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Editorial
During the 19th century, several renowned scientists introduced 

viscous forces in mechanics giving the bases of real fluids mechanics. 
Among them, Henri Navier and Georges Gabriel Stokes built the 
famous Navier-Stokes equation describing, from Newton’s second law, 
the motion of viscous fluids and (while studying friction in liquids) 
Maurice Couette invented a well-known viscometer which is always 
in use today. The French mathematician, Henri Poincaré, in a famous 
paper entitled “On partial differential equations of mathematical 
physics” [1], emphasize upon the important work performed by Maurice 
Couette showing importance of the link between fluid mechanics and 
mathematics.

From Maurice Couette’s work, dynamic viscosity measurement 
devices emerged and batch system fluid mechanics (mixing) knowledge 
started in the simple geometry made of two coaxial cylinders (that is, 
the Taylor-Couette flow).

For continuous flow systems, the work of Jean-Léonard-Marie 
Poiseuille (both an engineer and a doctor) gave the well-known Hagen-
Poiseuille law giving the relationship between pressure drop and flow 
rate for the laminar flow of a Newtonian liquid in a pipe of circular 
cross section shape. This important experimental result obtained by 
Poiseuille stemmed from his efforts to understand blood circulation in 
human body. The famous viscosity unit “Poise” was created in honour 
of Poiseuille’s work and another type of viscometer called capillary 
appeared in physics laboratories. Then, at the beginning of 20th century, 
fluids viscosity was better understood and measuring devices were 
available.

In the year 1905, a then unknown physicist, Albert Einstein 
developed a theory of Brownian motion involving viscosity. Using 
Stokes’ results on the friction force caused by viscosity on a falling sphere 
in a viscous liquid, he established the famous Stokes-Einstein equation 
of Brownian motion theory. It is then clear that, at the beginning of 20th 
century, just before the revolution of relativity, Einstein was perfectly 
aware of the importance of viscosity in physical phenomena.

In his intensive work to understand the deep nature of gravity, 
Einstein needed all important developments of differential geometry 
and particularly the powerful tensorial calculation methods developed 
by two Italian mathematicians, Tullio Levi-Cevita and Ricci Curbastro. 
In the year 1915, Einstein published his General Relativity theory 
explaining that space-time continuum curvature expressed through 
Ricci tensor is proportional to a stress energy tensor, proportionality 
constant being the famous quantity often called “x=8πG/c4”.  Nobody 
now, excepting perhaps Einstein himself, could see in this equation a 
link with rheology.

After World War II, industrial development of polymers marked a 
new step in research and technologies in the field of fluid mechanics. 
The mechanical behaviour of those synthetic liquids does not follow the 
previous ones and they were named non-Newtonian in opposition with 
the classical liquids called Newtonian. For Newtonian liquids, viscosity 
only depends on temperature and the solute concentration. In the case 
of a non-Newtonian liquid, viscosity also depends on the mechanical 
treatment applied. The term “Rheology” (in Greek: “Study of Flow”) was 
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introduced by Eugene Bingham in USA) in the year 1928 to name the 
study of both plasticity (describing materials that permanently deform 
after a sufficient applied stress) and non-Newtonian fluids behaviour.

From a mathematical point of view, rheology makes an extensive 
use of tensors and differential geometry. Newtonian fluids undergo 
strain rates proportional to applied shear stress. Using tensorial 
formulation, it means that stress tensor is proportional to strain rate 
tensor, the proportionality constant being the fluid dynamic Newtonian 
viscosity. In the case of non-Newtonian liquids, proportionality is 
not respected and the relationship between the two tensors is much 
more complex. Among the wide variety of non-Newtonian fluids 
behaviours, shear thinning is certainly the most common, in which 
case the often called “apparent viscosity” (ratio of shear stress and shear 
rate by analogy with Newtonian viscosity) decreases when the shear 
rate increases. The large variety of complex fluids found in industrial 
applications (chemistry, metallurgy, food industry, and so on) and in 
nature (geology, physiology, and so on) and viscometers development 
allowed a huge quantity of fluids characterizations in laboratories and 
extensive research work to be performed throughout the world. But an 
important challenge was remaining as to how to be able to use all this 
knowledge about rheological properties established in laboratories in 
real situations, that is, in complex industrial installations and in nature.

