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Abstract

toxicity, and the potential implications in patients.

Irinotecan is a pro-drug of SN-38 primarily used for the treatment of colorectal cancer and used for other type of
cancers either alone or combined with other chemotherapeutic drugs. A major dose limiting side effect of irinotecan
is the late-onset diarrhea. The mechanism of irinotecan-induced diarrhea is not entirely understood and current
approaches to prevent diarrhea are not quite effective in many patients. Recent evidences showed that gut
microflora plays an important role in irinotecan-induced diarrhea. In this paper, we summarized the gut toxicity of
irinotecan, the possible mechanism, the role of bacterial translocation, and clinical perspectives. The goal is to
facilitate a better understanding of the role of bacterial translocation in regulation of irinotecan disposition and
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Introduction

Irinotecan (CPT-11, Camptosar®) is a semi-synthesized water-
soluble prodrug of 7-Ethyl-10-hydroxy-camptothecin (SN-38) derived
from camptothecin, a natural compound isolated from the bark and
stem of Camptotheca acuminate [1]. Irinotecan is approved by the
FDA as the first-line drug to treat metastatic colon cancer (mCRC) and
is currently under active investigations to treat different types of
malignant such as lung, pancreatic, ovarian, cervical, prostate, and
gastrointestinal cancers [2-6]. The mechanism of action is that the
drug (i.e, its active form SN-38) can inhibit topoisomerase I to
interrupt DNA synthesis in cancer cells [7,8]. Irinotecan can be used
alone or in combination with other drugs such as in combination with
5-FU/leucovorin [9,10].

Despite the promising efficacy, irinotecan clinical usage is limited
due to side effects including vomiting, nausea, diarrhea, constipation,
neutropenia, weakness, fever, pain, abnormal liver function, hair loss,
etc. Among these side effects, diarrhea is one of the major dose-
limiting side effects that may affect clinical outcomes. A few of papers
have reviewed the incidences, possible mechanism, and preventive/
therapeutic approaches [11-13]. The aim of this paper is to review the
role of bacterial translocation (BT) in the progressive and delayed
irinotecan gut toxicity.

Irinotecan gut toxicity

Diarrhea is one of the major dose-limiting toxicities of irinotecan:
Irinotecan can cause early-onset and late-onset diarrhea. The early-

onset, which is characterized by rapid-onset diarrhea and may also
include abdominal cramping and diaphoresis, occurs within 24 hours
of drug administration, while the late-onset occurs after 24 hours of
drug administration. The early-onset diarrhea can be effectively
controlled by atropine [14,15]. However, the late-onset diarrhea, which
is inconsistent, unpredictable, non-cumulative, dose dependent, with
wide interpatient and intra-patient variability, is a much more serious
problem that may affect patients’ quality of life and may cause early
death either directly from life-threatening sequelae or indirectly from
adjustments in chemotherapy plan [16,17].

Incidence of diarrhea induced by irinotecan is significant: The
overall incidence of diarrhea ranges from 60% to 87%, including up to
40% of severe late-onset diarrhea (grade 3 and 4), which appears to be
dose-dependent [18,19]. The median time to onset ranged from 5 to 11
days after drug administration and the diarrhea duration last for 2 to 5
days depend on the dosing schedule [16,20]. The incidence of diarrhea
using the common regimens is listed in Table 1.

Most of the patients need diarrhea treatment using anti-diarrhea
agents (e.g., loperamide, octreotide). Although standard diarrhea
management is recommended, around 10% of patients who developed
diarrhea require hospitalization or even change the chemotherapy plan
(e.g., dose reduction), which significantly affect the clinical outcomes
and even cause early death [16,21].

Neutropenia is another dose-limiting toxicity of irinotecan:
Neutropenia, which can be ameliorated or prevented using growth
factors such as G-CSF, is a short duration and reversible dose limiting
side effect of irinotecan. Compared to diarrhea, neutropenia is less
frequent and easily managed.
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Dosage and Dose Regimens Diarrhea Incidence References
Administration (total/grade 3-4)
Irinotecan Weekly, 125 mg/m? intravenous infusion over 90 >82 % [ >36% [93]
minutes on days 1, 8, 15, 22 then 2-week rest
Irinotecan Every 3 weeks 350 or 300 mg/m? intravenous infusion >76 % / >19% [93]
over 90 minutes on day 1 every 3 weeks
Irinotecan/LV/5-FU Irinotecan 180 mg/m? intravenous infusion over 90 <51%/<17% [94-98]
minutes on days 1, 15, 29 with LV 200 mg/m?
intravenous infusion over 2 hours on days 1, 2, 15, 16,29, 30 followed by
5-FU 400 mg/m? intravenous bolusinfusion on days 1, 2, 15, 16, 29, 30
and 5-FU 600 mg/m2 intravenous infusion over 22 hours on days 1, 2, 15,
16, 29, 30.

