
Volume 7   Issue 4 • 1000340
J Alzheimers Dis Parkinsonism, an open access journal
ISSN: 2161-0460

Open AccessReview Article

Lastres-Becker, J Alzheimers Dis Parkinsonism 2017, 7:4
DOI: 10.4172/2161-0460.1000340Journal of

Alzheimer’s Disease & ParkinsonismJo
ur

na
l o

f A
lzh

eim
ers Disease &

Parkinsonism

ISSN: 2161-0460

*Corresponding author: Isabel Lastres-Becker, Department of Biochemistry,
Faculty of Medicine, Autonomous University of Madrid, Madrid, Spain, Tel:
34915854382; E-mail: ilbecker@iib.uam 

Received May 11, 2017; Accepted June 16, 2017; Published June 23, 2017

Citation: Lastres-Becker I (2017) Role of the Transcription Factor Nrf2 in 
Parkinson’s Disease: New Insights. J Alzheimers Dis Parkinsonism 7: 340. doi: 
10.4172/2161-0460.1000340

Copyright: © 2017 Lastres-Becker I. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Keywords: Parkinson’s disease; NRF2; Inflammation; Oxidative
stress; Neurodegeneration; Proteinopathy

Abbreviations: ALP: Autophagy-Lysosomal Pathway; DMF:
Dimethyl Fumarate; KEAP1: Kelch-like ECH-Associated Protein 1; 
LPS: Lipopolysaccharide; METC: Mitochondrial Electron Transporter; 
MPTP: 1-Methyl-4-Phenyl-1,2,3,6-Tetrahydropyridine; PD: 
Parkinson’s Disease; ROS: Reactive Oxygen Species; SFN: Sulforaphane; 
SNpc: Substantia Nigra pars compacta

Introduction
Parkinson’s disease (PD) is a chronic and progressive disorder of 

the central nervous system that mainly affects the motor system. PD is 
the second most common neurodegenerative disease after Alzheimer’s 
disease. The incidence rate is around 1-4% of the population above the age 
of 60 and 80 years, although there is a lower incidence in younger people. 
The major clinical hallmarks are manifested by resting tremor, rigidity, 
postural instability and akinesia, symptoms that are often accompanied 
by cognitive impairment. At the molecular level, the main characteristics 
of PD are the loss of dopaminergic neurons in the substantia nigra 
pars compacta, the formation of Lewy bodies, oxidative stress and 
chronic low-grade inflammation. Nowadays, the main standard clinical 
treatment for PD patients is based on dopamine replacement with 
levodopa, which manages to ameliorate only motor symptoms and does 
not delay the neurodegenerative process. Therefore, it is essential to find 
out new therapies that allow us to improve not only motor symptoms, 
but non-motor symptoms like cognitive impairment and the dysfunction 
of the autonomic nervous system, and modulate disease progression. 
During the last decade, the transcription factor NRF2 has emerged as a 
suitable target to modulate PD related molecular hallmarks. NRF2 was 
first described as a master regulator of oxidative stress, but new evidences 
showed that NRF2 is also implicated in the modulation of inflammatory 
processes through its crosstalk with the transcription factor NF-κB, the 
principal regulator of inflammation. Additionally, it has been described 
that NRF2 is essential in proteostasis, modulating the proteasome and 
autophagy processes. Thus, pharmacological targeting of NRF2 could be 
an effective treatment for PD patients.

Parkinson’s Disease Molecular Hallmarks
Parkinson’s disease (PD) is one of the most common neurologic 

disorders, with evolving layers of complexity, characterised by a large 
number of motor and non-motor features that can impact on function 
to a variable degree [1,2]. Nowadays the only pharmacologic treatment 
of PD is based on symptomatic therapy mainly focused on levodopa 
treatment, which is not a disease modifying/neuroprotective therapy. 
Therefore, it is very important to find key targets to focus the treatment 
for neuroprotection or disease-modifying therapies.

