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Introduction
The potential adverse effects of environmental contaminants 

that function as endocrine disruptors have raised concerns in recent 
years. Endocrine disrupting chemicals (EDCs) in the environment 
are associated with adverse reproductive and developmental effects in 
wildlife by mimicing the actions of the female sex hormone estradiol 
[1]. Polychlorinated biphenyls (PCBs) and polycyclic aromatic 
hydrocarbons (PAHs) in the environment are associated with potential 
disruptive effects on vertebrate and invertebrate reproductive activity 
[2,3]. Many studies have shown that PCBs and PAHs are toxic to fish 
and other aquatic organisms [4-7]. PCBs and PAHs are thought to 
have contributed to diseases, deformities, and decline in some wild 
populations, including fish and birds of the Hudson River [8,9].

PCBs and PAHs can act through both receptor-dependent and 
receptor-independent (i.e., nonhormonal) pathways. Compared to 
PCBs, PAHs are biodegraded easily and accumulate in fish tissues in 
quantities that reflect recent exposure. PAH toxicity depends highly on 
the chemical structure of the PAH [10-12], and even PAH isomers with 
the same number of benzene rings may vary from nontoxic to extremely 
toxic depending on different steric positioning of these benzene rings 
[13,14]. As PCBs and PAHs are hydrophobic, they are found bound to 
the organic content of the sediments where they become bioavailable 
to the benthic organisms and bioaccumulate in the food chain [15]. 
The principal target organs for PAHs and PCBs are those that produce, 
regulate, or respond to estrogenic hormones such as: brain, gonad, liver, 
uterus, mammary, adrenals, prostate, and placenta, as well as organs in 
the developing embryo or fetus [16]. PCBs and PAHs are known to 

adversely affect estrogen receptor (ER) function either through direct 
binding to the receptor or by the activation of other receptor pathways 
that modulate ER activity [17-19]. 

Aromatase cytochrome P450 (CYP19A, aromatase), is the terminal 
enzyme in the steroidogenic pathway [20,21], and is responsible for 
the conversion of androgens to estrogens [22,23]. The product of 
the CYP19 gene catalyzes the conversion of androgens to estrogens 
(specifically, C19-androstenedione into C18-estrone and testosterone 
into E2) [17]. Its activity is an important modulator of plasma 
β-estradiol (E2) concentrations and is critical to the regulation of 
reproductive processes controlled by E2 [24]. Both aromatase CYP19A 
and E2 concentrations increase simultaneously with seasonal gonadal 
development [25-27]. 

In lower vertebrates, aromatase CYP19A is predominantly 
expressed in the ovary and plays important roles in sex-differentiation 
and oocyte growth, [28-31]. This enzyme complex is localized in the 
endoplasmic reticulum of cells in which it is expressed [29,32]. Studies 
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environmental contaminants such as PAHs and PCBs. In this study, a laboratory approach using Atlantic tomcod 
(Microgradus tomcod) from the Hudson River was used to evaluate the additive and interactive effects of a PAH 
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have shown that transcript levels of gonadal aromatase (CYP19A) 
are increased in association with aromatase enzyme activity during 
vitellogenesis in Atlantic cod (Microgadus tomcod) [33], rainbow 
trout [34,35], tilapia [20], and red seabream [36]. Aromatase gene 
expression has been proposed as a key step of estrogen synthesis for 
ovarian differentiation [37]. Moreover, plasma E2 is directly related 
with the transcript levels and enzyme activity of aromatase CYP19A 
during oocyte development [2]. Studies have shown that activated 
aryl hydrocarbon receptor (AHR) induces the recruitment of estrogen 
receptor- (ERa) to AHR-regulated genes and that AHR is recruited to 
ERα-regulated genes [38-43]. 