Table 1: Diarrhea incidence using the FDA approved irinotecan dosage and administration for the treatment of colorectal cancer.

For example, a clinical study showed that grade 3-4 diarrhea
affected 22% of the metastatic colorectal cancer patients receiving
irinotecan plus 5-FU/leucovorin treatment, while only 5% of the
patients developed grade 3-4 neutropenia [22]. Another clinical study
showed that even at a dosage of 750 mg/m? of irinotecan, the
maximum tolerated dose for the risk of severe neutropenia was not
reached [23].

Dose reduction is an approach in managing irinotecan-induced
diarrhea: Dose reduction and/or changing in dosing regimens are
frequently used to manage irinotecan-induced diarrhea. For example,
it is reported that the grade 3-4 diarrhea incidence reduced from 57.1
% to 10.8 % in colonic cancer patients carrying TA7/TA7 allele
(UGT1A1 promoter) when irinotecan’s dose was reduced from 350
mg/m? 3-weeky to 250 mg/m? 3-weeky [24]. However, it is highly
suspected that dose reduction will affect the therapeutic effect as tumor
suppression is correlated with in vivo exposure of SN-38. In fact, recent
clinical reports clearly indicate that many patients could benefit from
higher doses [23,25-30].

Mechanisms of gut toxicity

Diarrhea is caused by GI damage: The mechanisms underlying
diarrhea induced by irinotecan is not entirely understood. The
complex etiology of irinotecan-induce diarrhea seems to involve
changes in the absorption of fluids and electrolytes, intestinal motor
dysfunction, and inflammation of the mucosal membranes lining the
gastrointestinal tract [12,31]. Molecular mechanism studies revealed
that early-onset diarrhea induced by irinotecan is associated with
parasympathetic discharge, stimulation of serotonin receptors, and
release of thromboxane A2 (TX-A2),[12,20] while the molecular
mechanism of late-onset diarrhea is not fully understood but is
correlated with direct damage to the intestinal mucosa by SN-38.
Understanding the disposition of irinotecan provides insight into the
mechanism of late-onset diarrhea.

Irinotecan disposition is associated with colonic exposure of SN-38:
Irinotecan’s disposition has been well studied [32]. The drug is
administrated through iv. route and is activated to SN-38 by
carboxylesterases (CEs) in the plasma or liver. The active drug (ie.,
SN-38) is then transferred and distributed to different organs including
the tumor tissue. The free SN-38 can be conjugated into SN-38

glucuronide (SN-38G, a non-effect, non-toxic metabolite) mediated by
uridine 5'-diphospho-glucuronosyl-transferase (UGT) 1A subfamily.
SN-38 was shown to induce intestinal inflammation and oxidative
stress, leading to gut damage [12,33,34]. The colonic SN-38 comes
from different sources. SN-38 in the liver can be excreted via different
hepatic efflux transporters (e.g., i.e., P-gp, MRP2, BCRP) through bile
into small intestine and then enters the colon (Figure 1).
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Figure 1. Schematic gut -liver axis. In the intestine, SN-38, which is
controlled by UGT1A1, BCRP, and bacterial GUS, is accumulated
in the epithelium and the gut was eventually damaged, resulting in
bacteria translocation from the gut to the liver. In the liver, bacteria
translocated from the gut causes inflammation, leading to improved
SN-38 production due to downregulated UG7T1A1 and upregulated
CE expressions. The improved SN-38 production in the liver will
lead to enhanced biliary secretion.

Moreover, irinotecan and SN-38G can also be secreted from the
liver into the small intestine, where these two non-toxic compounds
can be converted into free SN-38 by intestinal CEs or by microflora,
respectively. Mass balance study using 14-carbon labelled irinotecan
have demonstrated that the fecal route of excretion, mainly from
biliary excretion, is the major route eliminating more than 60% of the
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administered drug,[35] although there are other competing metabolic/
excretion pathways of irinotecan facilitated by cytochrome P450 (CYP)
enzymes [36].

Other than biliary secretion, the enterocytes also secrete these three
compounds, [37,38] however, the amounts of these compounds
secreted from intestine are significantly lower than those from bile
[38]. In addition, free SN-38 can be re-absorbed in the intestine and
reach the liver through the portal vein to form an enterohepatic
recycling (EHR) (Figure 1), resulting in prolonged half-life and
repeated exposure in the gut. For example, it is reported that SN-38
presented in human plasma for 3 weeks after a single irinotecan i.v.
infusion at a dose of 350 mg/m? [39]. More importantly, when the gut
is damaged by SN-38, viable bacteria or endotoxins will translocate
from the gut to the liver, where CE and UGTIAI expression will be
affected, resulting in enhanced SN-38 biliary secretion and more gut
damage (see detail later). This endocrine cycle aggravates diarrhea
condition.