Two of the major neuropathological hallmarks are the loss of 
dopaminergic neurons from the Substantia Nigra pars compacta 
(SNpc) and the presence of α-synuclein-containing Lewy bodies (LB) 
in the surviving neurons [3] (Figures 1 and 2). Most PD cases are 
sporadic and of unknown etiology, although during the last years the 
identification of gene mutations responsible for familial forms of PD 
and the mapping of risk variants for the disease [4] have improved 
our understanding of the disease. One of the first mutated gene that 
was found to be associated with familial PD was α-synuclein [5,6] and 
additional missense mutations and duplications have been found to be 
rare causes of hereditary PD or PD-like syndromes [7-10]. Moreover, 
genome-wide association studies have demonstrated an association 
between non-coding variants in and around the α-synuclein gene 
and sporadic disease [11]. The relevance of α-synuclein has raised 
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due to its implication in Gaucher disease, a lysosomal storage 
disease. Decreased turnover of α-synuclein correlates with increased 
PD susceptibility in people that carry even a single mutation in the 
glucocerebrosidase gene, responsible for Gaucher disease [12,13]. 
Furthermore, α-synuclein has been implicated in other important 
steps of PD like the enteric nervous system dysfunction [14,15] and 
the cell-to cell transmission [16]. 

Related to α-synuclein toxicity, in the SNpc of patients with the 
sporadic disorder it has been suggested that impaired protein clearance 
is a crucial factor in the pathogenesis of cell death in PD [17]. Disruption 
of the ubiquitin–proteasome system (UPS), which normally identifies 
and degrades intracellular proteins, is thought to promote the toxic 
accumulation of proteins detrimental to neuronal survival, thereby 
contributing to their demise [18]. These findings were supported by the 
discovery that mutations in the genes encoding α-synuclein and two 
enzymes of the ubiquitin-proteasome system, parkin and ubiquitin 
C-terminal hydrolase L1, are associated with neurodegeneration 
in some familial forms of PD [19]. Additionally, 20S proteasomal 

enzymatic activities were impaired in the SNpc in sporadic PD [19]. 
Importantly, α-synuclein is not degraded only by the proteasome but 
also by autophagy. A role for autophagy was further supported by the 
presence of α-synuclein in organelles with the ultrastructural features of 
autophagic vesicles [20,21]. It has been also described that α-synuclein 
inclusions are preferred targets for p62-dependent autophagy [22,23] 
and that α-synuclein overexpression impairs macroautophagy in 
mammalian cells and in transgenic mice via Rab1a inhibition [24]. 
In α-synuclein transgenic mice alterations of the UPS have been 
reported, indicating a role of the UPS in α-synuclein degradation and 
with increased α-synuclein burden the autophagy-lysosomal pathway 
(ALP) is recruited. These results provided evidence that the UPS and 
ALP might be functionally connected such that impairment of one 
can upregulate the other [25] (Figure 2). These data indicate that 
the components of the cellular quality control system represent an 
important focus for the development of targeted and potent therapies 
for managing PD.

At the molecular level, in both idiopathic and genetic cases of PD, 

Figure 1: Molecular pathways modulated by NRF2.
NRF2 can modulate proteostasis through controlling the proteasome and autophagy activity. As a master regulator of the redox system, NRF2 can control different 
pathways implicated in redox homeostasis. Finally, NRF2 interacts with the transcription factor NF-κB to modulate inflammatory processes

Figure 2: Hallmarks of Parkinson’s disease. 
At the molecular level, PD is characterized by proteinopathy (accumulation of proteins like α-synuclein in Lewy bodies, dysfunction of the proteasome and autophagy 
alterations), oxidative stress (dysregulation of reactive oxidative species (ROS) and the antioxidant machinery; Dopamine (DA) metabolism increased oxidation, 
alteration in mitochondria function and increased iron deposition in the SNpc) and neuroinflammatory (microgliosis, reactive astrogliosis and increased pro-
inflammatory cytokines) processes
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the disease is associated with excess production of reactive oxygen 
species (ROS), alterations in catecholamine metabolism, modifications 
in mitochondrial electron transporter chain (METC) function or 
increase of iron deposition in the SNpc [26] (Figure 2), which leads 
to oxidative stress implicated in cellular dysfunction and demise. The 
failure of normal cellular processes that occur in relation to the aging 
process are also believed to contribute to the increased vulnerability 
of dopaminergic neurons [27]. There are many evidences indicating 
that oxidative stress is a key player in PD [28,29]. For example, the SN 
of PD patients exhibit increased levels of oxidized lipids [30], proteins 
and DNA [31] and decreased levels of reduced glutathione (GSH) 
[32]. Related to the vulnerability of the dopaminergic neurons from 
the SNpc to oxidative stress, one of the causes could be the presence of 
ROS-generating enzymes such as tyrosine hydroxylase and monoamine 
oxidase in these neurons. Besides, the nigral dopaminergic neurons 
contain iron, which catalyzes the Fenton reaction, in which superoxide 
radicals and hydrogen peroxide can contribute to further oxidative 
stress [28,33]. Therefore, the major sources of oxidative stress generated 
for the nigral dopaminergic neurons are produced during dopamine 
metabolism, mitochondrial dysfunction, and neuroinflammation 
(Figure 2).

