases belong to 
phosphatidylinositol-3 kinase like kinase (PIKK) super 
family of large proteins having phosphatidylinositol-3/4 
kinase (PI3K/PI4K) catalytic domain. ATM and ATR work 
as sensors of DNA damage and their kinase activities are 
rapidly induced following different types of DNA damage. 
Activation of these kinases requires autophosphorylation 
and this could be used as a biomarker for DDR activation 
[7, 8]. Following activation, these initiate signalling 
cascades by rapidly activating numerous downstream 
signal transducers and effector proteins comprising 
of kinases, phosphatases, transcriptional factors and 
chaperons. These effectors in turn modulate the cellular 
defence system, protein trafficking [9], mitochondrial 
regulation and metabolism [10], antioxidant pathway, 
cell cycle regulation, cell growth, recruitment of DNA 
repair enzymes and may trigger apoptosis if the DNA 

damage is beyond the repair capacity of the cell [11-13]. 
Pathways downstream of these kinases show extensive 
cross-talk, overlap and combination of specific and 
redundant activities making prediction of signal to 
response relationship difficult. Thus ATM function is 
implicated in number of responses resulting from DNA 
damage and its signalling decisions could be based on 
scale of damage, substrate availability and their degree of 
phospho induction [14]. This mandates a tightly regulated 
mechanism of interaction of ATM and ATR with their 
downstream effectors.

The targets  of  ATM-   and ATR -mediated phosphory-
lation in response to DNA damage are numerous. One of the 
crucially important targets of ATM/ATR is p53, a master 
transcription factor, functioning in the regulation of the 
cell cycle, induction of programmed cell death, regulation 
of cellular metabolism and control of aging [15]. p53 may 
be activated by the presence of damage in DNA or when 
the cell is deficient in nucleoside triphosphate precursors 
for DNA synthesis. Activating modifications in p53 results 
in decreasing its affinity towards the ubiquitin ligase 
MDM2 that in unstressed cells tags p53 for degradation 
via the ubiquitin-dependent pathways [16, 17]. ATM acts 
upstream of p53, phosphorylating it upon DNA damage, 
thus activating the p53-related pathways of cell cycle 
arrest and/or apoptosis. p53 may also be induced in an 
ATM-independent manner in cases when the damage is 
too severe and/or too extensive requiring the activation of 
various other signalling molecules [18-21].

Usually, moderate accumulation of p53 beyond 
certain threshold is associated with cell cycle arrests. 
This could be G1/S checkpoint arrest involving CHK2 

Figure 1. Cellular responses to DNA damage. Depending upon the scale of DNA damage, eukaryotic cells 
respond by activating specialised pathways that take decision of cell fate between DNA repair, temporary or 
permanent cell cycle arrest or apoptosis [2].
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and the retinoblastoma protein (pRB1) [22] or G2/M 
checkpoint arrest via ATM-CHK2 and ATR-CHK1-
mediated signalling [23-25]. Suprathreshold levels of p53 
are associated with induction of apoptosis via pRb-E2Fl, 
CHK2, p73 and the pro-apoptotic proteins of the BCL-
2 family, e.g. BAX [26-30]. Among the other immediate 
phosphorylation targets of the ATM/ATR system are 
proteins that are directly involved in DNA repair, such as 
BRCA1, RAD17, SMC1, and CHK1 [31, 32]. Transient 
S-phase cell cycle arrest may be induced through NBS1, 
BRCA1, FancD2 and SMC1 [33-36], usually following 
ionising radiation.

Induction of DDR is a complex process involving 
activation of pathways that may be extensively mod- 
ulated by various factors e.g. type and scale of damage, the 
phase of the cell cycle, transcription status of the genomic 
region/s that have sustained damage, the differentiation 
status of the cell, the overall level of genotoxic (e.g. 
oxidative) stress, the presence of signs of neoplastic 
transformation etc. Nuclear proteins of the non-histone 
type, such as the high-mobility group (HMG) proteins 
may also actively modulate the recog- nition of lesions in 
DNA and the recruitment of the repair machinery at the 
damaged sites [20, 37-39]. The levels of HMG proteins 
may play a crucial role in maintaining the physiological 
minimum of unrepaired damage in DNA as many tumours 
are characterised by up-regulation of HMGA. However, 
inherently low levels of HMGA (e.g. resulting from 
polymorphisms in the respective gene/s) are associated 
with accumulation of oxidative lesions that ultimately 
may lead to DNA damage, aging and/or cancer [40, 41]. 
In addition, in terminally differentiated cells (e.g. adult 
neurons, cardiomyocytes and others) and sometimes, in 
cells that are only partially differentiated (e.g. monocytes) 
DNA repair may be selectively suppressed [42-45].

There may also be individual variation in the efficiency 
of response to genotoxic stress and this may significantly 
vary even between clinically healthy people. Several 
methodologies exist for assessment of capacity for DNA 
repair, providing a measure for overall repair capacity 
[46-49] or a composite measure of the DNA repair status 
according to individual biomarkers [50-52].

Over the last two decades the systems biology 
community has witnessed rapid advances in system identi- 
fication methods development including the following: 
linear, loglinear and nonlinear differential equations; 
artificial neural networks [53]; genetic algorithm [54]; 
evolutionary optimization with data collocation [55]; 
interval analysis [56]; alternating regression [57]; 
parameter estimation for noisy metabolic profiles using 
newton-flow analysis [58]; simulated annealing [59]; ant 
colony optimization algorithm for parameter estimation 
and network inference [60]; substitution of slopes for 
differentials; dynamic-flux estimation [61]; eigen-vector 

optimization [62]; transposive and repressive regression 
method [63-65]; and so on. For instance, the following 
presented ODE-based methods that use dynamic data 
and steady-state measurements to capture and identify 
complex systems: Sorribas and Cascante et al. [66]; 
Irvine [67]; Savageau et al. [68]; Tominaga and Okamoto 
[69]; etc. Other identification methods may involve 
techniques based on Boolean network (BN) [70], Linear 
programming [71, 70], and least-squares minimisation 
criterion [68, 72].

In deterministic modelling methods that conceptualise 
outcomes of causality in a system are sought to predict 
historical and new outcomes based on scientific and 
theoretical evidences. In formulating an automated 
deterministic model, the model structure and parameter 
search space domain may be adapted to recalibration 
based on known principles, theories, or known formalism. 
Temporal dynamics of complex processes involved in 
biological pathways such as the DDR pathway may be 
captured and profiled by measuring system properties 
over time. An assumption-free reverse engineering of 
only small quantities of these time series measurements 
taken at regular intervals may deterministically construct 
dynamic models of such complex systems [63-65, 73]. 
This requires a novel network inference algorithms that 
is capable of demonstrating complete recovery of a wide 
range of networks of interactions from experimental time 
series data [63] as illustrated in Figure 2.

In identifying some of the challenges associated with 
modelling approaches over the last decade, we learn 
that traditional modelling approaches may help explain 
some of the functions of the key components involved in 
biological systems. However, it may be necessary to avoid 
making any a priori assumptions about any underlying 
mechanisms involved within the systems.

Our proposed reverse engineering framework is 
developed specifically to address all the need to target 
and optimally utilise limited (extremely small e.g. 3 time 
points) time series data. We found that almost all existing 
inference algorithms require large quantities of time series 
data to work and none often guarantees data consistency 
and accurate reproducibility of experimental time series 
data under such data limitation. Voit et al.  [74] cautioned 
on common mistakes and potential hindrances to effective 
identification of biological system identification using 
in vivo time series data. These include algorithmic 
difficulties of nonlinear regression analysis, validity and 
consequences of incorrect a priori assumptions made in 
model design.

Here, we seek to create data consistent, self-
reconfigurable dynamic models [63, 73] of the DDR 
pathway using only semi quantitative  experimental data 
and then analyse such  constructed predictive  models to 
generate in silico topological maps in order to generate 
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Figure 2. Reverse engineering: a mathematical and theoretical framework created to support multimodel integration and auto- mated 
construction of dynamic (i.e. deterministic, reconfigurable, self-organising and unsupervised) models from experimental time series data.

new insights into the topological protein networks 
underlying the measured signalling profiles following 
two different magnitudes of DNA damage. Systems 
analysis and study of these interaction maps are then used 
to identify key signalling alterations in the DDR network 
that may explain or interpret the measured and observed 
DNA damage dependent consequences of ATM inhibition 
and signal to response inter-relationship. Novel network 
inference (reverse engineering) algorithm is used to 
identify unknown signalling alterations that result from 
both  ATM  inhibition  and without. The reverse engineering 
strategy introduced is applicable to any complex system 
that requires signalling targets to be identified. We 
demonstrate an effective system identification procedure 
for uncovering potential signalling targets for sensitising 
genotoxic outcomes in cancer cells.

2 Materials and Methods

The need to develop a mathematical and theoretical 
framework for creating multiple dynamic (deterministic, 
reconfigurable, self-organising, unsupervised, and 
automatically constructible) models for optimally 
utilising experimental time series data has resulted in a 
novel reverse engineering strategy that often guarantees 
the production of highly consistent system identification 

solutions. In practice, this may involve an automated 
inference or extraction of unsupervised models of time 
series data that are useful for making accurate simulation 
of historical data and predictions about other unknown 
system states and network of interactions.

In order to characterise time dependent DDR 
signalling profiles induced following genotoxic challenge 
and illustrate how such activation takes cell fate decision, 
we have used immortalised human keratinocyte cell line 
(HaCat) model and generated quantitative time series 
data of kinetics of DDR substrate phospho inductions 
following different treatment regimes. Cells were treated 
with a lower (0.1µM) and higher (0.4µM) concentration 
of the widely used radiomimetic drug, Doxorubicin 
(Dox) for treatments, with and without 10µM of ATM 
kinase inhibitor, KU55933 (Ku). The two concentrations 
of genotoxic agent were chosen in order to delineate the 
corresponding signalling dynamics at a lower and higher 
degree of DNA damage and characterise the signalling 
alterations upon a repairable DNA damage and irreparable 
state (apoptosis). The time series experiments under 
different conditions (Table 1) were performed targeting 
all major proteins that respond to DNA damage (Table 2) 
and carried out their semi quantitative analysis. Relative 
measurement of protein inductions were performed by 
quantitative Enzyme Linked Immunosorbent Assay 
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(ELISA) while parallel cytotoxicity assays resulting from 
these treatments were performed using Neutral Red (NR) 
uptake assay in order to determine the consequences 
of the activated signalling profiles on cell health and 
survival.

The acquired time series data are analysed and modelled 

Table 1.  Treatment conditions for NR-uptake based cell 
cytotoxicity assay.