Fish such as Microgadus tomcod are an appropriate model for 
studying the effects of EDCs because Microgadus tomcod have been 
exposed to multiple sources of EDCs in their environment including 
sewage, industrial effluent, and urban and agricultural runoff. The value 
of using local species and exposing them to two abundant xenobiotics 
in their natural environment and at ecologically relevant doses is that 
this allows inspection of possible interactive effects between PCBs 
and PAHs. Our logic in using two classes of contaminants – both are 
problematic in the Hudson River – is that such an approach permits a 
determination of whether the primary effect on the Microgadus tomcod 
population was mediated by bioaccumulation of PCB, PAH, or both. 
The laboratory-based study spans most of Microgadus tomcod life 
cycle, i.e., from embryos to feeding larvae to juveniles to reproductive 
maturation of adults. 

Hence, by using both PCB and PAH on local species, we formulated 
a picture of the uptake and toxicity of contaminants within this 
ecosystem. We hypothesized that the effect of PCB and PAH together 
will be higher than their individual effects on CYP19A transcription 
and that both chemicals will cause reproductive stress. This study has 
two main objectives pertaining to the evaluation of the additive and/
or interactive sub lethal effects of early-life exposures of fish to PAHs 
and PCBs. First, to determine the interactive effects of PCB and PAH 
exposure on hepatic CYP19A transcript levels of Microgadus tomcod. 
Second, to quantify the toxic and morphological effects of PAHs and 
PCBs on the tissue, organ (ovary mass) and whole body size of female 
adult Microgadus tomcod.

Materials and Methods
Exposure of Microgadus tomcod 

 All female adult Microgadus tomcod (F0generation, N=6), were 
collected on the same day in mid-February of 2008 from the Hudson 
River just prior to their spawning. Fish were transferred to James J. 
Howard Marine Sciences Laboratory at Sandy Hook where they were 
maintained at 4ºC in clean laboratory water at salinity of 5 ppt for 21 
days. The F1 generation (fertilized eggs) and larvae were relocated to the 
grow-out static water tanks (40-L) held at 8°C. Salinity was increased 
incrementally from 5 ppt to 25 ppt in order to mimic the downstream 
movement of tomcod larvae in nature.

All exposures were conducted in a temperature and light controlled 
cold room at 6 to 7ºC. During 12 wk post-hatching (wph) period, larvae 
were exposed to the PAH (benzo[a]pyrene), and the PCB (Aroclor 
1242) at 0.1 (low), and 10 (high) times the observed concentration in 
the Hudson River. For embryo exposures, 100 µl of the high or low 
stocks was mixed with 100 ml of 5 ppt seawater in 150 ml glass beakers 
just prior to the addition of embryos. Thus, the final high and low 
exposures represented concentrations of 359 and 3.59 ng/ml (parts 
per billion), respectively. When both PAH and PCB were used, the 

PAH was administered to embryos for 48 h before the exposure to the 
PCB. The exposure medium was Dimethyl sulfoxide(DMSO) for the 
embryos and via a contaminated food source (Artemia) for the larvae 
for 10 sequential feedings. Vehicle control groups were exposed to 
0.1% (v/v) acetone (100 µl/100 ml 5 ppt seawater). 

At 14 wph, juveniles was transferred to 120-L flow-through tanks, 
weaned onto frozen foods, and tank temperatures were adjusted weekly 
to mimic seasonally changes in nature. Lastly, as juveniles achieved a 
size at which implant tags could be applied (~4 to 6 cm at 16 wph), 
they were marked with a subcutaneous injection of one of two colors of 
elastomer at one of six location associated with the dorsal fins (left or 
right side of anterior, medial, or posterior fins) according to treatment 
and pooled by replicate into 600-L tanks. The tomcod were fed ad 
libitum on thawed frozen bloodworms (chironomids), adult Artemia, 
and squid, and maintained at ambient temperature and salinity until 
they matured. The experiment was terminated at 36 wpf and maturing 
adults were sampled. During the rear-out period larvae and juveniles 
were checked daily for mortalities. 