Neuroinflammation is another feature of PD pathology. The 
presence of an active inflammatory response in the brain mediated 
primarily by resident astrocytes and microglia has been long 
recognised. A link between inflammation and PD was first described 
in a postmortem study by McGeer et al. in 1988, where activated 
microglia was found in the SN of PD patients [34]. Furthermore, 
several clinical studies have confirmed this association by reporting 
increased microglial activation and elevated pro-inflammatory 
cytokines in post-mortem brains and CSF [35-37] (Figure 2). These 
data have been also reproduced by experimental studies in animal 
models of the disease [23,38,39], where neuroinflammation has been 
shown to be an important contributor to PD progression. Moreover, 
preclinical PD models suggest that inflammation is a driving force in 
DA neuron loss [37]. This idea is supported by experiments where 
chronic intraperitoneal injection of bacterial lipopolysaccharide (LPS) 
elicits a systemic immune response and leads to DA neuron loss and 
PD pathology in mice [40,41]. This inflammatory model of PD suggest 
that inflammatory stress can manifest in DA neuron loss likely through 
infiltration of peripheral leukocytes. Related to the 1-methyl-4-phenyl-
1,2,3,6-tetrahydropyridine (MPTP) PD model, it has been described 
that this neurotoxin facilitate dopamine neuronal loss at least in part 
by induction of inflammatory response [42]. Also, in mice, enhanced 
inflammation has been shown to recapitulate α-synuclein aggregation 
and oxidation in affected neurons [43]. Altogether, targeting this 
inflammation with a number of anti‐inflammatory therapies can be an 
effective way to halt the progression of chronic neuroinflammation‐
induced PD.

The Transcription Factor NRF2
Nuclear factor (erythroid-derived 2)-like-2 factor (NRF2) was first 

described as the master regulator of redox homeostasis that allows 
cells to adapt to oxidative stress and also promotes cell proliferation, 
but currently it is known to regulate the expression of about 1% of 
human genes, which contain in their promoter regulatory regions an 
enhancer sequence termed Antioxidant Response Element [44]. These 
genes encode a large variety of cytoprotective proteins implicated in 
biotransformation, antioxidant reactions, and inflammation [45]. 
NRF2 belongs to the cap'n'collar (CNC) b-Zip family and is a unstable 
protein and under homeostatic conditions it is maintained at low basal 

expression level [46]. The stability of NRF2 is regulated mainly by two 
different mechanisms. The first mechanism implicates the KEAP1 
(Kelch-like ECH-associated protein 1)-dependent ubiquitination and 
degradation. KEAP1 is an ubiquitin E3 ligase substrate adapter for a 
Cullin3/Rbx1-dependent E3 ubiquitin ligase complex; henceforth 
binding of KEAP1 to NRF2 mediates ubiquitination and subsequent 
proteasomal degradation of NRF2 [47]. Interestingly, KEAP1 contains 
several cysteine residues capable of undergoing redox modifications 
and adduct formation with electrophilic compounds. Consequently, 
NRF2 levels can be modulated pharmacologically to phenocopy this 
protective NRF2 haplotype.

The second mechanism is related to glycogen synthase kinase-3 
(GSK-3), which phosphorylates NRF2 creating a recognition site for 
β-Transducin Repeat Containing E3 Ubiquitin Protein Ligase (β-TrCP). 
β-TrCP leads to Cullin-1/Rbx1-mediated NRF2 ubiquitination 
and its subsequent degradation [48]. It has been described that 
phosphoinositide 3-kinase (PI3K)-protein kinase B (PKB)/AKT 
signaling results inhibitory phosphorylation of GSK3, preventing the 
formation of a DSGIS motif-containing phosphodegron in NRF2 that 
is recognized by the β-TrCP [48,49].