Cell cytotoxicity assay (NR-uptake) conditions
Time
point

100nM 
Dox

100nM Dox
+10µM KU

400nM 
Dox

400nM Dox
+10µM KU

0 UT UT UT UT
1 2 hr 2 hr 2 hr 2 hr
2 4 hr 4 hr 4 hr 4 hr
3 8 hr 8 hr 8 hr 8 hr
4 12 hr 12 hr 12 hr 12 hr
5 16 hr 16 hr 16 hr 16 hr
6 20 hr 20 hr 20 hr 20 hr
7 24 hr 24 hr 24 hr 24 hr

Table 2. DDR substrates analysed in the study.

DDR Kinases DDR substrates
pATM Serine 1981 pP53 S 15
pATR Serine 428 pBRCA1 S 1524

pChk2 Threonine 68 E2F1
pChk1 Serine 296 H2AX

using one of the network inference algoithms introduced 
in [63, 65]. These reverse engineering techniques are 
reintroduced in subsections 2.2.3 and 2.2.4.

These algorithms only require time series 
measurements with at least three time points to work 
and often converge to a unique network of interactions 
(solution) as the number of time points increases. Since 
the algorithms only work on time series data with regular 
time intervals, we have applied them on subsets of the 
above-mentioned experimental data, i.e. time points 0hr, 
2hr and 4hr; time points 0hr, 4hr and 8hr; time points 
0hr, 4hr, 8hr and 12hr; time points 0hr, 4hr, 8hr, 12hr 
and 16hr; time points 0hr, 4hr, 8hr, 12hr, 16hr and 20hr; 
and time points 0hr, 4hr, 8hr, 12hr, 16hr, 20hr and 24hr, 
gradually and progressively. The temporal models 
constructed and topological networks of interactions 
generated for each of these 6 subsets have been 
viewed and analysed to inform and guide intermediate 
biological protocols and experiments for validation 
and verification purposes. Such an optimal utilisation 
of semi quantitative experimental data combined with 
simultaneous generations of topological maps is being 
used to direct and advance our investigative study into 
the role of ATM in DDR pathway.

In this section, we describe the biological experiments 
that were performed to produce the time series data, 
fundamental deterministic modelling approach that has 
been developed to process such data, an- other alternative 
recast technique and modelling strategy for identifying 
such complex systems, and systems analysis/modelling 
challenges encountered during the process.

2.1 Experimental  methods

2.1.1 Cell lines, culture conditions and treatments:
Immortalised human keratinocytes (HaCaT) were 
maintained in DMEM without phenol red, supplemented 
with 10% foetal bovine serum (FBS), 2 mM glutamine, 
1 mM sodium pyruvate, 100 µg/ml streptomycin and 
100U/ml penicillin in an atmosphere of 5% CO2. 1mM 
stock of Doxorubicin (Sigma-Aldrich) was prepared in 
sterile H2O, filtered and stored in the dark at 4°C. Final 
concentration of treatments was established on the day 
of experiment by diluting the stock in media. 10mM 
stock of ATM kinase inhibitor, KU55933 (Calbiochem) 
was prepared in DMSO (Fisher Bioreagents), aliquoted 
and stored at -80°C in dark. Final concentration of 10µM 
was achieved by diluting the stock in media on the day 
of experiment.

2.1.2 Enzyme Linked Immunosorbent Assay 
(ELISA)
ELISA was performed for cells grown in opaque flat 
bottom 96-well tissue culture plates using Amplex 
Red detection system (Invitrogen, UK). Either media 
only or media containing cells at a density of 2.5 x 103 

were seeded per well in quadruplicates and allowed 
to grow for 24 hours (hr). Following this, cells were 
either left untreated or treated with drugs for different 
time points as indicated. At the end of treatments, cells 
were washed thrice with PBS, fixed with 150µL of 3.5% 
Paraformaldehyde (3.5gm Paraformaldehyde, 100µL 
0.1M NaOH in 100mL PBS, heated to 70°C to dissolve, 
cooled and pH adjusted to 7.2 using concentrated HCl) 
for 30 minutes (min). Cells were washed with ice cold 
PBS and permeabilized using 0.5% triton X-100 made 
in PBS, washed with ice cold PBS and quenched using 
quenching buffer (50mM NH4Cl solution made with 
H20) and washed thrice with ice cold PBS. Cells were 
next blocked using blocking buffer (2.5gm Bovine 
serum albumin, 5mL Foetal bovine serum (FBS), 5µL 
Triton X-100 in 50ml PBS) for 1 h at room temperature, 
washed with PBS and either incubated with blocking 
buffer alone (no primary antibody controls) or blocking 
buffer containing primary antibodies as indicated, for 2 
hours (hr) at room temperature. Following incubation, 
cells were washed twice with washing buffer (0.01% 
Tween20 made with PBS) and incubated for 1 h with 
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Horseradish peroxidise conjugated secondary antibodies 
diluted 1 in 1000 in washing buffer. Meanwhile, Amplex 
Red detection reagent was prepared by diluting 50µL 
of 10mM Amplex Red (previously made in DMSO), 
500µl of 20mM H2O2 (Sigma-Aldrich) in 4.45 mL 
of the provided 1x reaction buffer to achieve final 
concentration of 100µM Amplex Red reagent/2mM 
H2O2. 100µl of the reagent was added per well and 
incubated in incubator for 30 min. Readings were taken 
in a 96-well fluorescence multi plate reader (Modulus 
template, Turner Biosystem) and fluorescence intensities 
in each well were measured using excitation/emission 
of 530/590 nm. Values are means of the fluorescence 
acquired from quadruplets of treatments and normalized 
to the mean value of untreated control (UT) for that 
protein and expressed as 1. The data is based on three 
independent experiments.
 
2.1.3 Cell cytotoxicity assay
To assess the cytotoxic effects of drug treatments, 
Neutral- Red (NR) uptake assay was performed. For this, 
either media alone or media containing cells at a density 
of 2.5 x 103 were seeded per well in quadruplicates and 
allowed to grow for 24 hr. Following this, cells were 
either left untreated or treated with drugs for different 
time points as indicated. NR reagent was prepared by 
adding 0.33g of neutral red powder (Sigma-Aldrich) 
in 100ml of distilled sterilised H2O, filter sterilised and 
stored in dark at room temperature. On the day of assay 
towards the end of drug treatments, NR reagent was 
diluted 1 in 100 in media (to obtain a final concentration 
of 33µg/mL NR), cells washed thrice with warm PBS 
and 125µl of the media containing neutral red reagent 
was added per well. Plates were incubated at 37°C for 5 
h. Following this, cells were gently washed thrice with 
PBS. To release the up taken NR, cells were incubated 
with 100µl of NR desorb (1% glacial acetic acid and 
50% ethanol made with distilled H2O), shaken on a 
rotary shaker at 100 rpm protected from light, followed 
by letting the plate stand for 5 min. Readings were taken 
in 96-well multi plate reader (Modulus template, Turner 
Biosystem) and absorbance in each well was measured 
at 540 nm.Values are means of the absorbance acquired 
from quadruplet of treatments and normalized to the 
mean value of untreated control (UT) and expressed 
as % cell death with the formula 100 - [(Abs540 treated 
sample/Abs540 untreated sample) x 100]. The data is 
based on three independent experiments.

2.1.4 Immunocytochemistry
For immunocytochemistry, exponentially growing 
HaCat cells were seeded at a density of 5 x104 cells in 
complete media onto poly-L lysine (Sigma-Aldrich) 
coated cover slips placed in a 12-well tissue culture 

plates. Next day, following relevant treatments, cells 
were washed three times with ice cold PBS, fixed in 
3.5% paraformaldehyde prepared as mentioned before 
and cells incubated at room temperature for 30 min. 
Following this, cells were gently washed twice with 1 
ml of PBS, permeabilized with 0.3% triton X-100 for 10 
min, and following three washed with PBS, blocked with 
blocking solution (1% goat serum, 1% bovine serum 
albumin in PBS containing 0.05% Triton X-100) for 30 
min. Cells were then incubated with relevant primary 
antibodies (Table 3) diluted in blocking solution for 1h, 
washed three times with 0.1% Triton X-100 in PBS for 
5 min, and then incubated with either Alexa Fluor 488 
conjugated anti-rabbit or anti mouse antibodies (green 
fluorescence) or Alexa fluor 568 (red fluorescence) 
conjugated antibodies (Invitrogen) for 30 min. Only 
secondary antibody incubations (no primary antibody 
control) was also performed (data not shown). After 
subsequent washing three times with the 0.1% Triton 
X-100 in PBS for 5 min, cover slips with cells were 
mounted on slide using 4’,6-Diamidino-2-Phenylindole, 
Dihydrochloride (DAPI) containing mounting reagent 
(Vectashield, Vector Laboratories) to provide for nuclear 
reference. Cells were imaged under relevant filters with 
a Leica DMiRe2 electronic microscope.

2.1.5 Imaging and analysis
Fluorescence images of immunocytochemistry were 
collected under relevant excitation and emission filters 
de- pending on the fluorotype under Leica DMiRe2 
electronic microscope equipped with iXonEM +897 
EMCCD camera (ANDOR Technologies Ltd). Images 
were visualised using multi dimensional microscopy 
software Andor Module iQ Core. Colocalization assays 
were performed and determined with software integral 
features supplied by Andor IQ core software features. 

Table 3. Primary Antibodies used in the study.

Antibody Isotype Company

Total ATM Rabbit Abcam

pATM S-1981 Rabbit Abcam

pP53 S-15 Mouse Cell signalling

pATR S-428 Rabbit Cell signalling

pChk2 T-68 Rabbit Cell signalling

E2F1 Mouse Abcam

γH2AX Rabbit Cell signalling

pBRCA1 S1524 Rabbit Cell signalling

pChk1 S-345 Rabbit Cell signalling
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Data were generally expressed as mean for individual 
sets of experiments.

2.1.6 Coomassie staining of cells
Coomassie staining of cells following different 

treatments were performed in order to normalise 
the protein induction data of ELISA on cell density. 
At the end of treatments, cells in 96 well plates were 
washed with PBS and fixed using 30% methanol and 
10% acetic acid made in distilled H2O for 5 min. The 
fixing solution was removed and 100µl of coomassie 
stain (0.05% coomassie brilliant blue made with fixing 
solution and filtered) was added and plates incubated for 
20 min. Following this, 50µl of 0.1M NaOH was added 
per well to release the dye and cells incubated for 30 
min. Readings were taken in 96-well multiplate reader 
(Modulus template, Turner Biosystem) at 620-650nm.