SN-38-induced intestinal microbiota changes: Studies using animal
models have indicated that changes in the microflora of the gut as
possible cause, at least in part, for late-onset diarrhea [40]. It has been
shown that chemotherapy treatment is associated with a deregulated
intestinal microbial homeostasis and a decreased microbial diversity
[41]. Likewise, unbalanced bacterial population (dysbiosis) was
observed with irinotecan treatment. In rats a relative increase or
decrease in the presence of certain bacteria in stomach, jejunum, colon
and feces were observed in the irinotecan-treated group compared to
the control group. In colon of irinotecan-treated rats, an increasing
trendin Escherichia spp., Clostridium spp., Enterococcus spp., Serratia
spp. and Staphylococcus spp. was noticed, whereas, in fecal samples,
increase in Proteus spp., Clostridium spp., and Peptostreptococcus spp.
was associated with  a decrease in Bacillus spp., and Bifidobacterium
spp. [42]. Irinotecan treatment reduced the colony of good bacteria,
Clostridium cluster IV (cluster which contains Butyrate-producing
Clostridium spp.) and in contrast increased p-glucuronidases (GUS)
producing bacteria (such as Enterobacteriaceae spp.), [43] that
deconjugates irinotecan metabolite, SN-38 glucuronide (SN-38G) back
to the toxic metabolite SN-38 in the intestine. Also, a decrease in total
bacterial count has also been reported with irinotecan injection [43].
There are few studies which have shown direct influence of intestinal
microbiota on the pathogenesis of irinotecan-induced mucositis
[44,45]. Patient data has shown that there is a link between irinotecan
metabolism, GUS and gut microbiome signatures in individual
patients [46]. It has been shown that differences in gut microflora
composition can lead to variability in GUS catalytic activity and
inhibition potential.

Although, studies indicate strongly the direct role of GUS [47,48]
relationship between GUS activity and mucositis is still controversial.
In a study by Pedroso et al. E. coli producing GUS was found to have a
direct relationship with the increase of intestinal permeability with
irinotecan, but any recruitment of neutrophils and eosinophils, nor
were histology changes observed. Moreover, antibiotic treatment
improved irinotecan-induced mucositis in Gunn rats (animals have an
inherent deficiency in the UGTIAI enzyme) [49] and a specific GUS
inhibitor (D-saccharic acid 1.4-lactone) failed to alleviate diarrhea with
irinotecan [50]. Thus, indicating involvement of possible mechanisms
other than GUS.

Irinotecan is known to cause injury to the tight junction leading to
BT in rats, [51] BT is the passage of viable bacteria and endotoxins
from gastrointestinal to mesenteric lymph nodes (MLN), bloodstream,

and other organs [52]. The tight junction of the intestinal epithelial
barrier is essential in preventing BT [53]. Evidence is increasing that
the intestinal microbiota plays a critical role in modulating the efficacy
and toxicity of chemotherapeutic agents. The microbiota provides their
host with metabolic capabilities [54]. Variation of microbiota may
cause mucositis and sepsis [51,55].

Diarrhea attenuation through modulating gut microbiome: The
intestinal microbiota are thus potential targets to improve the
therapeutic efficacy and mitigate the toxicity of irinotecan. Current
tools designed to manipulate the gut microbiota include dietary
intervention ~with  glutamine, probiotics, or non-digestible
carbohydrates to protect epithelia barrier [56-58]. Another approach is
to co-administer with antibiotics to decrease the level of microbiota
and decrease the activity of GUS to alleviate chemotoxicity [59,60].
Amoxapine, a known inhibitor of GUS, has been shown to suppress
irinotecan induced diarrhea in a rat model [61]. The deeper
understanding of the interactions between irinotecan, intestinal
microbiota, and tumor is warranted to come up with new therapies
and preventions to reduce adverse effects and improve therapeutic
efficacy.

Limitations of current strategies being investigated to manage
irinotecan gut toxicity: Various molecular and pharmacological
approaches have been tested to alleviate irinotecan-induced diarrhea
through reducing the intestinal accumulation of SN-38 including: 1)
UGTIA1I induction (e.g., phenobarbital) [62], 2) CEs inhibition (e.g.,
benzene sulfonamide) [63], 3) CYP3A4 induction (e.g., phenytoin,
carbamazepine) [64], 4) GUS inhibition (e.g., baicalin, probiotics,
antibiotics) [65-67], 5) Hepatic transporter inhibition (e.g.,
cyclosporine) [62,68-70], and binding SN-38 using absorbents (e.g.,
aluminum silicate clay, activated charcoal) [71,72]. Other approaches
have also been evaluated to protect gut damage such as using anti-
inflammatory agents (e.g., pentoxifylline, thalidomide, celecoxib,
RDP58, etc.), antibiotics, probiotics, oxidative stress inhibitors,
intestinal alkalization, and herbal medicines [13,65,73]. Despite
encouraging results in animal models or small scale of clinical trials,
diarrhea is still a challenge for irinotecan therapy. Therefore, there is a
critical need for fully mechanism investigation and for effective
approaches to solve this urgent problem.