Toxic- interaction scale 

A two parameter additive index approach model was used to 
determine the joint toxic action of PCB and PAH chemicals in a 
mixture. A Toxic Interaction Scale (S), was defined as (S)=[(Am/
Ai)+(Bm/Bi)], where, Am and Bm= toxicity of PCB and PAH when 
present in a mixture, and Ai and Bi = toxicity of PCB and PAH when 
they are tested separately. The values of S was measured in toxic unit 
(TU), and categorized into three groups: S=1 represents an additive 
effect, S<1 represent antagonistic effect, and S>1 represents synergistic 
effect. 

Gonadosomatic Index (GSI)

Gonadosomatic index (GSI) quantifies the morphological effects 
of PAH and PCB on the ovary. GIS is calculated by the ratio of ovary 
weight to whole body weight; it is indicative of critical reproductive 
success in the life cycle of Microgadus tomcod population to determine 
its survival [44]. GSI was used for this study to serve as a time-
integrated indicator of the general wellbeing of Microgadus tomcod 
gonad development.

Condition Factor (CF)
Condition factor (also known as coefficient of condition, or 

length-weight factor) was computed to assess the relative robustness, 
or degree of well-being, of a fish. Condition Factor (CF)=[weight/
(length)] X 100%, where length was measured in centimeters (cm) and 
weight was measured in grams (g). Growth represents the integration of 
feeding, assimilation and energy expenditure over a period of time. Poor 
growth means less energy was available for reproduction, which will in 
turn reduce the species fitness and lead to a decline in the population. 
A high condition factor, therefore, reflects good environmental quality; 
while a low condition factor reflects poor environmental quality.

Aromatase CYP19A Transcription as an Indirect 
Assessment of E2 levels 

In order to measure the mean difference of aromatase CYP19A 
transcription as indirect assessment of E2 level in Microgadus tomcod 
ovaries, three distinct phases of adult female Microgadus tomcod 
reproductive activity were evaluated. First, spawning stage was defined 
as fish whose ovaries are well developed and near peak mass, in which 
eggs are extruded from the body under slight pressure or when ovary 
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sac is broken, and eggs were easily separated from each other. Second, 
matured stage was defined as fish whose ovaries had passed the peak 
spawning stage and begun to regress. At this stage, the ovaries contain 
less than 50% scattered clear eggs, and the eggs cannot be easily 
separated from each other. Third, spent stage was defined as fish whose 
the ovary had fully regressed and contained less than 5% white dry ova 
and reddish unspawned scattered eggs.

Isolation of Microgadus Tomcod CYP19A 
Complementary DNA (cDNA) 

Approximately 100 mg of ovarian tissue were used as starting 
material for total RNA isolation with Ambion Pure Link total RNA 
extraction mini kit (Cat # 12183-018A) following the manufacture’s 
protocol. All RNA preparations were adjusted to 0.5 µg/µl and used 
as template for reverse transcription (RT). In all reactions, cDNA was 
synthesized using 1 µg of total RNA with 100 ng random hexamer 
primers(10 µl total volume), following the manufacturer’s instructions 
(Clontech). Reactions were terminated by heating at 70°C for 10min, 
then diluted 1:5 with DNase-free water and used as template for 
polymerase chain reactions (PCR).

Degenerate primers for Microgadus tomcod CYP19A PCR ampli-
fication were designed based on CYP19A cDNA sequences from the 
closely related Gadusmorhua along with six other most closely relat-
ed teleost species (Table 1). Gadusmorhua, Mugilcephalus, Epineph-
eluscoioides, Epinephelusakaara, Latescalcarifer, Larimichthyscrocea, 
and Micropogoniasundulatus (Accession #s: DQ402370, AY859425, 
AY510711, AY547354, AY684256, FJ800566, and DQ184486 respec-
tively) were selected from the NCBI database. Standard group codes 
were used to represent degenerate primers (W=A+C; S=G+C; R=A+G; 
K=G+T; V=A+G+C; Y=C+T). 

