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Abstract

Purpose: Our objective was to investigate if auditory-motor interactions during anticipatory listening to simple
singing also vary depending on rhythm structure as we recently demonstrated for singing production.

Methods: In an event-related fMRI procedure 28 healthy subjects listened to vowel changes with regular
groupings (1), regular groupings with rests (2), and irregular groupings (3) in anticipation of repeating the heard
stimuli during the latter portion of the experiment.

Results: While subtraction (2) minus (1) yielded activation in the left precentral gyrus, both subtractions from
condition (3), resulted in activation of bilateral putamen and caudate.

Only subtraction (3) minus (1) yielded activation of bilateral pre-SMA, and precentral gyrus more distinct in the left
hemisphere. Middle, superior, and transverse temporal gyri as well as ventrolateral prefrontal cortex and the insula
were activated most pronouncedly in the left hemisphere.

Conclusions: The higher the requirement of temporal grouping, the more necessary auditory-motor fine tuning
might be resulting in a more distinct and left lateralized temporal, premotor, and prefrontal activation.

If it were possible to support programming and planning of articulatory gestures by anticipatory listening to
specifically targeted vocal exercises, this could be beneficial for patients suffering from motor speech disorders as
well as aphasia as our current research with patients substantiates.

Keywords: fMRI; Anticipatory listening; Singing; Rhythm; Therapy;
Aphasia; Apraxia of speech

Introduction
An engagement of the auditory and the motor system or a

communication between both systems is essential for example for
musical performance but also for human speech to which we will refer
later in the course of our introduction.

With regard to music, this applies to anticipating the rhythmic
accents in a piece of music when a listener taps to the beat, as well as to
listening to each note produced when an instrumentalist or singer
adjusts precisely timed motor execution.

Such auditory-motor interactions were described in studies
investigating musical discrimination [1,2], vocal imagery [3,4] as well
as perception and production of musical rhythm [5-9].

The study of Chen et al. [6] demonstrates a close link between
auditory and motor systems in the context of rhythm. The authors
compared listening to 3 types of rhythms in two experiments. First,
subjects listened in anticipation of tapping. Secondly, subjects naively

listened to rhythms without knowing that they had to tap along with
them in the latter portion of the experiment. The same regions i.e.
mid-premotor cortex, supplementary motor area, and cerebellum were
engaged in both experiments. The ventral premotor cortex, however,
was only activated when subjects listened in anticipation of tapping.

To the best of our knowledge, there are no imaging studies available
as yet, which have investigated anticipatory listening to sung material.

Singing as a unique human ability requires complex mechanisms for
sensory-motor control (for review, see [10]) on the one hand and
combines language as well as musical capabilities on the other.

The observation that singing capabilities are often spared in patients
suffering from aphasia [11-14] prompted many researchers and
therapists to implement singing - although in very different ways - in
the treatment of patients suffering from both motor speech disorders
as well as aphasia [12,15-24].

One reason for the beneficial effect of singing in these patient
groups is the greater bihemispheric organization for singing as
opposed to speech, as we pointed out in detail in our previous studies
[25-28].
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Singing combines pitch and intonation processing but rhythmic and
temporal processing as well. These last deserve specific attention in
particular with regard to treatment. Temporal organization is an
essential characteristic of language and speech processing and seems to
be extremely susceptible to left-hemisphere brain damage. Lesion
studies from the field of language as well as music demonstrate that
patients with left-hemisphere lesions have problems with rhythm and
time perception [29-32]. Many studies confirm deficits in aphasia
patients with regard to temporal structuring of speech but also in
apraxia of speech (AOS), a dysfunction of higher-order aspects of
speech motor control characterized by deficits in programming or
planning of articulatory gestures [33-37].

Our interest in examining this subject results on the one hand from
theoretical considerations, on the other hand our research findings
might be useful for practical application e.g. specifically targeted
therapy interventions. As regards theoretical considerations, research
carried out on processing of temporal organization or rhythm points to
a dissociation of the two components: meter and grouping (phrasing).
While the former comprises regularly repeating patterns of strong and
weak beats, the latter comprises a segmentation of an ongoing
sequence into temporal groups of events, phrases, and motifs [38-43].
Findings from rhythm discrimination research with brain-damaged
patients demonstrated a left hemisphere specialization for temporal
grouping [44,45] and a right hemisphere specialization for meter
[46,47]. 