In response to endogenous and exogenous stresses caused by 
ROS and electrophiles, NRF2 translocates from the cytoplasm 
into the nucleus and binds together with small Maf proteins to the 
Antioxidant Response Element in the regulatory regions of target genes 
and transactivates expression of genes with antioxidant activity [50]. 
Small Maf (MafG, MafK and MafF) proteins are b-Zip proteins that 
lack a transcriptional activation domain. It is known that they form 
homodimers and heterodimers with other b-Zip proteins including 
NRF2 [51]. Under basal condition, Maf proteins bind to BACH1 [52], 
but after induction, BACH1 is replaced by NRF2, resulting in activation 
and suggesting competition between BACH1 and NRF2 for the same 
DNA binding site [53].

All together, these different mechanisms of NRF2 regulation indicate 
that this transcription factor could be a suitable pharmacological target 
to modulate NRF2-dependent functions.

NRF2 Modulation of Proteostasis, Oxidative Stress and 
Inflammation

Although NRF2 was first described as the master regulator of redox 
homeostasis, this transcription factor has been revealed as an essential 
key in the modulation of proteostasis as well inflammation.

Related to the proteasome, cells that constitutively express NRF2 
exhibit elevated levels of proteasome activities [54] while NRF2-
deficient cells have impaired proteasome activity and also less expression 
of proteasome proteins [39] (Figure 1). Related to oxidative stress, it has 
been observed a NRF2-dependent induction of proteasome required for 
adaptation to the stress [55]. These data were corroborated by the fact 
that an NRF2 inducer, sulforaphane (SFN), increases the expression of 
NRF2-regulated genes as well as the expression of the catalytic subunits 
of the proteasome and proteasomal peptidase activities [56,57]. The 
ubiquitin-proteasome system and autophagy are crucial for maintaining 
the proteostasis and are interdependent pathways. In mice with reduced 
proteasome activity in their livers, proteasome dysfunction activated 
autophagy and KEAP1/NRF2 pathway [58]. Recently, NRF2 has been 
identified as a regulator of autophagy gene expression [59] indicating its 
potential in regulating cellular proteostasis (Figure 1).

NRF2 controls the basal and induced expression of an array 
of antioxidant response element-dependent genes to regulate the 
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physiological and pathophysiological outcomes of oxidant exposure 
[60] (Figure 1). These function can be differentiated in several 
pathways, depending on the function [61]. First, enzymes regulating 
iron sequestration, such as heme oxygenase (HMOX1), ferritin 
heavy chain (FTH) and ferritin light chain (FTL). The second is 
NADPH production, which is controlled for example, by glucose-6-
phosphate dehydrogenase (G6PD), phosphoglycerate dehydrogenase 
(PHGDH), among others. The third is glutathione (GSH) production 
and regeneration, which is regulated mainly by glutamate–cysteine 
ligase complex modifier subunit (GCLM), the GCL catalytic subunit 
(GCLC). The fourth type are antioxidants that are implicated in 
quinone detoxification like NAD(P)H quinone oxidoreductase 1 
(NQO1). And finally, is thioredoxin (TXN) production, regeneration 
and utilization, which is regulated by Txn1, thioredoxin reductase 1 
(TXNRD1) and peroxiredoxin 1 (PRDX1) [61,62]. These four groups 
of antioxidant genes have both complementary and overlapping 
functions. These interactions give the global idea of the huge complexity 
of the antioxidant system regulated by NRF2 and its implication of the 
regulation of oxidative stress-related diseases like PD. 