Gut-liver axis and EHR of irinotecan

The concept of the gut-liver axis was initially demonstrated in
alcohol induced liver disease (ALD). Studies in rat demonstrated that
acute alcohol transiently increased systemic levels of gut-derived
endotoxin and associated detrimental effect could be protected by
antibiotics [74]. Tight junction prevents both bacteria and toxin in the
intestinal lumen and from the paracellular space getting into deep
tissues. Recent studies have shown that SN-38 damaged the tight
junction proteins, claudin-1 and occludin to disrupt the intestinal
barrier,[75] and increase permeability (Figurel). This results in the
translocation of bacteria and bacterial products (such as
lipopolysaccharide, LPS and unmethylated CpG containing DNA)
from the gut lumen to the liver via the portal vein [76-78]. Recent
studies have shown that SN-38 gut accumulation leads to disruption of
the epithelial barrier promoting BT [51,79-81]. The transport of
bacteria and bacterial products to the liver is known to induce hepatic
inflammation including cytokines and other inflammatory markers
[82-84]. We and others have shown that hepatic drug metabolizing
enzymes and drug transporters are primarily reduced during
inflammation [85-87]. Therefore, it is possible that SN-38 exposure to
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the gut will be increased due to the effect of the gut-liver axis on the
EHR of irinotecan caused by increased BT-mediated hepatic
inflammation. This novel mechanism of irinotecan gut toxicity needs
to be investigated further. The liver is exposed to both gut microbes
and SN-38 from the gut through the portal vein. Gut microbial
components can cause inflammation in the liver, however SN-38 by
itself can also induced inflammatory pathways. Future studies need to
be conducted to elucidate the mechanism of hepatic inflammation in
the gut-liver axis during irinotecan treatment.

Clinical implications of bacterial translocation

The concept of BT being the key to the gut-liver-gut dysfunction is
interesting and it provides a better understanding of irinotecan-
induced diarrhea than the currently hypothesized mechanisms. There
is evidence in humans of the potential for BT from injured intestinal
mucosa [88,89]. Indirect evidence with irinotecan is provided by the
GERCOR study. This was a trial in which patients were treated with
FOLFIRI compared to FOLFOX6 for metastatic colorectal cancer.
Interestingly in patients who were treated with FOLFIRI (which is an
irinotecan-based regimen) as a first-line therapy, the rate of grade 3-4
neutropenia rate was 25%, whereas with the FOLFOX6 the rate was
44% [90]. So irinotecan was less myelosuppressive, however when
looking at the grade 3-4 neutropenia rate was 7% for patients receiving
FOLFIRI vs only 1% for patients receiving FOLFOX [91]. This
evidence would seem to indicate that while it produces less severe
neutropenia, irinotecan likely has increased the rate of BT due to the
increase in neutropenic febrile episodes.

The above statement is dependent on the assumption that BT plays a
role in febrile neutropenia and there is evidence that this is the case. A
study in patents with febrile neutropenia episodes looked at endotoxin
and CD14 as a marker. The data showed that CD14 was higher in
patient in gram-negative bacteremia than in gram-positive bacteremia.
And this pattern was observed in cases where there was neutropenic
fever without cultures indicating more likely gram-negative
bacteremia. This would again seem to indicate BT as a more likely
source [92-98].

The evidence presented above does seem to indicate that BT is an
issue with irinotecan. Therefore, studies looking at BT-mediated effects
on irinotecan EHR and consequently enteric toxicity of irinotecan is
interesting and could provide further targets for intervention and aid
patients in tolerating the therapy better.

Future Research Needed

Despite ongoing studies, there are no effective medications to
efficiently manage irinotecan-induced late-onset diarrhea in patients.
The major impediment is the lack of comprehensive understanding of
the mechanism of this gut toxicity. To date all research have focused on
gut-specific factors such as enzymes, inflammation, microbiome, etc.
in order to understand the mechanism of toxicity. Future research is
needed to identify the role of BT on hepatic SN-38 detoxifying
enzymes, and their role in exacerbating irinotecan gut toxicity. Future
research will focus on understanding the novel cross-talk between the
gut and liver in order to develop new approaches to reduce/prevent
irinotecan-induced diarrhea in patients.
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