Given the temporal organization of speech, which is usually
characterized by irregular rhythmic patterns and uneven timing, we
are particularly interested in temporal grouping.

The impact of rhythm on language and speech recovery has been
neglected for a long time.

An exception is the research of Stahl et al. [48]. The authors
investigated the importance of melody and rhythm for speech
production in an experimental study with 17 nonfluent aphasia
patients. Based on their conclusions, rhythmic speech but not singing
may support speech production. This applied particularly to patients
with lesions including the basal ganglia.

Over the past 10 years, we have performed several studies with
patients suffering from chronic aphasia, which have demonstrated that
especially non-fluent aphasia patients and also patients with
concomitant apraxia of speech could benefit remarkably from
rhythmic-melodic voice training SIPARI developed for language
rehabilitation [25,26,28,49,50]. The main part of this treatment is based
on specific use of the voice. Focusing initially on melodic speech
components, which are mainly processed in the right hemisphere, a
step-by-step change to temporal-rhythmic speech components is
carried out with the objective to stimulate phonological and segmental
capabilities of the left hemisphere.

In an fMRI-study with 30 healthy subjects, we demonstrated that
rhythmic structure is a decisive factor as regards lateralization and
activation of specific areas during simple singing of sub-lexical
material i.e. vowel changes [27]. According to our findings increasing
demands on motor and cognitive capabilities resulted in additional
activation of inferior frontal areas of the left hemisphere, particularly
in those areas, which are described in connection with temporal
processing and sequencing [51-53]. These activations do not only
comprise brain regions, whose lesions are causally connected with
language disorders but also regions of the left hemisphere (Broca’s area,

insular cortex, inferior parietal cortex), whose lesions are reported to
cause apraxia of speech (AOS) [54,55].

In a subsequent therapy study, three patients with severe nonfluent
aphasia and concomitant AOS underwent the same fMRI-procedure
before and after therapy as the healthy control subjects in our pre-
study just mentioned.

A main finding was that post-minus pre-treatment imaging data
yielded significant peri-lesional activations in all patients in the left
superior temporal gyrus, whereas the reverse subtraction revealed
either no significant activation or right hemisphere activation [28].
Likewise, pre and post-treatment assessments of patients’ vocal rhythm
production, language, and speech motor performance yielded
significant improvements for all patients. The left superior temporal
gyrus is assumed to interface with motor planning systems for sub-
lexical aspects of speech [56,57]. This auditory-motor circuit provides
the essential neural mechanisms for phonological short-term memory
[58,59]. Functional reintegration of this region is mentioned in the
literature in connection with language improvement [60-64].

It should be emphasized, though, that the literature just cited, refers
to studies investigating the effects of language therapy. As far as we
know, comparable studies from the field of music therapy are not
available as yet.

The fact that these results were achieved by specific rhythmic-
melodic voice training and included improvements in propositional
speech may provide additional evidence by means of functional
imaging for the hypothesis put forward by Stahl et al. [65].

According to their two-path model of speech recovery
improvements of propositional speech may engage peri-lesional
regions achieved through standard speech therapy. Formulaic speech
may be trained rhythmically and engage right corticostriatal regions.
Stahl and colleagues hypothesize that, at least theoretically, singing
could act as an intermediary between these two paths.

Our present objective is to investigate auditory-motor interaction in
healthy subjects during anticipatory listening to chanted vowel changes
with different rhythmic structures.

Our considerations are as follows: if it were possible to influence
auditory-motor interaction during listening to specifically targeted
vocal exercises this should have positive effects on planning and
programming of articulatory gestures. A transition between sound
pattern (phonological form) e.g. of a syllable or word and the
respective motor program might thus be supported, an interface which
is assumed to represent one of the main problems particularly of
patients with AOS [66,67].