2.2 Reverse engineering methods

2.2.1 Deterministic mathematical modelling
Reverse engineering may be viewed as a network 
inference challenge that seeks to obtain from data 
accurate approximation of underlying networks of 
interactions or optimal estimation of model parameters. 
Hence effective methods for constructing models that 
are data consistent and self-reconfigurable are required. 
The demand for data consistency is necessary in 
automated model construction in satisfying minimum 
requirements. Such constructed models are expected to 
be consistent in their capability to simulate historical 
time series data and predict new outcomes. However, 
system identification challenges can be extremely 
difficult. We have developed novel and efficient 
inference algorithms that are capable of dealing with 
contemporary modelling challenges including systems 
identification and parameter estimation [63, 65]. Our 
ultimate goal is to formulate a theoretical framework 
for automating the construction of dynamic models and 
in silico topological maps that describe and represent 
acquired time series data sets. Such assumption-free 
predictive models are powerful tools that may be used to 
determine unknown evolutionary dynamics and produce 
sufficient explanation to experimental data. 

2.2.2 The recommended reverse engineering method
Our data-driven modelling approach is based on the 
principle that a set of fundamental inference methods 
that satisfactorily demonstrate successful recovery of 
networks of interactions from artificially simulated 
ex- periments and assessment tests may be useful 
for effective reverse engineering and mathematical 
modelling of real experimental data [63, 65] (Fig. 2). 

Further development and assessment of those methods 
have identified and suggested an optimal method that is 
being used in this reverse engineering study. We have 
successfully identified a unique modelling strategy that 
can be used for analysing and modelling time series data 
without making a priori assumptions or preconceived 
knowledge about the underlying network of interactions 
of the target system. This method is particularly useful 
for inferring a network of interactions that is able to 
explain the experimental data supplied [63]. In further 
study [65], an alternative power-law based recast 
transformation method was integrated into the modelling 
framework to establish a secondary implementation 
of a multimodel integrated solution (Fig. 3) [63, 65]. 
The inference methods we have developed [63, 65], 
illustrated in Figure 3 and summarised in subsections 
2.2.3 and 2.2.4, are used to construct jacobian and 
power-law based models from data.

Figure 3  illustrates the proposed dynamic modelling 
strategy used in this study which highlights three basic 
types of output results: heatmap; plotted graphs; and an 
in-silico topological maps of network of interactions. 
This schematic diagram (Fig. 3) depicts the two 
mathematical methods of analytically processing time 
series data of DDR pathway to automatically construct 
either a jacobians or power-law models of the real 
biological systems approximated by real time series 
measurements. These two methods are based on the 
algorithms developed and presented in [63, 65].

2.2.3 Theoretical understanding of inverse problems 
using jacobian-based implementation
In a system of ordinary differential equations an inverse 
problem may be defined in the form

with the solution given as 

where X represents system states (e.g. from one state, 
i.e. Xbefore, to another state, i.e. Xafter. Both Xafter and Xbefore) 
are known vectors of same length, Ẋ can be calculated 
and J, the unknown jacobian (transition matrix) must be 
inferred from data. The unknown transition matrix J may 
be formulated in the matrix form

   

(1)
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Figure 3. A dynamic modelling and reverse engineering strategy for analysing time series data of DNA Damage Response 
(DDR) pathway to infer and construct a data-consistent predictive model of the system.

where 

 

  is a known state vector, i.e. the tth vector of the given time series X. According to Idowu and Bown 

[63], the inverse problem may be reexpressed as the multi-state reformulation 

redefined as

assuming that the time series (state vector) measurements are measured at regular time intervals of tc. This new equation 
is completely solvable using the transpositive regression method (TRM) [63]. The exponential matrix E:

must first be derived before calculating the parameters of J.
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2.2.4 Theoretical understanding of inverse problems using power-law method
Altenatively, a power-law based (e.g. Half-system , S-system, or the Generalised Mass Action (GMA)) model of a 
dynamical system may be used in solving an inverse problem. For instance, the Half-system representation is in the 
form:

where i = 1 . . . n; m is the number of dependent variables; gij (kinetic orders) quantify the overall net efect of each Xj on 
the production (and/or degradation) of Xi ; αi are called rate constants. In matrix form, this model representation may be 
defined as

   

(2)

which is equivalent to the logarithmic equations

   

(3)

such that

   

(4)

The transposive regression method (TRM):
An efficient (non-iterative) reverse engineering strategy

Step Description

1 E * X(before) = X(after)

2 X(before)T
   * ET

   = X(after)T

3 X(before) * X(before)T
  * ET

   = X(before) * X(after)T

4 ET
   = [X(before) * X(before)T

 ]−1 * X(before) * X(after)T

5 E = ([X(before) * X(before)T
 ]−1 * X(before) * X(after)T

 )T

6 E = X(after) * X(before)T
  * ([X(before) * X(before)T

 ]−1)T

7 Select µ : 10−12 < µ < 10−6

8 Since Eµ  = exp(J * tc * µ) ≈ I + (J * tc * µ)

9 J ≈ (Eµ – I)
(tc * µ)

Table 4. In steps 1-2 recasting the problem by matrix transposition is essential. Steps 3-4 illustrate an application of 
the Moore-Penrose pseudoinverse, a widely known type of matrix pseudoinverse. In steps 5-6, retranspositions put 
E in proper order. In steps 7 a scaling factor µ is introduced to the product J * tc  to scale down the product tc * µ to 
satisfy the condition specified in step 8. Finally, the unknown jacobian matrix may be ‘reverse engineered’ using the 
approximation method derived in step 9 as a result of the conditioning requirement satisfied in step 8.
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where the unknown parameters are the matrix collection M.

Hence conceptualising equation 4 (variant or redenition of the X(after) = M * X(before) form) as though the unknown 
matrix M is to be calculated, this inverse problem is completely solvable using the TRM method.

2.2.5 Jacobian-to-Half-system model integration
In [65] Idowu and Bown presented new methods that establish the relation between parameters of jacobian model and 
those of Half-system, otherwise known as kinetic orders based on the fundamental relation

   
(5)

where Xj and Xk are selectable entries in the given time series data and the partial derivatives ∂Ẋi and ∂Xk are interrelated 
entries of the inferred jacobian matrix which are consistent with the actual data. Ultimately the following matrix-based 
equation can be derived [65]:

   

(6)

from which the parameters (kinetic orders) of the Half-system model,

is factorable in matrix product factors

   

(7)

As a consequence of the above factorisation data-consistent jacobian relation may be expressed also as the relation

   

(8)
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3 Results

3.1 Biogical systems: results

3.1.1 Time dependent treatment of 100nM 
Doxorubicin demonstrated cytoprotective function of 
ATM signalling:
In order to characterise the mechanism and dynamics 
of DDR signalling following double stranded DNA 
damage, time series treatments were performed with 
commonly used chemotherapeutic drug, Dox and the 
resulting DDR pathway activation was studied.  For 
this, HaCat cells seeded in 96 well plates for 24 h were 
either left untreated, treated with a low concentration of 
100nM of the radiomimetic drug, Dox alone, or with the 

a co-treatment of 10µM ATM kinase inhibitor, KU. In 
addition, cells grown in a separate 96 well plates were 
treated in the same manner and subjected to cytotoxicity 
analysis via NR-uptake assay. This was done to allow 
for a correlative study of the changing dynamics of 
DDR signalling following treatments with the associated 
consequences for cell viability. Doxorubicin treatment in 
this section of experiments was set to 100nM because this 
is a physiologically relevant concentration currently being 
employed in chemotherapy (26). Immunofluorescent 
labelling of total ATM revealed that in HaCat cells, 
ATM is mostly localised in the nucleus along with some 
cytoplasmic localisation (Fig. 4). The localisation of 
ATM in the cytoplasm was previously identified to be in 
Golgi apparatus [9]. Treatment with 100nM Dox resulted 

Figure 4. Double stranded DNA damage induces time dependent nuclear foci formation of ATM with no change in 
its total levels. Immunofluorescent labelling of endogenous ATM was performed by seeding 0.5x105 cells on to poly 
L lysine coated coverslips placed in 12-well tissue plates for 18 h. Following this, cells were either left untreated or 
treated with 100nM Dox alone (a) or with 100nM Dox and 10μM KU (b) for the indicated time and further processed 
for immunocytochemistry as described in materials and methods. To stain endogenous ATM, cells were incubated 
with anti ATM primary antibody (see antibody table) followed by using Alexa Fluor® 488 (green fluorescence) 
conjugated secondary antibody (Invitrogen). To show nuclear co-localisation, cells were stained with 4’, 6-Diamidino-
2-phenylindole, Dihydrochloride (DAPI). These are representative images captured in different field of views under 
100x objective with relevant filters sets using Leica DMiRe2 electronic microscope. Scale bar represents 10μm. 
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in no major change in levels of total ATM. However, the 
appearance of nuclear foci following time dependent 
Dox treatment was evident. Appearance of these damage 
induced ATM foci illustrated that DDR pathway is 
active in HaCat cell line (Fig. 4a). KU treatment caused 
inhibition of the foci demonstrating ATM dependence for 
the foci formation (Fig. 4b). Immunofluorescent labelling 
of phosphorylated ATM on serine 1981 (pATM) on the 
other hand showed time dependent nuclear induction 
following Dox treatment (Fig. 5a) while KU treatment 
caused disruption of the observed Dox induced nuclear 
increase (Fig. 5b). This illustrated the requirement of 
kinase activity of ATM for its own phosphorylation, a 
feature of ATM that is well studied elsewhere [7].

Figure 5. Double stranded DNA damage induces time dependent nuclear induction of pATM Serine 1981 exhibiting an 
active DDR pathway. Immunofluorescent labelling of endogenous ATM was performed by seeding 0.5x105 cells on to 
poly L lysine coated coverslips placed in 12-well tissue plates for 18 h. Following this, cells were either left untreated 
or treated with 100nM Dox alone (a) or with 100nM Dox and 10μM KU (b) for the indicated time points and further 
processed for immunocytochemistry as described in materials and methods. To stain endogenous pATM, cells were 
incubated with anti pATM Serine 1981 primary antibody (see antibody table) followed by using Alexa Fluor®568 (red 
fluorescence) conjugated secondary antibody (Invitrogen). To show nuclear co-localisation, cells were stained with 4’, 
6-Diamidino-2-phenylindole, Dihydrochloride (DAPI). These are representative images captured in different field of 
views under 100x objective with relevant filters sets using Leica DMiRe2 electronic microscope. Scale bar represents 
10μm. 