The role of NRF2 in inflammation is supported by the fact that 
NRF2-deficient mice exhibited exacerbated inflammatory process 
under different stimuli [39,63-67]. In the absence of NRF2, NF-κB 
lacks a controller to switch-off the inflammatory signal [68] (Figure 
1). Consistently, in animals treated with SFN, an NRF2 inducer, the 
production of inflammatory markers in response to LPS was attenuated 
[63]. These results are sustained by the presence of a NF-κB binding 
site in the NRF2 coding gene [69] and by the fact that IκK-β (IκBα 
kinase) contains an ETGE motif that enables it to bind to KEAP1 
[70], the repressor protein of NRF2. In addition, NRF2-Deficiency 
results in increased ROS levels, which induce IκBα phosphorylation 
and subsequent degradation, increasing p65-NF-κB levels and NF-κB 
proinflammatory processes. Moreover, NRF2 suppresses macrophage 
inflammatory response by blocking proinflammatory cytokine 
transcription. NRF2 binds to the proximity of Il-6 and Il-1 β and 
inhibits RNA Pol II recruitment, although this inhibition is independent 
of the NRF2-binding motif [71]. On the other hand, NRF2 activation 
increased the expression levels of anti-inflammatory markers like Il-4 
or sphingosine kinase 2 (Sphk2) in a microglial cell line [23]. Overall, 
NRF2 is highly involved in the regulation of inflammation and therefore 
would be very promising to use NRF2 as a target for pharmacological 
treatment of neuroinflammation associated with PD.

Parkinson’s Disease and its Connection with NRF2
Although there is not a direct link between PD and NRF2, there is 

circumstantial evidence that connects loss of NRF2 with the disease. 
So, NRF2 activity declines with ageing, which is the main risk factor for 
PD. In the dopaminergic neurons from the SNpc, NRF2 is located in the 
cytosol, whereas in age-matched PD patients, it is found in the nucleus 
[72] and the NRF2 signature, represented by expression of NQO1 
[73] and HO-1 [39,74-76] is up-regulated, suggesting an attempt of 
brain protection through this pathway [77]. In postmortem samples 
of PD patients, the cytoprotective proteins associated with NRF2 
expression, NQO1 and p62, were partly sequestered in Lewy bodies, 
suggesting impaired neuroprotective capacity of the NRF2 signature 
[23]. However, the most compelling evidence comes from the genetic 
associations showing that a functional haplotype in the human NFE2L2 
gene promoter (here termed Nrf2 for the mouse gene), which confers 
slightly increased transcriptional activity, is associated with decreased 
risk and with delayed age at onset of the disease [78,79] in an European 
case-control groups. Further studies have been performed investigating 

whether genetic variations in and around NFE2L2 modify susceptibility 
to PD using a large case-control sample recruited via the Queensland 
Parkinson’s Project. They have identified a number of SNPs associated 
with a significantly later age at onset as well as common NFE2L2 
variants that may reduce PD susceptibility in certain conditions, such 
as regular exposure to pesticides [80]. 

Related to familiar PD mutations, leucine-rich repeat kinase 
2 (LRRK2) gene mutations are the most common genetic cause of 
PD, and therefore could be used as a useful tool to find biomarkers. 
It has been observed a strong positive correlation between NRF2 
concentrations with Unified Parkinson’s Disease Rating Scale (UPDRS) 
in cerebrospinal fluid (CSF) from LRRK2-PD-patients. Partial 
correlation coefficient calculations indicated that disease duration 
contributed to the associations of NRF2 levels with UPDRS scores in 
this group [81]. Another studies with induced pluripotent stem cells 
(iPSCs) from PARK2 (parkin gene) patients showed increased oxidative 
stress and enhanced activity of NRF2 pathway, which correlated with 
abnormal mitochondrial morphology and impaired mitochondrial 
homeostasis [82]. 

Other evidence that connect PD with NRF2 is with the disease 
associated protein DJ-1. Missense, truncation and splice site mutations 
in DJ-1 lead to an autosomal recessive, early-onset familial form of PD 
[83]. Interestingly, it has been shown that DJ-1 is involved in the NRF2-
dependent oxidative stress response that leads to the upregulation of 
the 20S proteasome and its regulator, NQO1 [84]. Furthermore, DJ-1 
induces thioredoxin 1 expression through NRF2 pathway [85] and 
that DJ-1 stabilizes NRF2 by preventing association with KEAP1, 
and NRF2’s subsequent ubiquitination and degradation [86]. DJ-1/- 
mice did not exhibit widespread neuronal loss in a PD disease model 
[87,88], but these neurons were more susceptible to death after toxic 
insults [87], indicating a similar behaviour between DJ-1/- and Nrf2/- 
mice [89] that could be explained due to the loss of antioxidant gene 
transcription.