In order to further substantiate our assumptions, we want to refer to
the motor theory of speech perception [68], which claims that
phonetic perception is perception of gesture, implying a close link
between perception and production. This idea is compatible with the
more recent discovery of an “echo-neuron system” i.e. a system that
motorically reacts when subjects listen to verbal material [69,70].
Meanwhile, several studies confirmed that active listening to speech
recruits speech-related motor regions of the brain e.g. posterior
temporal and parietal regions, the superior part of the ventral
premotor cortex, and Broca’s area [71-73].

Over the past years, the dual-stream model of speech processing
[56,74] with a ventral stream for speech recognition and a dorsal
stream for speech perception has been suggested. The neural substrates
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of the latter involve posterior frontal lobe structures, portions of the
posterior temporal lobe and the parietal operculum. The dorsal stream,
which is said to be strongly left-dominant, has an auditory-motor
integration function by translating acoustic speech signals into
articulatory representations of the frontal lobe [57]. Production deficits
but also impairments in speech perception in patients suffering from
left-hemisphere injury may be explained by disruption of the dorsal
stream resulting from dorsal temporal and frontal lesions.

Based on our findings mentioned above, we assume that also during
anticipatory listening to sub-lexical material rhythm structure is of
particular importance with regard to demands on cognitive capacities
like attention, short-term memory, and motor planning. Therefore, 28
healthy subjects will listen in anticipation (i.e. knowing that they have
to repeat the heard stimuli immediately after presentation) to vowel
changes with regular groupings, regular groupings with rests, and
irregular groupings.

We hypothesize that the more auditory-motor fine tuning with
regard to temporal grouping is required, the more distinct and left
lateralized temporal, premotor, and prefrontal activation will occur.

This imaging study is intended to gain an insight into the
relationship between rhythmic structure and auditory-motor
interactions during anticipatory listening to simple singing and
intended to form the basis for further studies with patients.

Methods

Participants
A total of 28 healthy German non-musicians (14 male, 14 female,

mean age: 26.3, range 21-41) participated in the present study.

In order to avoid the reported sex differences at the level of
phonological processing [75] and vocal and verbal production [76,77]
only women who used contraceptive devices (birth control pill) were
included. All subjects were right-handed as determined by means of
the Edinburgh Handedness Scale. Inclusion criterion was a
lateralization index >70%. None of the participants had a history of
neurologic, psychiatric or medical diseases or any signs of hearing
disorders.

Apart from general school education none of the participants had
any special musical training. All participants gave written informed
consent in line with the Declaration of Helsinki and the Ethics
Committee of the RWTH Aachen. This study was undertaken in
compliance with national legislation.

Stimuli and procedure
Tasks of our fMRI-paradigm comprised anticipatory listening to

chanted vowel changes in rhythm sequences with differently
demanding complexity levels. Chanting is a rudimentary or simple
form of singing e.g. on one pitch only and facilitates evaluating the
influence of rhythm structure because melodic components are
reduced. Rhythmic chanting (e.g. the vowel change /a/i/) requires exact
temporal coordination and sequencing of speech movements. By
focusing on sub-lexical processing with a single vowel change, we
minimized the influence of semantic and lexical components of speech
processing. Our focus was on phonological processing as the basis for
further research with patients. Furthermore, we decided for a vowel
change with regard to our study with patients because even severely
impaired patients are mostly able to cope with this task (Figure 1).

Stimuli consisted of quadruple measure groupings with duration of
4 sec. (8 vowel changes, alternately /a/i/) and differed as follows:

Condition (1): vowel changes with regular groupings: This condition
comprises either no vowel change within one beat or the same tone
durations and regular changes within one beat. From beat to beat tone
durations change in even-numbered ratios.

These groupings allow smooth (legato) vocalization without break
between notes.

Condition (2): vowel changes with regular groupings and rests: This
condition contains the same tone durations and regular changes within
the individual beat. Tone durations change from beat to beat in even-
numbered ratios. The implementation of rests draws attention to
forthcoming motor execution because legato (smooth) and staccato
(short) vocalization have to be changed from beat to beat.

Condition (3): vowel changes with irregular groupings: This
condition consists of varying durations (including odd numbers of
syllables within one beat) and irregular changes. Tone durations
change from beat to beat in odd-numbered ratios. Syncopations,
dottings, and rests bring about accent shifts (off-beats), which increase
demands on attention and short-term memory but also on subsequent
sequencing. This assumption is corroborated by studies researching on
movement sequence learning [78-81].