Cloning and Sequencing of CYP19A Partial cDNA
The PCR amplification cycles were varied based on expected product 

size and the primer melting temperatures. A major RT-PCR product 
of approximately 1000 bp was isolated from 1.5% agarose/ethidium 
bromide (EtBr) gels and ligated into pGEM-T vector (Invitrogen). 
Sequencing was arranged using 250 to 400 ng concentration of plasmid 
DNA per 8 µl total volume on the ABI 3730xl 96-capillary automated 
DNA sequencers (Brisbane, Australia). Both strands of plasmid DNA 
containing the cDNA insert were sequenced in both directions using 
T7 (forward) and SP6 (reverse) sequencing primers. Thereafter, all 
positive sequence results were aligned with the CLUSTAL W method 
to generate a contig sequence using Mega4 software (http://www.
megasoftware.net/ mega4/.html). 

Rapid Amplification of cDNA Ends (RACE)
Rapid amplifcation of cDNA ends (RACE)-ready cDNA libraries 

were generated using Microgadus tomcod ovarian total RNA and a 
commercial kit Clonetech SMARTer RACE cDNA Amplification Kit 
(Cat. Nos. 634923, CA, USA), following the manufacturer’s protocol. 
Microgadus tomcod CYP19A specific primers for 3’ RACE, outer-

primer: 5’-TGGTGGACGTCTCCAACACCCTCTTC -3’ and inner-
primer: 5’- CTCAGGAGCTGCAGGACGCCATAGA -3’ were used. 
For nested PCR and for 5’ RACE, outer primer 5’-CGGTGCATGC-
GTCCCACGTT - 3’ and inner primer 5’- CTCAGGAGCTGCAG-
GACGCCATAGA -3’ were used. Primers were adjusted to 10 pmol for 
both 5’ and 3’ RACE reactions. Thermal parameters for RACE touch-
down PCR were: 95 °C for 2 min; 5 cycles of 95°C for 5 s and 72°C for 
180 sec; 5 cycles of 95°C for 5 sec, 70°C for 10 sec and 72°C for 180 
sec; 25 cycles of 95°C for 5 sec, 68°C for 10 sec and 72°C for 180 sec 
using the Biorad i-cycler thermal cycler. Thermal parameters for RACE 
Nested PCR were: 95°C for 2 min; 35 cycles of 95° C for 30 sec, 55°C for 
30 sec, and 72 min, followed by 72°C for 10 min final extension using 
the Biorad i-Cyclear thermal cycler. PCR products were gel purified 
as stated above and ligated into pGEM-T vector (Invitrogen) per the 
manufacturer’s protocol. Confirmation of the identified nucleotide se-
quence was achieved by comparing Microgadus tomcod CYP19 cDNA 
to Gadusmorhua aromatase CYP19A sequence using the Sequencer 
TM 4.0 Windows Version Package (Gene Codes Corporation). 

Deduced amino acid comparison was performed using the 
CLUSTAL W multiple sequence alignment aligorithm and a molecular 
phylogenetic analysis was performed using the neighbor joining 
method in MEGA version 5. To determine its relation to other 
aromatase proteins, the deduced Microgadus tomcod CYP19A protein 
was included in a molecular phylogenetic analysis with six other 
teleost sequences (Accession #s: DQ402370, AY859425, AY510711, 
AY547354, AY684256, FJ800566, and DQ184486), (Figure 1).