In connection with α-synuclein, it has been demonstrated that 
expression of human α-SYN in Nrf2/- mice, exhibited exacerbated 
degeneration of nigral dopaminergic neurons and increased dystrophic 
dendrites, reminiscent of Lewy neurites, which correlated with impaired 
proteasome gene expression and activity [39]. Also, dopaminergic 
neuron loss was associated with an increase in neuroinflammation 
and gliosis that were intensified in Nrf2/- mice, indicating the 
relevance of NRF2 expression in the regulation of neurodegenerative 
and neuroinflammatory processes. α-synuclein was able to induce 
antioxidant enzyme genes in BV2 microglial cells and these effects was 
NRF2-dependent [39]. These results were supported by the findings 
that misfolded α-synuclein directly activates microglia and increased 
antioxidant enzyme expression [90] and that these enzymes are 
upregulated in another mouse model of α-synuclein overexpression. 
In mice that selectively overexpress NRF2 in astrocytes and human 
mutant α-synuclein (A53T) in neurons, showed delayed onset and 
extended life span which correlated with increased motor neuron 
survival, reduced oxidative stress and attenuated gliosis in the spinal 
cord in comparison to mutant α-synuclein (A53T) mice [91]. In vitro 
studies in SK-N-SH cells showed that ferrous iron induces α-synuclein 
aggregation and neurotoxicity by inhibiting NRF2/HO-1. Inhibition 
of NRF2/HO-1 leads to more α-synuclein aggregation and greater 
toxicity induced by iron, creating a vicious cycle of iron accumulation, 
α-synuclein aggregation and HO-1 disruption in PD [92]. All together, 
these evidence indicate the significant role of NRF2 in PD. 
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Pharmacologic Targeting of NRF2 as a Disease 
Modifiying Therapy for Parkinson’s Disease 

Due to the fact that NRF2 is controlling the expression of genes 
related to proteostasis, oxidative stress and inflammation, NRF2 is a 
promising candidate for pharmacological targeting for the treatment of 
PD. There is a huge amount of compounds that target NRF2 in different 
ways, but looking from the clinical perspective, only few of them could 
be used for treatment of PD patients. 

Sulforaphane (SFN), one of the main activators of NRF2, is 
a compound within the isothiocyanate group of organosulfur 
compounds. It is obtained from cruciferous vegetables such as broccoli, 
Brussels sprouts and cabbages. Intraperitoneal administration of the 
SFN increased NRF2 protein levels in the basal ganglia and led to 
upregulation of phase II antioxidant enzymes HO-1 and NQO1 [38]. 
Related to PD, patient-derived cellular model generated from biopsies 
of the olfactory mucosa (termed olfactory neurosphere-derived 
(hONS) cells) had a 20% reduction in reduced glutathione levels and 
MTS [3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-
(4-sulfophenyl)-2H-tetrazolium, inner salt] metabolism compared to 
cultures from healthy control donors. But more importantly, activation 
of the NRF2 pathway with SFN in PD hONS cultures restored 
glutathione and MTS metabolism to control levels [93]. In wild-type 

mice, but not in Nrf2-knockout mice, SFN protected against MPTP-
induced death of nigral dopaminergic neurons. The neuroprotective 
effects were accompanied by a decrease in astrogliosis, microgliosis, 
and release of pro-inflammatory cytokines [38]. Similar effects have 
been demonstrated in other animal models of PD [94-96].

Oleanolic acid is a naturally occurring triterpenoid, which has been 
anti-inflammatory effects. Synthetic triterpenoids such as CDDO have 
been found to be potent inducers of the transcriptional activity of NRF2, 
resulting in marked induction of NQO1, HO-1, glutathione transferases, 
and other cytoprotective enzymes, as well as suppressing induction of 
iNOS and COX2 [97-100]. CDDO-methyl amide (2-cyano-N-methyl-
3,12-dioxooleana-1,9(11)-dien-28 amide; CDDO-MA) treatment of 
neuroblastoma SH-SY5Y cells resulted in NRF2 upregulation and 
translocation from cytosol to nucleus and subsequent activation of 
ARE pathway genes. Oral administration of CDDO-MA resulted in 
significant protection against MPTP-induced nigrostriatal dopaminergic 
neurodegeneration, pathological α-synuclein accumulation and 
oxidative damage in mice [101]. Two other structural analogues of 
CDDO (TP-319 and TP-500) had been modified to improve blood-
brain-barrier permeability, and reduced MPTP-induced oxidative stress 
and inflammation, and ameliorated dopaminergic neurotoxicity in mice. 
The neuroprotective effect of these TP against MPTP neurotoxicity was 
dependent on NRF2, since treatment with TP in NRF2 knockout mice 