Figure 1: Stimuli examples in musical notation Quadruple measure
groupings with aduration of 4 sec. (1 beat per sec.) sung at a
frequency of 220 Hz (A3) (1) Regular vowel changes (2) Regular
vowel changes with rests (3) Irregular vowel changes.

Stimuli were sung by a female voice with the vowel change /a/i/ at a
frequency of 220 Hz. The length of each stimulus was electronically set
to 4 sec. with a max. deviation of 0.05 sec. For each condition (1 -3)
four grouping variations with the same complexity level were available.

Subjects had to listen in anticipation i.e. they knew that they had to
repeat the heard stimuli immediately after presentation.

We used an event-related design where a total of 25 trials per
condition were presented and 25 null-events were randomly included.

The stimuli were presented in a pseudo-randomized order with a
mean interstimulus interval of 9 sec. (jittered between 8 and 10 sec.).
The presentation time for each stimulus took 4 sec.
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The paradigm was implemented in Presentation (Neurobehavioral
Systems) and synchronized to the scanner.

We want to emphasize that our tasks are also meant for following
patient studies. Since they are essentially demanding with regard to
cognitive abilities (attention, short-term memory), which are often
impaired in patients with frontal lobe damage, a sparse temporal
scanning design was not used in this study. We wanted to avoid
attention loss and consequently lower functional response caused by
relatively long inter-scan-intervals, which are required in sparse
temporal schemes [82]. Moreover, stimuli were constantly sung at a
frequency of 220 Hz, which is outside the main frequency peaks of the
scanner spectrum.

Stimuli were presented binaurally through MR-compatible
headphones with a sound absorption rate of 30 dBA (Resonance
Technology). All conditions were performed with eyes closed.

Participants were instructed to listen to the stimuli and refrain from
any motor or cognitive responses such as fingerlifting and silent
counting.

Image acquisition
Functional images were obtained with a whole-body 3 T Siemens

Trio MRI-system. Participants were fixated in the head coil using
Velcro straps and foam paddings to stabilize head position and
minimize motion artefacts. After orienting the axial slices in the
anterior-posterior commisure (AC-PC) plane functional images were
acquired using a T2*-weighted echo planar imaging (EPI) sequence
with a repetition time (TR) of 2200 ms, an echo time (TE) of 30 ms
and a flip angle (FA) of 90 degrees. 640 volumes consisting of 41
contiguous transversal slices with a thickness of 3.4 mm were
measured. A 64 × 64 matrix with a field of view (FOV) of 220 mm was
used, yielding an effective voxel size of 3.44 × 3.44 × 3.74 mm.

Image analysis
Functional images were pre-processed and analyzed using SPM8

(Wellcome Department of Cognitive Neurology London UK).

Image Pre-processing: Images were realigned and unwarped in
order to correct for motion and movement-related changes in
magnetic susceptibility. Translation and rotation correction did not
exceed 1.7 mm and 1.6° respectively for any of the participants.
Thereafter, images were spatially normalized into the anatomical space
of the MNI brain template (Montreal Neurologic Institute) to allow
pixel-by-pixel averaging across subjects with a voxel size of 4 × 4 × 4
mm in the x, y, and z dimensions. Finally, all images were smoothed
using a Gaussian filter of 8 × 8 × 8 mm to accommodate intersubject
variation in brain anatomy and to increase signal-to-noise ratio in the
images.

Statistical analysis
First, a random effects analysis was performed to search for

significantly activated voxels in the individual pre-processed data using
the general linear model approach for time-series-data suggested by
Friston and co-workers [83-86] and implemented in SPM8. Contrast-
images were computed after applying the hemodynamic response
function. A random effects analysis was performed using a one-sample
t-test for each condition, where the reported contrasts are inclusively
masked by the minuend with p=0.05 to eliminate deactivations of the
subtrahend becoming significant because of the subtraction. Statistical

parametric maps (SPMs) were evaluated and voxels were considered
significant if their corresponding linear contrast t-values were
significant at a voxelwise threshold of p=0.05 (FWE-corrected). Only
regions comprising at least 10 voxels are reported. Finally, coordinates
of activations were transformed from MNI to Talairach space [87]
using the matlab function mni2tal.m implemented by Matthew Brett
(http://www.mrc-cbu.cam.ac.uk/Imaging/mnispace.html).