This problem was solved by a Canadian scientist, Metzner, who 
published two essential papers in 1955 and 1957 [2,3]. For continuous 
flow systems of circular geometry, that is, for pipes or cylindrical ducts 
of circular cross section, Metzner and Reed [2] proposed to define the 
wall shear rate and generalized Reynolds number in order to obtain 
the same friction curve (correlation between friction factor and the 
Reynolds number) for Newtonian and non-Newtonian liquids in the 
laminar flow regime. For batch systems often called mixing systems, 
complex geometry of flow gives 3D flow patterns and calculation 
of a representative shear rate was impossible. Metzner and Otto [3] 
proposed a representative shear rate proportional to turbine rotational 
speed, the famous Metzner-Otto proportionality constant called “Ks” 
being representative of the global geometry of the mixing system.

A huge amount of experimental work was then performed by using 
the methods of Metzner et al. and rheology applications were developed 
significantly. In some of these applications, scientists and engineers 
had to face difficulties coming from complex geometries. How to use 
the Metzner-Reed method in ducts of complex cross-section shape? 
Moreover, and even for Newtonian liquids, it remains very difficult to 
solve the Navier-Stokes equation analytically for ducts of non-circular 
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cross-section. Few authors [4,5] proposed analytical methods to 
describe the flow of complex fluids in complex geometries, which are 
successfully tested experimentally and numerically.

Applications of rheology in complex geometries showed how 
important was the mathematical description of shapes involved in the 
flow or more accurately in the velocity field created by energy density 
introduction in the fluid by the use of pumping or mixing devices. 
It was then clear that this problem requires the use of differential 
geometry and particularly the use of curvature definition introduced by 
Einstein in General Relativity theory which has been discussed above. 
At the end of 20th century, important progresses made in rheology and 
understanding of vector fields theories associated with mathematical 
developments in both analytical differential geometry and numerical 
methods gave a favourable environment for explanations and solutions 
to the main problems of fundamental physics.

In the year 2011, the Indian cosmologist, Padmanabhan [6] showed 
that Navier-Stokes and General Relativity equations could be seen to 
be very similar and the theory of gravitation could be hydrodynamic. 
Around the same time, Delplace [7] proposed to introduce curvature 
of flow velocity field in the Reynolds number definition and to modify 
Einstein’s constant  in order to obtain the rheological relationship 
between shear rate and shear stress tensors reported above. The main 
consequence of this approach was the introduction of dynamic viscosity 
and kinematic viscosity in Einstein’s gravitational field theory and then 
the new vision of space-time as a fluid was widely discussed in the most 
recent works in theoretical physics.

Finally, viscosity has a major role in thermodynamics as the cause 
of irreversibility of physical phenomena. As expressed by Goff [8], 
“To understand physical phenomena being the cause of irreversibility, 
it is absolutely necessary to consider that they are always friction 
phenomena”. As discovered by Ludwig Boltzmann in the 19th century, 
entropy is the thermodynamical quantity measuring irreversibility of 
physical phenomena and viscosity is the physical property of matter 
explaining why entropy always increases and time is always flowing in 
the same direction.

To conclude this editorial, we have tried to show how rheology 
developments during the past two centuries led to an important 

contribution in both industrial applications and theoretical physics by 
trying to explain the world’s physical phenomena. Today, the story is 
continuing and developments of nano-technologies or nuclear fusion 
reactors used for energy production are good examples of industrial 
applications using viscous fluids theories and rheology of non-
Newtonian fluids. In theoretical physics, recent results seem to indicate 
that the famous quantum gravity theory, which is able to reconcile small 
and large scale phenomena, could arise from introduction of viscosity 
in fields equations [9].

The closed-form solvability or integral-ability of some of the 
problems in this subject does not seem to easy. For example, the 
quasi-elliptic partial differential equation describing the flow of a 
power-law liquid in a pipe of arbitrary cross section is presumably not 
solved as yet and, remarkably, even if we know from experiments that 
a solution should exist. Finally, these great perspectives will certainly 
make rheology a major discipline of the 21st century in honour of its 
illustrious founders of the 19th century.
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