ELISA for pATM following the above treatments 
showed consistent results. pATM induction was evident 
at the first time point of 2 hr treatment with a sustained 
induction for up to the final time point of 24 h of treatment 
(Fig. 6a). This showed that a lower scale of DNA damage 
with 100nM Dox was still enough to induce pATM 
induction. However, the kinetics of induction were slow 
with < two fold maximum induction at 24 hr time point. 
Co-treatment of ATM kinase inhibitor, KU, with Dox 
resulted in disruption of pATM induction for up to 12 hr of 
treatment. Furthering the treatment beyond 12 h resumed 
pATM induction in a time dependent manner (Fig. 6b). 
Hence, it appeared that while KU caused earlier disruption 
of pATM levels, at later time points, the induction slightly 
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Figure 6. Time dependent double stranded DNA damage-induced signalling profiles of DDR transducers and effectors 
following 100nM Dox with and without ATM kinase inhibition. HaCat cells were seeded at a density of 2.5 x 103 cells 
in quadruplicates in 96-well plates. After 24 h, cells were either left untreated, treated with 100nM Dox alone or with a 
combination of 100nM Dox + 10μM KU for indicated time points and processed for ELISA as described in materials 
and methods. Following this, cells in each well were incubated with primary antibody against (a) DDR kinases pATM 
S-1981, pATR S-428, pChk1 S-345 and pChk2 T-68 and (b) DDR substrates pP53-S 15, γH2AX S-139, E2F1 and 
pBRCA1 S-1524 as indicated in figure and Horseradish peroxidase conjugated secondary antibody (Cell Signalling) 
followed by using Amplex Red® (Invitorgen) detection system. Readings were taken in 96-well fluorescence multi plate 
reader (Modulus Template®) using excitation and emission spectra of 530.590 nm. Values are means of fluorescent 
readings acquired from quadruplicates of treatments and normalised to the mean fluorescence of untreated control (UT) 
expressed as 1. Data is based on n=3 independent experiments. 
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resumed resulting in overall delayed kinetics of pATM 
activation. A possible explanation of this is the fact that 
KU is a reversible inhibitor of ATM and may only form 
a transient effective inhibitory complex and lose its 
affinity during long term treatments in the presence of 
DNA damage. Furthermore, KU was previously shown 
to rapidly upregulate total ATM levels resulting in a 
transient induction of pATM which may account for that 
later induction.

Cell cytotoxicity analysis following same treatments 
revealed that inhibition of ATM during 100nM Dox 
treatment sensitised cells to the genotoxic agent at almost 
all the time points tested (Fig. 7). For example, at 24 hr 
time point, there was only 30% cell death in Dox treated 
cells as compared to 45% with the inclusion of KU. This 
confirmed the role of ATM signalling in cytoprotection 
and survival at this particular extent of DNA damage. This 
is consistent with the typical protective function of ATM 
whereby it is known to exert cell cycle arrest and promote 
DNA repair in order to ensure cell survival at a repairable 
scale of DNA damage. This is through its phosphorylation 
of P53 which exerts CIP/KIP mediated cell cycle arrest 
by sequestering E2F1 activities [23-25], as well as its 
activation of checkpoint kinases Chk1 and Chk2, which 
phosphorylate and inhibit phosphatase activities of Cdc25 
[75] stopping the cell cycle progression. While ATM is 
also implicated in apoptosis induction [26], it could be 
inferred from fig. 7 that at 100nM Dox, its activation 
resulted in cytoprotection.

Figure 7. Inhibition of ATM kinase by small molecule inhibitor 
sensitises cells to time dependent 100nM Dox treatment. HaCat cells 
were seeded at a density of 2.5 x 103 cells in quadruplicates in 96-
well plates and allowed to attach for 24 h. Following this, cells were 
either left untreated, treated with 100nM Dox or with a combination of 
100nM Dox and 10μM KU for the indicated time points and processed 
for Neutral Red uptake based cytotoxicity assay as described in 
materials and methods. Readings were taken in 96-well multi plate 
reader (Modulus template®) by measuring absorbance at 540nm. 
Values are means of the absorbance acquired from quadruplicate 
treatments and normalised to the mean value of untreated control 
(UT) and expressed as % cell death with the formula 100-[(Abs540 
treated sample/Abs540 untreated sample) x 100]. Data is based on n=3 
independent experiments.

Unsurprisingly, pATR S-428 did not show any major 
change through all the time points of Dox treatment (Fig. 
6a). This can be explained by the fact that ATR activity is 
mostly implicated in DNA damage following UV exposure 
or replication folk stalling [76] and that a lower magnitude 
of double stranded DNA damage alone is not sufficient to 
induce pATR. Interestingly however, with the addition of 
ATM inhibitor, pATR showed an induction post 12 h of 
Dox and KU co-treatment and continuing further until the 
24 hr time point (Fig. 6a). This later activation of ATR 
following double stranded DNA damage is consistent with 
a previous report which indicated that double stranded DNA 
damage may still activate ATR but with delayed kinetics 
as compared to ATM activation [77]. pATR induction due 
to sustained DNA damage in the absence of ATM activity 
could either be as a result of emergency cellular response 
where ATR activation may represent a compensation for the 
loss of ATM cytoprotective signalling, or could be to rather 
initialise apoptosis. Among the two possibilities, the latter 
seems likely because cell cytotoxicity analysis revealed 
correlation between pATR induction and cell death during 
KU + Dox treatments pointing out to a pathway involving 
KU ┤ ATM = pATR → Apoptosis. As such, the role of ATR 
in apoptosis induction has already been reported following 
treatments with chemotherapeutic agents [78, 79].

Phosphorylated forms of checkpoint kinases, Chk1 and 
Chk2, the main effectors for ATM and  ATR signalling [80] 
showed similar behaviour following the milder genotoxic 
challenge with inductions following 12 hr of treatment 
(Fig. 6a). pChk2 demonstrated an overall greater induction 
as compared to pChk1, fitting well with pChk2 being the 
primary effector molecule of pATM following double 
stranded DNA damage [81]. The fact that both pChk1 and 
pChk2 showed induction supported the earlier hypothesis 
of ATM mediating checkpoint kinase dependent cell 
cycle arrest.  The late kinetics of activation of checkpoint 
kinases possibly pointed towards G2/M arrest of the cell 
cycle rather than induction  of apoptosis through  ATM 
→  pATM → pChk1/pChk2 ┤ Cdc25 = G2/M cell cycle 
pathway. This assumption is based on the fact that KU 
treatment inhibited ATM dependent checkpoint kinase 
induction, which was accompanied by greater degree of 
cell death whereas the activation of these checkpoints in 
ATM functional state correlated with reduced cell death 
(Fig. 7). Contrastingly, examination of phosphorylated 
form of P53 on Ser-15, another substrate of ATM, revealed 
time dependent induction that continued steadily for 20 h 
of 100nM Dox treatment (Fig. 6b). ATM dependent pP53 
induction following mild DNA damage has been reported 
to result in G1/S cell cycle arrest [82]. Hence, this pP53 
induction can contribute in causing cell cycle arrest and 
induce DNA repair signalling possibly via pP53 → CIP/
KIP ┤ cyclin/Cdk = Cell cycle arrest , in addition to ATM 
→ Chk1/2 ┤ Cdc25 pathway.
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pP53 induction was disrupted with the addition of KU 
during Dox treatments for 12 hr. This reconfirmed ATM 
dependence for the observed Dox induced pP53 increase and 
supported the above mentioned pathway. Treatments longer 
than 12 hr resulted in ATM independent increase in pP53 
(Fig. 6b). Time dependent and ATM independent increase 
in pP53 tightly correlated with a surge in cell death in the 
cytotoxicity assay probably demonstrating P53 mediated 
and ATM independent apoptosis post 12 hr (Fig. 7). The 
likely underlying signalling pathway could involve DNA 
DAMAGE + KU = ATR → pP53 → Apoptosis. Another 
likely kinase responsible for P53 induction could be DNA-
PK [83]. Next, levels of E2F1 transcription factor, implicated 
in both cell cycle progression [84] as well as apoptosis [85] 
were examined. It was found that lower Dox treatment 
rapidly resulted in reduction of E2F1 levels reaching 
its lowest at 4 hr of treatment and demonstrating a single 
oscillatory behaviour (Fig. 6b). Hence, at lower scale of 
damage, pATM activation that resulted in pP53 induction was 
also accompanied by reduction in E2F1 levels. It is already 
known that activation of P53 results in Rb induced block of 
E2F1 activity causing G1/S arrest [86]. However, the actual 
ATM dependent reduction of E2F1 protein levels could also 
be explained by the fact DNA damage induced ATM was 
reported to phosphorylate and destablise MDM2 protein 
[87] which not only results in the observed P53 stabilisation, 
but may also leads the loss of E2F1 stability [88]. Taken 
together, the earlier assumption of pATM induction at earlier 
time points of 100nM Dox causing a G1/S arrest is supported 
these observations, while the involvement of checkpoint 
kinases also suggested G2/M checkpoint arrest.

Further support of pATM induced G1/S arrest via DNA 
damage → ATM → P53 → Rb ┤ E2F1 = Cell cycle arrest 
and ATM ┤ MDM2 → E2F1 pathway is provided by the 
fact that addition of KU with Dox treatment resulted in 
not just loss of this repressive effect on E2F1, but also 
led to a time dependent induction with a correlation with 
cell death. Since this induction was ATM independent, 
other mechanisms may have been involved to account 
for it. Indeed E2F1 activation following Dox treatment 
has also been reported in pATM and pChk2 independent 
mechanisms [89, 90].

The γ-H2AX levels, a marker for double stranded 
breaks, as expected, were induced starting at first time 
point examined and showed a continuous time dependent 
increase following 100nM Dox treatment. Treat- ment 
with ATM inhibitor resulted in total disruption of this 
induction at all the time points tested. This indicated 
total ATM dependence for γ-H2AX formation after 
doxorubicin treatment. Similarly, BRCA1, an important 
downstream substrate of ATM also showed ATM 
dependence for its induction (Fig. 6b). While BRCA1was 
reported to induce apoptosis in both P53 dependent and 
independent mechanisms [91], under the conditions 

tested, and it terms of ATM signalling, BRCA1 exhibited 
a complete dependence on ATM for its induction (Fig. 6b). 
This is consistent with a previous report showing ATM 
dependence for phosphorylation of BRCA1 at serine 1524 
[92]. Since BRCA1 is a major component of ATM induced 
Homologous recombination repair, this further supports 
the earlier assumption of ATMs role in cytoprotection in 
mild DNA damage. Taken together, the data generated 
with a lower DNA damage of 100nM Doxorubicin 
demon- strated that ATM kinase functioned as a DNA 
damage sensor causing G1/S or G2/M arrest mediated by 
checkpoint kinases and P53 and DNA repair by BRCA1 
induction rather than apoptosis, indicating its role in 
cytoprotection. Pathway analysis also revealed differential 
kinetics of phospho induction of ATM/ATR substrates as 
well as distinct sensitivities to ATM inhibitor.