Results

Behavioral analysis
As already described, this study investigated anticipatory listening

and subjects had to produce the heard stimuli in the latter portion of
the experiment. The data from the second experiment (rhythmic
singing) were commonly analyzed by 2 professional musicians (singer
and percussionist) post hoc. They assessed each stimulus repetition
with either correct (score 1) or incorrect (score 0). Only unanimous
assessments that both matching the pitch and rhythm production had
been performed without error were scored 1. Data were only included
in the study if at least 75% of the stimuli were repeated correctly in
each condition.

We put this high limit in order to make sure that differences
regarding the results can be attributed to the specific rhythm structure
and in order to eliminate activations, which resulted from incorrect
reactions.

Using the Friedman-test for paired samples of non-normally
distributed data no significant difference could be demonstrated
concerning performance of the participants in the four grouping
variations within each condition. However, complexity of the condition
seems to influence the performance significantly. An additional
Wilcoxon-test post-hoc analysis confirmed this result for all three
paired comparisons (3-1; 2-1; 3-2) using a Bonferroni-corrected
threshold of p<0.05.

Since anticipatory listening is a prerequisite for correct repetition of
which the data were already published [27] we can be sure that subjects
must have listened attentively.

FMRI data
Auditory stimulation was regarded as separately modeled condition

in this design, reproduction data were already published [27]. Auditory
presentation and reproduction were time-shifted; subjects did not sing
along but after the presentation had stopped. Hence, only the expected
activations in the auditory areas caused by the auditory stimulus
presentation will be present in the reported results (Figure 2).
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Figure 2: Areas of significant brain activation derived from group
analyses of the subtractions of the three listening tasks (FWE-
corrected p=0.05, threshold=10 voxels).

Subtraction
To determine how neural activity differed between conditions

subtractions between conditions were performed. Significant
activations remained for the listening tasks concerning following
subtractions:

Regions activated in the “regular with rests” condition compared to
the “regular” condition

Subtraction of condition (2) minus (1) yielded significant activation
of left precentral gyrus (BA 9, 6).

Regions activated in the “irregular” condition compared to the
“regular” condition

Subtraction of condition (3) minus (1) yielded significant activation
of bilateral putamen and caudate. Pre-Supplementary motor area (BA
6) was activated bilaterally. Precentral gyrus (BA 6,9) was activated
more distinctly in the left hemisphere. Middle frontal gyrus (BAS 8)
and cingulate gyrus (BA 32,24) were activated in the right hemisphere.
While ventrolateral prefrontal cortex (BA 47,45) was activated in the
left hemisphere, insula (BA 13) was activated bilaterally, however, most
pronouncedly in the left hemisphere. The same holds true for middle
temporal gyrus (BA 22), while superior and transverse temporal gyri
(BA 42,41) were activated in the left hemisphere.

Inferior and superior parietal gyri (BA 40,7) were activated most
pronouncedly in the right hemisphere.

Regions activated in the “irregular”condition compared to the
“regular with rests” condition.

Subtraction of condition (3) minus (2) yielded significant activation
of bilateral putamen and caudate. Thalamus was activated in the right
hemisphere. Superior frontal gyrus (BA 6) was activated in the right
hemisphere. Cingulate gyrus (BA 24) was activated bilaterally as well
as paracentral lobe (BA 31).

Figure 3: Regions of peak activity. Coordinates are reported in
Talairach space [87] BA=Brodmann Area; pre-SMA=pre-
supplementary motor area.

Discussion
Our results demonstrate that rhythmic structure seems to influence

auditory-motor interaction during anticipatory listening to
monotonously sung vowel changes decisively. We investigated three
grouping variations, which were sung as vowel changes with regular
groupings, regular groupings with rests, and vowel changes with
irregular groupings.