Real Time Quantitative PCR (RT-qPCR) Primers
To prevent genomic DNA (gDNA) amplification in RT-qPCR 

applications, primers were designed to anneal across a unique cDNA 
regions of splice junction. Primers spanning exon-exon junctions 
were designed to cross exon 8 and exon 9 boundaries by viewing the 
detailed alignment of the Microgadus tomcod CYP19A cDNA query 
sequence against zebra fish CYP19A genomic sequence [22]. Since 
CYP19A is a highly conserved gene in all vertebrates, the exon-exon 
boundaries of tomcod and zebra fish can be expected to be the same. 
Forward: 5’- TCCGGCAGTGTGTGC TGGAGATG -3’ and reverse: 
5’- CCGGAGCTTCCTCTCGCCTATGA -3’ oligonucleotides were 
used for RT-qPCR. The validity of results obtained using RT-qPCR 
was improved by including Microgadus tomcod S2 ribosomal protein 
(S2RP) as a reference gene to correct for sample to sample variations in, 
RT-qPCR efficiency and errors in sample quantification (NCBI database 
Accession # AY292477). Forward- 5’-AGGGCTGGTCAGCGTACA-3’- 
and reverse -5’-CTGGAACGATGGACAGCTTG-3’- primers for 

Primers Sequence Tm GC%
MtAro268F 5'-GCCAGYAACTACTACAACRACAAG-3' 62-65 42-50

MtAro698F 5'-TTTACACRTGGCAGACTGTR-3' 57-61 43-52

MtAro1384R 5'-GGATGGAYTTCATCATCACCATG-3' 61-63 43-48

MtAro1476R 5'-GGCTGCTGGASAGGTTGTTG-3' 61-62 43-44

Table 1: List of degenerate primers designed for tomcod CYP19A partial 
sequence.

Figure 1: Phylogenetic analysis of Microgadus tomcod CYP19A amino acid 
sequence. The circle shows that Microgadus tomcod CYP19A is most closely 
related to CYP19A of Gadusmorhua.
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S2RP were designed using primer3 software (Whitehead Institute, 
Cambridge, MA). 

Real Time RT-PCR Analyses (TaqMan)
Real-time RT-PCR using Microgadus tomcod ovary was 

performed to determine abundance for aromatase CYP19A mRNA 
transcription. cDNA was produced using 500 ng total RNA primed 
with 100 ng random hexamer oligonucleotides and used as template 
for RT reactions. RT reactions were diluted (1:5) with DNase-free water 
and 2 µλ of each diluted RT was mixed with 23 µλ of a master mix 
containing a commercial qRT-PCR enzyme mix (Taqman). Each 25 µλ 
PCR reaction was set up as duplex with the threshold cycle (Ct) for the 
gene of interest (GOI) and the reference (REF) measured at the same 
time to minimize differences in reaction efficiency. The standard curve 
for CYP19A was generated using an in vitro transcribed Microgadus 
tomcod aromatase CYP19A plasmid DNA as described above. A serial 
dilution was prepared to be targeted in the range of 108 to 102 copies for 
the standard curve was prepared. Real Time RT-qPCR was performed 
on a BIORAD®iCycleriQ (Catalog number 170-8740). For each set of 
PCR analyses, the transcription levels were determined in a “standard 

sample” to determine interassay variability.

Statistical Analysis
The experimental design employed was a 3 x 3 factorial with 3 

replicates per treatment combination. Equal variance and normality 
were checked and analyzed on the mean value by analysis of variance 
(ANOVA) with factorial design followed by Tukey’s pairwise 
comparisons. Polynomial contrasts were used for the actual spacing of 
the treatment levels for determining the existence and nature of trends 
in the treatment level means. The sums of squares for linear (degree 
1), quadratic (degree 2), and cubic (degree 3) trends were computed if 
needed. Statistical analysis was performed using the statistix package, 
analytical software 9.0 (Tallahassee, FL 32317).