3.1.2 Treatment with higher concentration of 
400nM Doxorubicin demonstrated time dependent 
dual roles of ATM signalling:
Once the kinetic parameters of DDR activation at 
relatively low level of DNA damage were determined, 
we next set out to perform treatments and examine the 
activation kinetics at a higher scale of DNA damage. To 
achieve this, the concentration of Dox was increased by 4x 
to 400nM. This was done to determine whether increasing 
DNA damage would still induce ATM signalling towards 
cytoprotection as observed with a lower concentration of 
Dox or alternative switch it towards apoptosis and hence 
present a different underlying DDR profile. We also wanted 
to examine whether increased DNA damage would cause 
the resulting DDR activation more ATM independent.

Firstly, cytotoxicity assay of cells treated with either 
400nM Dox alone or with the addition of KU revealed 
greater cell death in both cases as compared to that at lower 
Dox concentration (Fig. 8). Interestingly however, time 
dependent co-treatment of 400nM Dox and KU resulted in 
enhanced sensitisation and cell death only at earlier time 
points of 2, 4 and 8 hr of treatments as compared to 400nM 
Dox alone. On the contrary, at 12, 16, 20 and 24 hr of co-
treatments, there was desensitisation with diminished cell 
death upon the addition of KU as compared to treatments 
with Dox only (Fig. 8).

From this, it could be inferred that at earlier time 
points of Dox treatment where DNA damage repair could 
still be manageable, ATM kinase might mainly perform a 
cytoprotective function by signalling in cell cycle arrest 
and DNA repair. Whereas, at a greater and unmanageable 
extent of DNA damage i.e. beyond 8 hr of 400nM Dox 
treatment, its function might have switched towards 
apoptosis, as there was higher cell death in functional ATM 
state and comparatively lower when it was inhibited. This 
context dependent functional switch in ATM activity must 
also implicate an altered and distinct underlying signalling 



BioDiscovery | www.biodiscoveryjournal.co.uk December 2013 | Issue 9 | 416

Reverse engineering of DNA damage response pathway

Figure 8. Inhibition of ATM kinase by small molecule inhibitor 
causes sensitisation during earlier time points while desensitization at 
later time points of 400nM Dox treatment. HaCat cells were seeded 
in quadruplicates in 96-well plates and allowed to attach for 24 h. 
Following this, cells were either left untreated, treated with 400nM 
Dox or with a combination of 400nM Dox and 10μM KU for the 
indicated time points and processed for Neutral Red uptake based 
cytotoxicity assay as described in materials and methods. Readings 
were taken in 96-well multi plate reader (Modulus template®) by 
measuring absorbance at 540nm. Values are means of the absorbance 
acquired from quadruplicate treatments and normalised to the mean 
value of untreated control (UT) and expressed as % cell death with the 
formula 100-[(Abs540 treated sample/Abs540 untreated sample) x 100]. 
Data is based on n=3 independent experiments.

dynamics bringing about the observed re-adjustment in cell 
fate.

Treatment of HaCat cells with 400nM Dox resulted in 
a rapid pATM induction reaching >3 fold at the first time 
point of 2 hr and maintaining time dependent induction 
up to 16 hr of treatment (>5 fold increase, Fig. 9a). Co-
treatment with KU caused disruption of the Dox induced 
upregulation of pATM as expected with profound effects 
on cell survival as well. For example, 2 hr treatment of 
400nM Dox resulted in 15% cell death while addition of 
KU increased cell death to 25%. During 12-24 hr of Dox 
and KU treatment, time points where cells showed lower 
cell death as compared to Dox only, pATM induction 
remained inhibited as opposed to very high inductions 
in Dox only (Fig. 9a), supporting the earlier assumptions 
i.e desensitisation is caused due to inhibition of apoptotic 
function of ATM during extensive DNA damage.

Interestingly, at a higher damage of 400nM Dox, pATR 
also showed induction, starting at 2 hr and maximum at 16 
hr of treatment. The kinetics of this induction, however, 
were slower than those of pATM consistent with a 
previous report showing slower kinetics of ATR activation 
following DSBs [77]. Furthermore, co-treatment of KU 
+ 400nM Dox resulted in a rapid and a high induction 
of pATR starting at 2 hr post treatment and maximum 
following 12 hr of treatment (Fig. 9a). While Jazayeri A 
et al., [93] reported a functional requirement of ATM for 
ATR function in double stranded DNA damage, this result 
suggested ATM independent induction of pATR greater 

than that observed with milder Dox + KU treatment. 
Analy- sis of this induction with the results obtained from 
cytotoxicity assay indicated correlation of this transient 
pATR induction during Dox + KU treatment with cell 
death. For example, with the addition of ATM inhibitor 
during 400nM Dox, pATR was up-regulated at 2, 4 and 
8 hr time points where cells showed higher cell death, 
whereas, it was rapidly down regulated at 12, 16 and 20 
hr, time points where cells showed an overall lower cell 
death (compare figs. 8 and 9). Hence one candidate for 
inducing higher apoptosis in ATM inhibited states until 8 
hr of treatment could be ATR activity.

In terms of checkpoint kinase activities of Chk1 and 
Chk2, while lower Dox treatment revealed comparable 
Dox induced activation and KU induced disruption of these 
kinases, at a higher scale of DNA damage with 400nM 
Dox, these kinases showed both significantly different 
inductions following Dox, as well as sensitivities toward 
ATM inhibition (Figs. 8 and 9). Overall, pChk2 showed 
earlier induction following Dox treatment as compared 
to pChk1, starting at 2 hr time point and continuing up 
to 16 hr of treatment and staying constant following that. 
pChk1, on the other hand, showed a delayed induction but 
a very high single spike at 16 hr of treatment and reducing 
at further time points of 20 and 24 hr.

Addition of ATM inhibitor along with 400nM Dox 
resulted in total disruption of pChk2 levels at all the time 
points, confirming that the dependency of Chk2 on ATM 
for its Threonine 68 phosphorylation was unaltered even 
at higher scale of DNA damage during which, greater cell 
death was seen than any other treatment in this study. These 
results further demonstrate that pChk2 induction, which 
was totally dependent on ATM activity, was implicated in 
effecting the cytoprotective function of ATM at relatively 
lower scale of DNA damage, whereas promoted apoptotic 
signalling at a higher scale of DNA damage.

This result is also supported by previously well-
explained ATM dependent role of Chk2 in apoptotic 
induction [94, 95]. On the other hand, pChk1 induction 
at higher concentration of Dox became less independent 
on ATM activity unlike pChk2 or at low concentration 
of Dox. pChk1 showed ATM independent induction at 
a higher Dox concentration starting at 2 hr of treatment 
and remaining > 6 fold high from 8-16 hr of treatment 
(Fig. 9a). Interestingly, these kinetics mirrored those 
observed for pATR in 400nM Dox + KU treatments and 
furthermore, were tightly correlated with cell death. For 
example, at 2, 4 and 8 hr of 400nM Dox + KU, there was 
induction of pATR and pChk1 accompanied by higher cell 
death. By 16, 20 and 24 hr of treatment, both pATR and 
pChk1 levels reduced with a corresponding reduction in 
comparative cell deaths. Since pChk1 is a direct substrate 
of pATR, these results point towards an ATM independent 
and ATR dependent apoptotic induction via Dox + KU = 
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Figure 9. Time dependent double stranded DNA damage-induced signalling profiles of DDR transducers and effectors 
following 400nM Dox with and without ATM kinase inhibition. HaCat cells were seeded at a density of 2.5 x 103 cells 
in quadruplicates in 96-well plates. After 24 h, cells were either left untreated, treated with 100nM Dox alone or with a 
combination of 100nM Dox + 10μM KU for indicated time points and processed for ELISA as described in materials 
and methods. Following this, cells in each well were incubated with primary antibody against (a) DDR kinases pATM 
S-1981, pATR S-428, pChk1 S-345 and pChk2 T-68 and (b) DDR substrates pP53-S 15, γH2AX S-139, E2F1 and 
pBRCA1 S-1524 as indicated in figure and Horseradish peroxidase conjugated secondary antibody (Cell Signalling) 
followed by using Amplex Red® (Invitorgen) detection system. Readings were taken in 96-well fluorescence multi plate 
reader (Modulus Template®) using excitation and emission spectra of 530.590 nm. Values are means of fluorescent 
readings acquired from quadruplicates of treatments and normalised to the mean fluorescence of untreated control (UT) 
expressed as 1. Data is based on n=3 independent experiments. 
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ATR →pChk1 →pP53 →Apoptosis.
Another candidate for pChk1 activation could be 

DNA-PK, which has been shown to have a functional 
interaction with it [96] and thus pChk1 induction at higher 
scale of damage in ATM inhibited state may demonstrate 
an overlapping function of DNA-PK which may still 
ensure DDR activation [97]. Overall, both in ATM active 
and inhibited states, pChk1 induction fitted well with the 
degree of cell death in such treatments. Hence, while lower 
scale of DNA damage, pChk1 was classified as effecting 
the cytoprotective function of ATM, at higher scale of 
DNA damage, it appeared to promote cytotoxicity both 
in ATM de- pendent and independent manner. Owing to 
a rapid induction of pATM and pChk2 following 400nM 
Dox treatment, it was expected to induce pP53 S-15 levels. 
Figure 9b shows rapid and very high pP53 induction around 
9 fold at the first time point of 2 hr of treatment with time 
dependent increase and maximum at 24 hr time point (> 
20 fold induction). Hence, so far, the higher degree of cell 
death with single agent Dox treatment is proposed to have 
an underlying DDR pathway involving ATM →Chk2/
Chk1 →P53 →Apoptosis. Addition of ATM inhibitor 
with 400nM Dox disrupted pP53 induction only showing a 
slight transient rise at 12 hr time point. Nevertheless, pP53 
levels in Dox + KU treated cells always remained below 
those in Dox treated cells, unlike what was observed in 
(Fig. 6b) where at 24 hr time point, KU addition to 100nM 
Dox resulted in greater pP53 induction than at any time 
point of Dox treatment alone. E2F1 is already mentioned 
earlier to have a prominent role in ATM mediated apoptosis 
following DNA damage [95, 98]. Indeed, E2F1 was found to 
be induced in a time dependent manner and showed greater 
than 12 fold induction at 20 hr post 400nM Dox treatment 
(Fig. 9b). Interestingly, while a lower scale damage of 
100nM Dox resulted in ATM dependent reduction in E2F1 
levels (proposed earlier via the pathways ATM →P53 
→RB ┤E2F1 →Cell cycle arrest and ATM ┤ MDM2 — 
E2F1, Fig. 6b), which were abrogated after ATM inhibition, 
at a higher scale damage of 400nM Dox, E2F1 on the 
contrary showed ATM dependent induction. This clearly 
demonstrated dual fates of E2F1 during lower and higher 
scale damage, being degraded at lower scale damage to 
prevent cell cycle progression in order to arrest and repair 
cells, hence ensuring cell survival, while activated at higher 
scale damage, to promote ATM dependent apoptosis. The 
proposed pathway for this apoptotic mechanism could 
be ATM →(directly or via pChk2) →E2F1→p300/ARF 
→P53 or P73 →Apoptosis. These results reemphasized 
the importance of ATM function in performing context 
dependent multiple cellular roles, which in this instance was 
DNA damage dependent differential regulation of E2F1.