Rhythmic chanting (e.g. the vowel change /a/i/) requires exact
temporal coordination and sequencing of speech movements. By
focusing on sub-lexical processing, we minimized the influence of
semantic and lexical components of speech processing. Our focus was
on phonological processing as the basis for further research with
patients. Furthermore, we decided for a vowel change with regard to
our study with patients because even severely impaired patients are
mostly able to cope with this task.

Since anticipatory listening is a prerequisite for correct repetition of
which the data were already published [27], we can be sure that
subjects must have listened attentively.

To the best of our knowledge, similarly demanding tasks using
untrained material with varying demands on temporal grouping and
short-term memory capacity have not been investigated as yet.
Therefore, we will try to outline potential connections by discussing
the main effects of complexity based on the involvement of specific
brain regions.

Subcortical structures
A main effect of both subtractions (3) minus (2) and (3) minus (1) is

the significant bilateral activation of the basal ganglia, however,
subtraction (3) minus (1) yielded a z-score 50% higher than in
subtraction (3) minus (2), indicating that irregularity seems to be a
decisive factor.
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The involvement of the basal ganglia in keeping internal
representations of time is well documented from studies with healthy
subjects [88,89] but also from research with patients suffering from
Parkinson’s disease (PD) [90-92]. In her review article, Schirmer [37]
describes PD patients, who have problems detecting temporal cues in
speech, in speech production, being too fast or too slow, and in using
pauses during speaking.

According to the studies of Grahn and Brett [93] and Grahn [94],
listening to rhythms in which internal beat generation is required
results in greater basal ganglia activation than listening to rhythms in
which beats are externally cued. Although it has to be mentioned, that
these studies investigated neither singing nor rhythmic grouping.

All of our listening tasks demand generation of an internal beat as
an aid to chunk the respective sequences and thus support
memorizing. However, only subtractions from the most complex i.e.
irregular rhythmic sequences resulted in basal ganglia activation,
which implies that generating an internal beat while listening to
irregular rhythmic groupings seems to be the decisive factor rather
than internal beat generation per se. Possibly, this points to additional
and specific demands on temporal grouping or sequencing capabilities
concerning motor but also attentional control. According to Graybiel
[95], the basal ganglia serve to organize neural activity in connection
with action-oriented cognition and are involved in the chunking of
action sequences [96]. Perception of predictable cues (regular beats,
meter, and temporal chunks) is supposed to be closely linked to
sequencing, an idea which is important for auditory language
perception (for review see [97]).

Apart from the fact that grouping or chunking (i.e. bundling events
together into larger units) serves to enhance maintenance of
information in short-term and working memory [98-100], temporal-
rhythmic chunking promotes speech motor processes by training
intersyllabic programming, which is considered to play an important
role in phonetic planning [101].

When applied in a musical context, it is important to mention that
imaging studies indicate that regions activated in orienting attention in
time for the most part overlap those underlying sequencing behaviors
with basal ganglia activation in the service of attention (maintain
representations of time intervals) as well as chunking of action
representations [102].

Pre-Supplementary Motor Area (pre-SMA)
Further evidence for higher demands on sequence chunking due to

increasing rhythmic complexity arises from additional activation of
pre-SMA, which occurs only in subtraction (3) minus (1). This applies
to the process of initiating new sets of sequences in contrast to
automated sequences [78], and seems particularly clear when
syncopation is required in contrast to synchronization with a
metronome [81].

Since in our condition (3), we included syncopations but also
dottings and rests the assumption of Mayville and colleagues seems to
be convincing. The authors hypothesize that syncopations demand
each motor response to be planned and executed separately.
Synchronization as a continuous motor sequence, however, involves
planning and execution of just a single plan of action adjusted by
sensory feedback. Interestingly, the authors observed the same effect
when only imagination of syncopation and synchronization with a
metronome was required [103]. According to the authors, timing

strategy and planning seem to influence neural mechanisms decisively
rather than motor execution.