Figure 3: Effects of DMF on a Parkinson’s disease mouse model. 
Diagram of the molecular events triggered by α-synuclein and the protective way of action of DMF through NRF2 activation. DMF through NRF2 is able to modulate 
protein aggregation (modifying proteasome and autophagy), oxidative stress (increasing the expression of antioxidant enzymes) and neuroinflammation (increasing 
anti-inflammatory markers and reducing pro-inflammatory cytokines)
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failed to block against MPTP neurotoxicity and induce NRF2-dependent 
cytoprotective genes [102].

The third class of compound that activates NRF2 and could be used 
for clinical purposes is dimethyl fumarate (DMF), the methyl ester 
of fumaric acid and its metabolite, monomethyl fumarate. DMF was 
initially recognized as a very effective hypoxic cell radiosensitizer. Phase 
III clinical trials found that DMF (BG-12) successfully reduced relapse 
rate and increased time to progression of disability in multiple sclerosis 
(trade name Tecfidera) [103]. The first evidence of the benefits of DMF 
in PD is as quinone reductase inducer that abolish tetrahydrobiopterin 
BH4 (an obligatory cofactor for dopamine synthesis, also contributes to 
the vulnerability of dopamine-producing cells by generating oxidative 
stress)-induced cell death, suggesting that quinone production plays an 
important role [104]. More importantly, it has been shown that daily 
oral gavage of DMF protected nigral dopaminergic neurons against 
α-synuclein toxicity and decreased astrocytosis and microgliosis after 
1, 3 and 8 weeks from stereotaxic delivery to the ventral midbrain 
of recombinant adeno-associated viral vector expressing human 
α-synuclein [23]. This protective effect was not observed in Nrf2-
knockout mice. In vitro studies indicated that this neuroprotective effect 
was correlated with altered regulation of autophagy markers SQTSM1/
p62 and LC3 in MN9D, BV2 and IMA 2.1 and with a shift in microglial 
dynamics toward a less pro-inflammatory and a more wound-healing 
phenotype (Figure 3). These data demonstrate that NRF2 targeting 
by DMF could modulate the main hallmarks of PD: proteinopathy, 
oxidative stress and neuroinflammation. These observations were 
reinforced by the fact that DMF significantly reduced neuronal cell 
degeneration of the dopaminergic tract and behavioural impairments 
induced by injections of the dopaminergic neurotoxin MPTP [105,106]. 
Interestingly, the pharmacodynamics of DMF are tissue specific and 
involve NRF2-dependent and -independent mechanisms [107]. 

One of the main actions of DMF is modulating inflammation, 
inhibiting the transcription factor NF-κB, that could be also independent 
of NRF2 [108-110]. But, NRF2 involvement cannot be ruled out due to 
Osgin-1, a transcriptional target of NRF2, contributes to monomethyl 
fumarate-mediated cytoprotection in human astrocytes [111] and is 
highly regulated in the ventral midbrain after DMF exposure [23] in a 
NRF2-dependent way.

Conclusion
Parkinson’s disease is the second most common multisystemic 

neurodegenerative disorder associated with ageing. At the pathologic 
level, PD is characterized by the selective loss of dopaminergic neurons 
in the SNpc and accumulation of α-synuclein in Lewy bodies and Lewy 
neurites [112]. It is a progressive movement disorder, and the main 
therapeutic treatment is focused on dopamine replacement therapy 
with levodopa, accompanied with complications related to long-term 
symptomatic treatment. Moreover, these treatments did not delay or 
stop disease progression. Although the first description of the disease 
was made two centuries ago, the treatments have not evolved in a great 
manner.

Transcription factor NRF2 has emerged as a suitable candidate for 
pharmacological targeting for the treatment of PD. There are consistent 
bases relating PD and NRF2 and several basic research based on 
parkinsonian animal models which reinforce the idea of modulation 
of the expression of the NRF2 pathway is beneficial for delaying the 
disease progression. Several compounds that have been promising in 
PD mouse models could be transferred to the study in clinical trials, for 
example DMF, that already is used to treat multiple sclerosis patients.
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