γ-H2AX S-139 showed a greater scale of time dependent 
induction during 400nM treatments as compared to 100nM 
demonstrating differences in scale of DNA damage incurred 

(compare Fig. 6b and 9b). These levels were completely 
inhibited with the addition of KU showing ATM dependence 
at most of the time points tested. However, at 20 and 24 
hr of Dox and KU treatment, there was slight upregulation 
of γ-H2AX. pBRCA1 S-1524 showed a time dependent 
induction in its levels following treatment with 400nM Dox 
while disruption of this induction during ATM inhibition. 
This again demonstrated a sole requirement of ATM 
function during these DNA damage dependent inductions. 
While BRCA1 phosphorylation has been reported to occur 
in an overlapping manner by other DDR kinases [92], the 
antibody used in the current research detects S-1524 which 
was demonstrated to get completely disrupted after ATM 
inhibition.

Taken together, these data indicated a role of ATM in 
modulating both cell survival and apoptosis and that this 
decision was based on the scale of DNA damage and 
involves re-orchestration of underlying DDR signalling 
pathway. Interestingly, we also found that ATM substrates 
not only show distinct sensitivities towards ATM kinase 
inhibition, but also that this sensitivity shows variation 
both in time dependent as well as context dependent 
manner. From these results, it could be concluded that at 
earlier time points or at lower scale of DNA damage, ATM 
function ensured cell survival by causing cell cycle arrest 
and DNA repair, while at later time points or higher scale 
of DNA damage, ATM mediated cell death as inhibition 
of its function caused higher survival, hence making it an 
effective strategy to sensitise cells only when combined 
with a particular state of DNA damage in these cell lines.

3.2 Reverse engineering of time series data: results

3.2.1 Data input
The network innference algorithms presented in [63, 65] 
and reintroduced in 2.2.3 and 2.2.4 require time series 
data inputs to be specified in regular time intervals. We 
first obtained small quantities of experimental time series 
data (i.e. with only 3 time points) obtained from biological 
experiments and modelled those stratified data to inform 
intermediate experimental design to produce additional 
data. We progressively increased the number of time points 
data acquired until we were able to obtain experimental data 
with time points 0-4-8-12-16-20-24hr and these were first 
preprocessed to produce heatmap representation of those 
data 10. We further modelled those data sets to produce 
in silico topological maps of networks of interactions for 
interpretation and further analysis. Time series data may 
be preprocessed to generate a heatmap table that represents 
evolutionary dynamics of individual components in colour-
coded depictions (Fig. 10). Here, we applied the techniques 
described in subsections 2.2.3 and 2.2.4 to infer networks 
of interactions from the biological time series data acquired 
and presented in Figure Preprocessed Time Series Data.
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3.2.2 Application of reverse engineering and 
mathematical modelling
We applied assumption-free reverse engineered methods 
to model time measurements of DDR signalling pathway 
(pATM, pATR, pP53, pChk1, pChk2, pBRCA, pE2F1 
and pH2AX) in (Fig. 10) recorded  at timepoints 0, 4, 
8, 12, 16, 20, and 24 hr and constructed data consistent 
predictive  models  to  inform biological protocols and 
experiments using the inference procedure presented 
in [63] and reintroduced in 2.2.3. The mathematical 
modelling results are presented in Figures 11 and 12 which 
produce the jacobian network model representations of 
the four (4) experimental data sets. Each jacobian result 
is obtained using either of the matrix-based methods 
presented in 2.2.3 and 2.2.4. We further ensured that the 
constructed network models are data consistent (i.e. are 
all capable of simulating historical data utilised) by using 
to independently simulate (predict) the dynamics of the 
systems from 0-24hr without providing any information 
about the systems. The results of the simulation and 
prediction assessment reveal that nearly all the predicted 
data points are accurate. Data plots of both the predicted 
data and original time series data reveal that the constructed 
models are generally consistent as evidenced in Figures 
13, 14, 15, 16 that show the plots of both data. Predicted 
data that do not match exactly are often characteristic of 
time series data that contain duplicate rows or columns. 

Such unsimulable (unreproducible) data are regarded 
as containing linearly dependent data. The TRM [63] 
inference method always seeks to infer data consistent 
models and networks of interactions from data.

3.2.3 Description of in silico topological maps
Topological maps of the network models inferred from 
time series are used to represent possible the most 
basic direct or indirect interactions that may exist 
between the protein kinases of the DDR signalling 
pathway. Each topological map may be viewed as a 
meta-descriptive network that represents the net change 
in evolutionary signalling dynamics of each kinase 
of the DDR pathway within certain time intervals. 
Such extractable information are useful for system 
identification purposes. Also they may be used to inform 
new experimental design or conduct systems analysis of 
the complex biological systems the produce the data. 
The information generated from such representations 
often reveal new knowledge which are useful for 
the understanding of the biological pathways. As the 
derived topological maps are schematic diagrams that 
may hold information about regulated mechanisms of 
interaction of ATM and ATR with their downstream 
effectors, the edges (links) within the networks may be 
viewed as valid (direct or indirect) interactions (signals, 
signal cascade or signalling process) between the 

Figure 11. Constructed network models of time series data of the DDR pathway: (A) - inferred interaction matrix of 0.1µM DOX time 
series data (without ATM inhibition); (B) - derived topological map (network of interactions) of 0.1µM DOX time series data (without ATM 
inhibition); (C) - inferred interaction matrix of 0.1µM  DOX+KU time series data (with ATM inhibition); and (D) - derived topological map 
of 0.1µM  DOX+KU time series data (with ATM inhibition).
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Figure 12. Constructed network models of time series data of the DDR pathway: (A) - inferred interaction matrix of 0.4µM DOX 
time series data (without ATM inhibition); (B) - derived topological map (network of interactions) of 0.4µM DOX time series 
data (without ATM inhibition); (C) - inferred interaction matrix of 0.4µM DOX+KU time series data (with ATM inhibition); and 
(D) - derived topological map of 0.4µM DOX+KU time series data (with ATM inhibition). These derived networks of interactions 
(in C and D) do not fully reflect the irregularity and oscillatory patterns observed in the predicted dynamics shown in Figures 14 and 
16. It seems that multiple time invariant model (i.e. biphasic) representations may be more appropriate for characterising these data 
(i.e. 0.4µM DOX and 0.4µM DOX+KU) rather than single representations.

Figure 13. Simulated system dynamics of the DDR pathway that are most consistent with the historical time 
series measure- ments at (0.1µM) dose-intensities of doxorubicin without KU treatment.
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Figure 14. Simulated system dynamics of the DDR pathway that are most consistent with the historical time 
series measure- ments at (0.4µM) dose-intensities of doxorubicin without KU treatment.

Figure 15. Simulated system dynamics of the DDR pathway that are most consistent with the historical time 
series measure- ments at (0.1µM) dose-intensities of doxorubicin with KU treatment.

protein kinases. In these maps there are basically two 
fundamental links to be considered: blue lines; and red 
lines. The blue lines represent any positive interaction 
(e.g. gene activation, protein phosphorylation etc) 

while the red lines represent the opposite effects (e.g. 
inactivation, inhibition, dephosphorylation etc). In both 
of these representations we assume that both the source 
(initiator of a signal) and target (recipient of the signal) 
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Figure 16. Simulated system dynamics of the DDR pathway that are most consistent with the historical time 
series measure- ments at (0.4µM) dose-intensities of doxorubicin with KU treatment.

Figure 17. Constructed network model of time series data of the DDR pathway: (A) - inferred interaction matrix of 0.4µM DOX 
time series data (i.e. without ATM inhibition) using only data with timepoints 0-8hr; (B) - derived topological map (network of 
interactions) of 0.4µM DOX time series data (i.e. without ATM inhibition) using only data with timepoints 0-8hr.

are identifiable. To avoid confusion, we suggest that the 
target proteins are always at the end of the arrows that 
represent the interactions, whether positive or negative.

3.2.4 Further reverse engineering of 0.4µM Dox+KU 
data
Since the derived 0.4µM Dox+KU network of interactions 
in Figure 12 does not fully reflect the oscillatory 
patterns observed in the predicted dynamics shown in 
Figure 16, it does seem that multiple time invariant 
jacobian representations may be more appropriate 

for characterising this data rather than a single repre- 
sentation. In order to infer biphasic (i.e. in two phases) 
time invariant networks of interactions from single time 
series data, two non overlapping subsets of the such 
a data set may be infer independently. Each inferred 
jacobian matrix represents the network of interactions of 
the system at each phase. To this aim we further divided 
the 0.4µM Dox+KU data in two subsets (i.e. 0-8hr and 
12-24hr) and inferred a network of interactions and in 
silico topological map from each data segment. The 
results produced are presented in 17 and 18.
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4 Analysis of the mathematical models 
of DDR
The computational models for DDR signalling pathway 
helped elucidate how the activities of different proteins in 
the complex signalling network following DNA damage 
are triggered with each effector having distinct dynamic 
activation profile. Furthermore, it was demonstrated 
how the different DDR substrates and effectors show 
variable sensitivity towards ATM kinase inhibition (some 
activated while some inhibited) as well as that for each 
substrate alone, this sensitivity showed context dependent 
alteration. The DDR model also aided in elucidating how 
the network topology correlates with cell cytotoxicity 
or protection and provided for sensitivity analysis. 
Understanding this mechanism is particularly important 
while designing inhibitory strategies targeting DDR 
proteins to achieve cell sensitisation. This is critical since 
a prerequisite of anti cancer strategy based on the above 
principle is the characterisation of relative contribution of 
target molecules in a particular node of signalling network 
in modulating cell fate decisions within a treatment 
regime. This alone requires integrative pathway analysis 
and understanding in a systematic manner.