Precentral Gyrus
Given additional activation of the precentral gyrus in subtraction

(2) minus (1) and particularly in subtraction (3) minus (1), our results
indicate that this area becomes activated already during anticipatory
listening to chanted vowel changes. As an essential vocalization area,
the precentral gyrus corresponds to the somatotopic orofacial region of
the motor and premotor cortices including the large mouth and larynx
representations. Brown et al. [104] report on activation of this specific
region, called larynx area, which is commonly activated during passive
perception, perceptual discrimination as well as vocal imagery, and
vocal production and thus mediates audio-motor integration.

However, according to our results the degree of precentral gyrus
activation seems to be task- dependent. Our subtraction (2) minus (1)
underlines the difference between legato (smooth) and staccato (short)
vocalization compared to regular, legato vocalization. Changing
between legato and staccato vocalization requires precise initiation of
articulatory movements especially in the initial phase of vocal
preparation, which is reported to be dominated by the left hemisphere
[105]. This is corroborated by our results for this subtraction with
additional left hemisphere activation of precentral gyrus.
Implementation of syncopations, dottings, and rests within one
quadruple measure grouping like in our subtraction (3) minus (1)
increases the demands regarding short-term memory as well as
planning and programming for the upcoming motor execution. This
might possibly explain the additional precentral gyrus activation most
prominently in the left hemisphere

Ventrolateral prefrontal cortex
Our hypothesis of task-dependence is further supported by

additional activations of left ventrolateral prefrontal cortex (BA 47,45)
and the insula, most pronouncedly in the left hemisphere, which only
occur in this subtraction.

Area 47 activation is reported from studies investigating working
memory for pitch [73,106], auditory attention to space and frequency
[107], divided attention for pitch and rhythm [108], meter
discrimination [109] or rhythm production to visual inputs [110].

As regards our focus, it is important to note that studies searching
for the parallels between music and language [53,111-113] have in
common the description of BA 47 involvement in temporal perceptual
organization. BA 47 seems to be activated when temporal expectancies
and temporal coherence are involved [53,111].

The study of Chen et al. [6] is at least in parts comparable with our
research because the authors also investigated listening to 3 types of
rhythms, however, in two experiments. According to their results the
ventral premotor cortex was only recruited when subjects listened in
anticipation of tapping. In our study subjects also listened in
anticipation, although in anticipation of rhythmic singing. The fact
that only subtraction (3) minus (1) yielded activation of ventral
premotor areas seems to indicate that listening to sub-lexical material
in anticipation per se is not sufficient to cause these activations.
Specific action-related demands caused by an irregular rhythmic
structure possibly increased the demands on articulatory recoding
capacity with regard to vocal planning. Additional activation in part of
Broca’s area may suggest that irregularity promotes sub-vocal
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rehearsal, one of the main components of the articulatory or
phonological loop, a subsystem of the working memory concept
developed by Baddeley and colleagues [114-116]. Retention of verbal
items in memory is supposed to be based on an interactive cooperation
between a short-term “phonological store” and this inner rehearsal
process, which refreshes the decaying memory traces in the
phonological store [114].

Insular cortex
Furthermore, only subtraction (3) minus (1) yielded additional

insula activation, most prominently in the left hemisphere. Left insula
activation is reported from studies concerned with musical rhythm
discrimination and attention to changes in rhythm respectively [108].
The authors report that rhythm judgment, in particular, whether the
length of the intervals and notes in the given music sequence were
regular or irregular resulted in activation of the left insula and left
Broca’s area. While activation of the left insula in the rhythm task is
attributed to memory processing of sound sequences, activation of
Broca’s area (BA 6 and 44) is explained by the subjects’ inner strategy
to recall the sound by articulating.

Bamiou et al. ([51], see for review) emphasize the role of both
insulae for many aspects of auditory temporal processing such as
sequencing of sounds and detection of a moving sound. With regard to
our research with patients, a further study of Bamiou et al. [52]
provides evidence that insular lesions affect central auditory function,
temporal processing and especially sequencing. As an integral
component of the central auditory pathway the insula has connections
to the auditory cortex and subcortex.

The important role of the insula in audio-vocal integration was
explained in several studies concerned with singing [10,117,118],
though, neither anticipatory listening to singing nor temporal aspects
were investigated.

