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Introduction
Activation of Hepatic Stellate Cells (HSCs) is a key event in the 

development of liver fibrosis. Anti-fibrosis occurs by two pathways—
reversion of the stellate cells to a quiescent state or clearance of the 
cells by apoptosis. Natural marine products have been reported to 
inhibit tumor growth and inflammation. However, their effect on 
liver fibrosis is uncertain. In this review, we discuss the role of natural 
marine products in the treatment of liver fibrosis. We propose that 
these products can act as novel therapeutic agents for treating hepatic 
stellate cell-related liver fibrosis. 

Liver fibrosis and HSC activation 

Liver fibrosis is a disease that is characterized by severe morbidity 
and significant mortality [1-3]. Activated Hepatic Stellate Cells 
(HSCs) are critical for liver fibrosis [4]. During liver fibrosis, activated 
HSCs induce proliferation, inhibit apoptosis, accumulate Excessive 
Extracellular Matrix (ECM), and produce pro-inflammatory proteins 
[5,6]. Therefore, HSCs are an attractive target for anti-fibrotic therapy 
[7,8]. The anti-fibrotic strategies include decreasing the number of 
activated HSCs via inhibition of proliferation or induction of apoptosis 
and inhibiting the excessive deposition of ECM [9]. Thus, suppression 
of HSC growth and/or induction of HSC apoptosis by natural products 
are considered as effective options to ameliorate liver fibrosis.

Natural marine products for treatment of liver fibrosis

Natural marine products have a wide variety of biomedical 
effects such as anti-tumor, anti-bacterial, anti-fungal, anti-viral, anti-
helminthic, anti-protozoan, and anti-allergic effects [10-13]. Several 
compounds have been isolated from these products, which are important 
sources of drug discovery [10,14]. However, the pharmacological effects 
of natural marine products and their underlying mechanisms in the 
development of HSC-related liver fibrosis are still unclear. Therefore, 
investigation of HSC activation-dependent liver fibrosis is necessary 
to understand the importance of inducing apoptosis of HSCs towards 
treatment of this disease [6,15-18].

Reactive Oxygen Species (ROS) and HSC activation

It is well documented that ROS is a critical mediator of liver 
fibrogenesis in vitro and in vivo [19-22]. Overproduction of ROS causes 
apoptosis in isolated primary activated HSCs from human and rat [23]. 
Furthermore, Glutathione (GSH) is a major intracellular antioxidant 
that plays a significant role in the regulation of cell viability in HSCs 
[24]. GSH exerts an anti-apoptotic effect by controlling ROS-induced 
cell death [25]. GSH depletion increases the sensitivity of HSCs to 
oxidative stress-induced cell death [25,26].

Signaling pathways in liver fibrosis

Mitogen-Activated Protein Kinases (MAPKs) such as ERK, JNK, 
p38 kinase, and MAP kinase-1, are important mediators of diverse 
physiological processes and are critical for induction of oxidative 
stress response [27-29]. In addition, it is well-known that the MAPK 
signaling pathway is involved in cell growth and activation in HSCs 
[30,31]. However, Yu et al. found that continuous generation of H2O2 

caused inhibition of growth of human gingival fibroblasts, which is 
independent of MAPK activation [32]. The role of the MAPK pathway 
in the oxidative stress-induced apoptosis of HSCs is unclear. Mao et 
al. suggested that shikonin-induced Chronic Myelogenous Leukemia 
(CML) cells undergo apoptosis via the ROS/JNK pathway. In contrast,
it has been reported that panaxydol induces apoptosis via the ROS/JNK 
pathway [33].

Conclusion
Activated HSCs play important roles in the pathogenesis of liver 

fibrosis [34]. Growing evidence suggest that induction of HSC apoptosis 
and inhibition of HSC growth can be effective strategies for treatment 
and/or prevention of liver fibrosis [6,16-18,35,36]. Furthermore, drug 
development from natural marine products may serve as additional 
therapeutic approaches for inhibition of hepatic fibrogenesis via HSC 
apoptosis.
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