The mechanism of the induced DDR signalling pathway 
was further dissected by manipulating the activity of ATM 
in order to examine the resulting alteration in DDR and help 
elucidate the role of ATM in DDR signalling following 
genotoxic challenge. This was done to clearly demonstrate 
and delineate the role of ATM between  DNA  repair  or  
survival  and  cytotoxicity  or  apoptosis.  Quantitative  data  
of  signalling  dynamics of important nodes within the 
DDR pathway revealed complex signalling relationships 
of ATM with its downstream substrates that function in 
physiological processes including DNA repair, cell cycle 
arrest, cell cycle re-entry, proliferation and apoptosis. 
Based on the  data  of  signalling  kinetics  and  apoptotic  
cell death, a number of important biological queries were 

Figure 18. Constructed network model of time series data of the DDR pathway: (A) - inferred interaction matrix of 0.4µM DOX 
time series data (i.e. without ATM inhibition) using only data with timepoints 12-24hr; (B) - derived topological map (network of 
interactions) of 0.4µM DOX time series data (i.e. without ATM inhibition) using only data with timepoints 12-24hr.

formulated. For example, to help infer better signal- 
response relationships, to perform sensitivity analysis of 
the signalling network based on manipulation of ATM 
signalling and to see whether different concentrations of 
the same chemotherapeutic agent  would produce the same 
signalling profile or reveal  unique signatures. Finally 
it was also aimed to decipher the altered topological 
network following ATM inhibition to identify whether 
the emergent new links within network topology forms 
the signalling basis for the altered response observed or 
whether it is a compensatory mechanism to overcome the 
lost ATM signal.

This model in the first instance revealed a series of 
complex dynamics and inter-relationships between 
the different signalling nodes and established overall 
correlations between their magnitudes and kinetics which 
were not obvious in the experimentally determined 
biological data. Systems analysis of time series data 
firstly revealed consistency with the biological data. Most 
importantly, following DNA damage at both scales of 
damage tested, an oscillatory pattern of induction was seen 
in all the DDR proteins (Figs. 13 and 14). Oscillation of 
components of intra-cellular signal transduction pathways 
is a property that denotes feedback loops in biological 
systems. These feedback loops cause fluctuation of the 
proteins locked in such reactions and are important feature 
in maintaining a dynamic equilibrium between different 
components within a signal transduction pathway. Such 
oscillations were previously found out to occur for DDR 
proteins in both biological experiments and computational 
modelling [99, 100]. Other studies have shown direct 
involvement of ATM and Chk2 kinase activities in such 
oscillations [101, 102].

Previous experimental and modelling approaches have 
also attempted to identify the physiological conse- quences 
of these protein oscillations on cell fate following DNA 
damage [103]. This is an important outcome of modelling 
that not only fits well with the known oscillatory pattern 
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of induction for DDR proteins, but also advocates the 
importance of in-silico prediction of system dynamics that 
work on experimentally determined data which highlighted 
oscillatory pattern of induction not obvious in the 
biological data points alone. Furthermore, the oscillatory 
pattern of induction was found to be ATM dependent as 
inhibition of ATM activity abrogated oscillations (Figs. 
15 and 16). Additionally, this abrogation was also seen 
during higher scale of DNA damage upon KU treatment. 
This illustrates the importance of oscillatory induction in 
different treatment settings as reported previously [100, 
104]. In one study [101], a modelling approach was used 
that proposed the involvement of ATM kinase activity in 
downstream protein oscillations following DSBs. These 
results are in agreement with the proposed mechanism and 
point towards the requirement of ATM kinase function 
in maintaining oscillatory mode via recurrent initiation 
mechanism involving feedback loops.

Figure 11 represents map of network topology, which 
shows that ATM activity is induced at lower scale of 
DNA damage. pP53 S-15 was shown to be the immediate 
downstream substrate of ATM to be induced by ATM 
activity and hence was positively regulated. Since the 
cytotoxicity assay showed lower cell death at this point as 
compared to cells with a blocked ATM function, this up 
regulated pP53 may exert CIP/KIP mediated cell cycle 
arrest and promote ATM dependent repair of the damaged 
DNA as mentioned earlier.

Importantly, the topological map in figure 11 shows 
that the induced pP53 S-15 levels caused downregulation 
of E2F1 at lower scale of DNA damage. This link 
supports the signalling conclusions drawn earlier and is in 
agreement with the experimental data. Additionally, there 
is a minor negative link between pATM and E2F1, which 
also supports pATM mediated E2F1 inhibition, which 
would lead to cell cycle arrest. Furthermore, another 
computationally determined indication of cell cycle arrest 
is provided by the induction of pChk1 through pATM 
activity as well as revealing no direct link between pATM 
and pChk2. Previous study has reported the role of pChk1 
in cell cycle arrest following Dox treatments [104], and 
ATM mediated activation of Chk2 that promotes apoptosis 
[105]. Hence, the activation of ATM at lower scale may 
indi- cate its role in cytostatic and cytoprotection against 
genotoxicity to promote DNA repair. The experimental 
data revealed no major change in pATR induction at 0.1µM 
Dox. Interestingly, the in silico topological map shows 
pP53 mediated inhibition of pATR in response to lower 
scale of Dox treatment. P53 has already been previously 
reported to downregulate ATM expression [106] as well as 
pChk1 [107]. A possible mechanism of the p53 dependent 
pATR inhibition seen in signalling network could be P53 
mediated transcriptional upregulation of Cyclin G that is 
known to recruit PP2A [108] which in turn has recently 

been reported to antagonize ATR activity [109, 110]. 
Another inhibitory link could be provided by WIP1, a 
positive downstream target of P53 [111] shown to reverse 
the ATR mediated DDR pathway [112]. Furthermore, the 
negative influence of pP53 on pChk2 and γ-H2AX in the 
topological map could also be explained via suppressive 
effects of WIP1 on pChk2 [113] and γ-H2AX [114]. 
Overall, these results are consistent with biological data 
where while both pATM and pP53 showed time dependent 
induction, pATR levels were mostly kept in check at all 
the time points tested. Altogether, these links indicate 
that at a lower scale of DNA damage, while pP53 levels 
are induced in ATM dependent manner, the cell may avoid 
apoptosis by keeping in check the activities of pChk2, 
pChk1 and pATR and exert cell cycle arrest and DNA 
repair. Activation of the DNA repair component of ATM 
signalling is also supported by positive links between 
pBRCA1 and pP53 as well as pBRCA1 and pATM. BRCA1 
has been shown to act as a co-activator of P53 [115] and to 
direct P53 function towards cell cycle arrest and DNA 
repair by upregulating p21 and GADD45 [116].

Functional assumptions of pATM signalling from 
topological network map are further strengthened by 
the corresponding changes in the signalling network upon 
ATM inhibition (Fig. 11 lower panel). Most prominently, 
the activation of pP53 by pATM was diminished. The 
negative links between pP53 to pChk1, pChk2, E2F1 and 
γ-H2AX switched to positive influences. Mathematically 
derived topological maps uncovered the underlying 
signalling profiles associated with altered cytotoxicity 
responses seen in different treatment regimens. The 
altered network of signalling in the ATM active and 
inhibited states explained the associated physiological 
response and provided a mechanistic overview that 
aided in establishing signal to response relationship. 
Experimentally determined DDR dynamics showed a 
later induction of pATR and E2F1 levels in response to 
ATM inhibition following Dox treatment. An interesting 
observation was the emergence of a strong positive 
signal of E2F1 towards pATR upon ATM inhibition. 
This computationally determined important new signal 
in the network illustrates a possible mechanism of greater 
apoptosis seen in ATM inhibited states. Secondly, in the 
presumed role of ATM in cytoprotection at lower scale of 
damage where ATM-induced pP53 negatively influenced 
pATR levels, KU treatment resulted in the loss of this 
negative influence. Thus, pATR upregulation may result 
from two separate mechanisms. One is loss of suppressive 
effect of p53 and the other is upregulation via E2F1.

Altogether, signals following lower concentration of 
Dox treatment suggest that while functional  ATM keeps 
E2F1 activity in check, probably causing cell cycle arrest 
and time for DNA repair, disruption of ATM kinase ceases 
E2F1 sequestration that may directly upregulate ATR while 



BioDiscovery | www.biodiscoveryjournal.co.uk December 2013 | Issue 9 | 426

Reverse engineering of DNA damage response pathway

disruption of suppressive effect of pP53 towards pATR 
would further triggers apoptotic signalling. ATR activity 
has already been known to signal apoptosis in response to 
treatments with different chemotherapeutic agents [78, 79]. 
Hence the inhibitory state of ATR levels at lower DNA 
damage suggests cellular signalling preference towards 
DNA repair.

As mentioned before, KU treatment caused greater 
sensitivity to 0.4µM Dox only at initial time points of 2, 4 
and 8 hr treatments while decreased sensitivity following 
12, 16, 20 and 24 hr of treatment (Fig. 8) probably 
indicating a functional switch and biphasic ATM activity. 
The dual consequence of ATM kinase inhibition could be 
explained by previous reports illustrating ATM functions 
both in cell cycle arrest and DNA repair whereby it 
promotes cytoprotection 17, 22), as well as functions as a 
central component in triggering apoptotic cell death [27, 28, 
30]. This indicates that its specific downstream signalling 
preference is context dependent, and an alteration to its 
substrate preference may occur as a function of time of 
treatment or dosage of drug.

If indeed such explanation holds for the observed dual 
outcomes of ATM inhibition, both the underlying DDR 
signalling kinetics as well as signalling connections within 
DDR network are expected to alter during this transition 
of ATM function. It is important to appreciate that the 
signalling alterations detected during ATM inhibition can 
either be causative of such altered phenotypic response, or 
be activated as an emergency response in an attempt to 
over come the lost ATM signal.

Since at lower scale of DNA damage, co-treatment 
with KU sensitised cells at all the time points of 
treatment indicating a sustained cytoprotective function 
of ATM, a single overall in silico network of topology was 
established. On the other hand, at higher concentration 
of Dox, KU treatment caused specific time dependent 
sensitisation and desensitisation, due to which two 
independent computationally determined topological 
networks were established between 0, 2, 4 and 8 hr of time 
point (cell sensitization following KU) (Fig. 17) and 12, 
16, 20 and 24 hr time point (cell desensitisation with KU) 
(Fig. 18).

Analysis of the topological networks revealed that 
E2F1 was strongly upregulated by ATM, both between 0-8 
hr and 12-24 hr of 0.4 µM Dox treatment. However, 
there was a stronger influence of ATM on E2F1 in 12-24 
hr network as compared to 0-8 hr. Upregulation of E2F1 
via ATM is well documented to signal P53 dependent and 
independent apoptosis. pChk1 was found to be positively 
up regulated by ATM both between 0-8 hr and 12-24 hr 
networks. However again, there was a stronger influence 
of ATM on pChk1 in the latter network. A Switch to 
greater Chk1 induction thus may trigger apoptosis. 
Another important signalling alteration between the two 

networks was observed between BRCA1 and E2F1. ATM 
was shown to greatly upregulate BRCA1 in the 0-8 hr 
network that was further shown to negatively regulate 
E2F1. Similarly, ATR was shown to upregulate BRCA1 
in the early network. BRCA1 activation as mentioned 
may elicit cytoprotective pathways. In the 12-24 hr 
network on the contrary, this pATM → pBRCA1 signal 
diminished and pBRCA1 instead upregulated E2F1. 
Furthermore, ATR signalling switched to downregulate 
pBRCA1. These links overall may result in E2F1 
accumulation in the cell, providing underlying signalling 
mechanism to the experimentally observed upregulation 
of E2F1 indicating a trigger of ATM dependent apoptosis.