Riecker et al. [119] compared overt and covert continuous recitation
of the months of a year and overt and covert reproduction of a well-
known non-lyrical tune. The authors reach the conclusion that left
insula supports coordination of speech articulation, while right insula
mediates temporo-spatial control of vocal tract musculature during
singing. Muscle coordination engaged in articulation and phonation
was assumed to be the main reason for left insula activation rather
than pre-articulatory processing since activation of the insula was
restricted to overt tasks [120]. In accordance with the double filtering
by frequency theory [121], the authors emphasize the role of the
insular cortex operating across different time domains with a left
hemisphere specialization for segmental information and a right
hemisphere specialization for suprasegmental information i.e.
intonation contours and musical melodies. Given, that only our
subtraction (3) minus (1) yielded activation of ventrolateral prefrontal
cortex areas in the left hemisphere and the insula, most pronouncedly
in the left hemisphere, we assume that this may indicate pre-
articulatory processing due to rhythm complexity. Our tasks consisted
of sub-lexical material (vowel changes), which was sung on a single
pitch. While pitch information and number of vowel changes were kept
constant, temporal information changed resulting in increasing
demands on auditory perception, short-term memory capacity and
articulatory preparation with following motor execution in mind. Our
assumption is supported by the study of Zaehle et al. [122], who
investigated functional organization for sub-lexical auditory
perception regarding auditory spectro-temporal processing in speech
and non-speech sounds. Based on their results, the authors suggest

that segmental sub-lexical analysis of speech sounds but also segmental
acoustic analysis of non-speech sounds with the same spectro-
temporal characteristics involves the dorsal processing network.

Sylvian-parietal-temporal areas
Only subtraction (3) minus (1) yielded activation of middle,

superior, and transverse temporal gyrus most distinctly in the left
hemisphere. In our opinion, this might provide further evidence that
specific motor and cognitive demands seem to be necessary to promote
auditory-motor interaction during anticipatory listening. Our results
also correspond with models of speech processing already mentioned
in our introduction, describing the auditory dorsal pathway of speech
perception, which maps sounds into articulatory-based representations
[56-59,74,123]. Posterior auditory regions at the parieto-temporal
boundary are suggested to be decisive nodes in the auditory-motor
interface, serving linguistic but also non-linguistic processes like
perception and production (covert humming) of tonal melodies [59].
Warren et al. [123] proposed a general model for auditory-motor
transformations characterizing the dorsal stream as the auditory ‘do-
pathway’. The planum temporale (PT), which occupies the superior
temporal plane posterior to Heschl’s gyrus, generally agreed to
represent the auditory association cortex, is assumed to act as a
computational hub [124], analyzing incoming complex sounds and
transforming those that are of motor relevance into motor
representations via the dorsal pathway in prefrontal, premotor and
motor regions. Left posterior PT, known informally as Area Spt
(Sylvian-parietal-temporal region), has been described as a cortical
area, which is actively involved in integrating auditory inputs with
vocal tract gestures [59,74,125]. Area Spt is involved in covert rehearsal
in tests of phonological short-term memory [126,127] as well as in
humming music and silent lip reading [125,128].

Since only subtraction (3) minus (1) also yielded these additional
auditory-motor activations corresponding to the dorsal pathway, we
assume that this further corroborates our hypothesis of task-
dependence.

Conclusion
Our findings suggest that specific motor but also cognitive demands

seem to be prerequisites for supportive paving of articulatory gestures
during anticipatory listening to sung vowel changes. According to our
results, sung vowel changes with an irregular rhythmic structure seem
to meet these requirements. Irregularity is possibly a critical aspect
because it resembles the temporal organization of spoken language
most. In a further study we will elucidate potential influences in
greater detail, for example, the relationship between rhythmic
structure, grouping strategy, and phonological working memory.
Nonetheless, our results demonstrate that auditory-motor interaction
might be influenced by listening to specifically targeted vocal exercises,
an evidence of particular importance for therapeutical implications,
particularly in the treatment of patients suffering from AOS.

Provisional analyses of behavioral and imaging data of our ongoing
study with patients indicate that such training seems to support short-
term storage of sub-lexical material, possibly due to improved internal
chunking of temporal events, resulting in improved temporal
sequencing in the subsequent repetition.
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