E2F1, the downstream substrate of ATM was shown 
to be positively influenced in both the early and later 
network of 0.4µM Dox (as opposed to being down 
regulated during 0.1 µM Dox). Once activated, while 
E2F1 showed negative signalling towards ATR in the earlier 
topological network, in 12-24 hr network, this negative 
link was disrupted. This may represent a mechanism for 
ATR accumulation at higher scale of damage, which again 
might cause chk1 mediated apoptotic signal as mentioned 
earlier.

An interesting signalling alteration was seen between 
ATM and Chk1. ATM was shown to upregulate pChk1 
both in the 0-8 hr (Fig. 17) and 12-24 hr (Fig. 18) 
networks. Strikingly, this upregulated pChk1 was shown 
to be locked in a positive feedback loop with BRCA1 
(which was also directly activated by ATM) in earlier 
network, while disruption of this and emergence of a new 
positive feedback loop with E2F1 (which was then also 
directly activated by ATM) in the later 12-24 hr network. 
This important signalling alteration may be a hallmark of 
switch of ATM from a role in cytoprotection to a role 
in cytotoxicity mediated by Chk1.

In terms of ATM and Chk2 signalling, in earlier 
network, pATM upregulated pChk2 that further formed 
a similar positive feedback loop with BRCA1 while 
inhibiting ATR. However, in the later network, this 
positive loop was shown to be disrupted and pChk2 
switched its signal to a positive influence on ATR that 
further inhibited BRCA1.

Extensive data analysis of computationally determined 
topological maps between time points 0-8 hr and 12-24 hr 
have thus successfully identified the above mentioned 
critically important signalling alterations.

The underlying signalling changes that the in silico 
modeling has identified not only explained the difference 
in cellular response to ATM inhibition between the 
two sets of treatments, but also invited for further 
experimental testing. For example, the altered link 
between ATR and BRCA1, feedback loops involving 
Chk1 and BRCA1 in the earlier network and pChk1 and 
E2F1 with the disruption of the first feedback loop in the 
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later network, the switch of E2F1 and pChk2 influences 
on ATR from negative (0-8 hr network) to positives 
(in 12-24h network) demonstrate novel computationally 
derived insights that could be targeted to manipulate 
cellular response to treatment regimens.

5 Discussion
Decades of research efforts in attempts to understand 
the DDR pathway have added significant knowledge to 
our comprehension of the mechanisms involved in DNA 
damage and repair and induction of apoptosis [117]. 
Researchers have identified that cellular sensitivity to 
genotoxic agents in course of cancer therapy could be 
achieved by modulating the function of key proteins 
involved in DNA repair, cell cycle arrest and apoptotic 
mechanisms [118]. The role of ATM in the above cellular 
processes is of immense importance and thus has been 
the centre of attention in the past decade or so. ATM has 
been targeted by way of either inhibiting kinase activity 
[119, 120] its expression [121, 122], its trafficking [9] or 
overexpression of its dominant negative form [123] [For 
review, see 2]. However, due to the central role of ATM/
ATR pathway in governing myriads of other molecular 
interactions, it is often difficult to devise inhibitory 
treatment regimens allowing the predictability of both 
sensitivity and selectivity.

A prerequisite of a molecularly targeted anticancer 
approach is a detailed understanding of the underlying 
abhorrent signalling network contributing to tumour 
development [124]. This involves changes in both the 
types and extents of molecular interactions governing 
key process in cellular homeostasis. It is now known that 
numerous key proteins have multiple functions in different 
pathways and that the downstream signalling choice of a 
particular protein depends on a number of variables and 
is context dependent. In this micro- environment, the 
effect of inhibiting ATM protein is not fully predictable 
in terms of signalling consequences and the associated 
cellular response, especially owing to the fact that ATM 
function can contribute in both cell cycle arrest to allow 
for DNA repair [24, 25], as well as in apoptosis [125, 
30]. Prediction is further complicated by the finding 
that ATM may self-regulate its own protein levels [75, 
117]. In this complex and unpredictable situation, the 
efficacy of potential ATM inhibitors would have to be 
assessed in terms of the effects it exerts, not only on ATM 
activity and its immediate substrates e.g. ATM → pATM 
→ pP53 → DNA repair, but on a number of connected 
key proteins in the DNA repair, cell cycle and apoptotic 
pathways and the overall impact of such pathways on cell 
fate [2]. Therefore, it is increasingly becoming obvious 
that complexity in determining the absolute effects of 
kinase inhibition necessitates parallel theoretical and 

experimental considerations. This could be best addressed 
by employing a systems biology approach to the problem, 
involving mathematical modelling of biological processes 
[73, 118].

Over the years, tremendous progress has been in 
producing qualitative signalling data that provide for 
the explanation for different cellular events. In terms 
of therapeutic intervention of such pathways, a mere 
descriptive knowledge is not enough. The decision making 
property of these pathways may involve oscillations 
and concentration thresholds that require a quantitative 
approach, calculations and numeral analysis for data 
collection and interpretation [126]. Once such time series 
data is available for use in mathematical logic, they can 
not only shed light on the mechanism of functioning of 
these vital cellular pathways but could also be predictive 
in nature in terms of outcomes of interventions.

Following treatments both at high and lower scale 
of DNA damage, with and without ATM inhibition, 
attempts were made to correlate status of individually 
examined important nodes in the DDR and explain 
how they interact with each other to bring about the 
phenotypic changes in the cell leading to cell death and 
thus to establish relationships between signalling network 
to the cellular response. To do this, we first determined 
the phosphorylational events in DDR following different 
treatments. We then quantified their distinct kinetics 
through time courses and finally performed NR-uptake 
based cell cytotoxicity assays. This allowed parallel 
study of temporal induction of DDR phosphorylational 
signalling and their associated effects on cell health and 
survival. Since ATM inhibition was also used along with 
the drug treatments, the precise role of ATM in either 
DNA repair or cell death was also inferred. This enabled 
the interpretation of pathway activation on overall cell 
fate. Hence, experimentally we adopt a method of drug 
interventions, one which is based on varying levels of 
drug dosages to stratify experimental trials to provided 
rich quantitative data for information extraction purposes 
and knowledge discovery. The novel mathematical and 
computational modelling strategies assessed previously 
using artificially controlled in silico experiments [127] are 
now applied to real biological data. In this way, the same 
strategies that worked during in silico experimentation 
are now applied here in time series data mining to identify 
potential treatment regimes or inform the design of new 
therapeutic targets and alternatives in cancer treatments.

There is a need for collecting quantitative dynamic 
information of DDR signalling proteins at high temporal 
resolution [128, 129]. Mathematical model construction 
based on such information would not only provide novel 
insights into how thresholds, localisation and specific 
interactions of proteins within DDR signalling are 
triggered and regulated during the course of genotoxicity, 
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but would also help establish maps of network 
interactions that would further aid in identifying spatio-
temporally regulated critical links and their contributions 
in pathways responsible for generating a specific cellular 
response during a treatment regime. Furthermore, such a 
systems approach would elucidate how signalling links 
within a network of interaction influence overall cellular 
behaviour in a given type of treatment condition. Once 
such critical signalling links are established in cancer cells, 
these could be exploited to devise treatment portfolios to 
achieve targeted cellular sensitivity. In the past, several 
researchers have targeted a variety of dynamical processes 
within biological systems for their computational analysis 
ranging from studies into parallel reaction pathways 
[130], HBV infections [131] and in silico analysis of Sar-
CoV [132]. In terms of DDR signalling pathway, most of 
systems biology studies have been undertaken to examine 
and model the oscillatory patterns of DDR protein 
induction following DNA damage in light of the known 
biological insights [133-135, 137] with some reports 
focussing on elucidating the role of such oscillations in 
determining cell fate i.e. DNA repair, cell cycle arrest 
or apoptosis [88, 100, 103, 138]. However, owing to an 
intricate nature of context dependent signalling networks, 
high degree of cross-talk and pathway choices and 
insufficient quantitative data of signalling dynamics, 
a clear inter-relationship among cellular signalling to 
cellular response to its ultimate consequence on cellular 
phenotype has not been fully determined.

The current work attempted to establish a link between 
signalling networks emerging from ATM that functions 
at the core of DDR pathway upon double stranded DNA 
damage, to its ultimate impact on cell survival as well as 
to determine a cellular fail-safe mechanism upon ATM 
inhibition and how the cell responds by re-arranging 
signalling links to adapt to such inhibition and maintain 
the same phenotypic consequence. Previous mathematical 
modelling attempts have shown that the design and 
construction of a deterministic mathematical model of 
the molecular interactions that underpin the DDR require 
new kind of time series quantitative data [12]. This data 
must be consistent, have high temporal resolution and 
spatial consideration and provide the kinetic parameters 

of larger number of different proteins involved in a single 
pathway. While qualitative data are easily available, 
quantitative data pertaining to key signalling molecules 
that would allow speedy calibrations and provide kinetic 
parameters for the construction of mathematical model 
is scarce.

Assuming that quantitative data provide a representation 
of the unknown dynamics of signal activation of divergent 
proteins involved in DDR pathway is available, it follows 
that such data may be analysed to generate new and useful 
hypotheses about the possible or potential biological 
signalling, if done carefully. Furthermore, we demonstrate 
that by using simple and practicable methods informative 
and data-consistent network model may be inferred and 
constructed from such experimental time series. The 
constructed predictive model is then used to populate the 
original data set with better and richer quantitative data 
set for studying and understanding system dynamics and 
behavioural patterns.

Successful computational modelling of molecular 
pathways triggered by multifunctional proteins like 
ATM can not only provide predictive behaviour of this 
kinase in a specific treatment regimen but also highlight 
key differences in pathway choices between normal and 
cancer cells within a single treatment regime. These 
predictions could then be tested at experimental level to 
examine the degree of accuracy of these models. Thus, 
tremendous assistance could be provided in researching 
potential drug treatment options for certain types of 
cancers based on in silico predictions.  Following this, 
and if other potential ways are found for inhibition of 
the DDR pathway, a secondary calibration stage could be 
carried out along with the initial clinical trials. This would 
permit the model to be developed as a clinical application 
to be used in conjunction with the drug treatment regimes. 
Such an application would enable clinicians to determine 
the optimum timing and level of drug dose and radiation 
for use in the individual patient where the DDR pathway 
status has already been established by the measurement 
of key protein levels in that patient. In the terms of this 
approach the optimal outcome is taken to be the highest 
number of cancer cells damaged by the drug and/or 
radiation, which are directed toward apoptosis.
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