Results 
Isolation of Microgadus tomcod CYP19A cDNA 

The deduced cDNA and amino acid (AA) sequences of the isolated 
Microgadus tomcod aromatase CYP19A cDNA are presented in 
(Figure 2) Initially, a central part of the mRNA was amplified from 
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 CTGTGGAGGAAGACT 

 R G L G C  L G M D G  R G I I F  N N D V A  L W R K T  

CGCAGCTACTTCGCC AGAGCTCTGAACGGT CCGGGTGTGCTGCAG ACGGTGGACGTGTGC 

ACCGCCTCCACCCAG 

 R S Y F A  R A L N G  P G V L Q  T V D V C  T A S T Q  

ACCCACCTGGACAGC TTGAGGGCGGACCGC CCCGGCAGGGGACCC GGGGACAGCCTGCG

G CAGGTGGACGTGCTG 

 T H L D S  L R A D R  P G R G P  G D S L R  Q V D V L  

GGCGCGCTGCGGGGC ATCGTGGTGGACGTC TCCAACACCCTCTTC CTGGGAGCGCCGTTC 

GATGAGAAAGATCTG 
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 G A L R G  I V V D V  S N T L F  L G A P F  D E K D L  

CTTGAGAAGATCCTG AAGTATTTTGACACG TGGCAGACTGTACTC ATTAAACCAAACCTT T

ACTTCAAGTTGGAC 

 L E K I L  K Y F D T  W Q T V L  I K P N L  Y F K L D  

TGGATCCACCGGAGG CAGAGGGATGCAGCT CAGGAGCTGCAGGAC GCCATAGAGGTTCTG

 ATCGATCAGAAGAGG 

 W I H R R  Q R D A A  Q E L Q D  A I E V L  I D Q K R  

AGAGAACTGCAGGAG GCGGATAAACTGGAC TGCATCAACTTCACG GCGGACCTCATATTT 

GCACAGGGTCACGGG 

 R E L Q E  A D K L D  C I N F T  A D L I F  A Q G H G  

GAGTTGTCAGCCGAC CACGTCCGGCAGTGT GTGCTGGAGATGGTG ATCGCGGCCCCGGAC

 ACCCTGTCTGTTAGT 

 E L S A D  H V R Q C  V L E M V  I A A P D  T L S V S  

CTGCTCTTCATGCTG CTGCTGCTCAAGCAG CACCCAGAGGTGGAG CTGAGGCTCCTCAAA 

GAGATCGACTCTGTC 

 L L F M L  L L L K Q  H P E V E  L R L L K  E I D S V  

ATAGGCGAGAGGAAG CTCCGGAACGAGGAT CTGCCCCGGCTCTGT GTCCTGGAGCACTTC 

ATCAACGAGTCCTTA 

 I G E R K  L R N E D  L P R L C  V L E H F  I N E S L  

CGCTTCCACCCCGTG GTGGACTTCACCATG CGCAGGGCCCTGTCC GACGACGTCATCGAA 

GGCTACAGGGTCCCC 

 R F H P V  V D F T M  R R A L S  D D V I E  G Y R V P  

AGGGGCACCAACGTC ATCCTGAACGTGGGA CGCATGCACCGCACC GAGTTCTACCCCAAA 

CCCGACGAATTCAGC 

 R G T N V  I L N V G  R M H R T  E F Y P K  P D E F S  

CTGGACAACTTTGAG AAAAGCGTCCCCAGC CGCTACTTCCAGCCG TTTGGCTCGGGGCCG 

CGCTCCTGCGTGGGC 

 L D N F E  K S V P S  R Y F Q P  F G S G P  R S C V G  

AAGCACATCGCCATG GTGATGATGAAGTCC ATCCTGGTGACGCTG CTGTCATGCTACACG 

CTGTCTCCCCACGAG 

 K H I A M  V M M K S  I L V T L  L S C Y T  L S P H E  

GGTCTGACGCTGGCC AGCATGCCCCAGACC AACAACCTCTCCCAG CAGCCCATGGAGAGC 

GAGCAGGACCCCCAC 

 G L T L A  S M P Q T  N N L S Q  Q P M E S  E Q D P H  

TACCTCGCCATGACC CTCACACCCAGACGA AGAACAGCAACAGGA AGCTACAGCGGAGCA 

GGACTCTGAGAACCC 

 Y L A M T  L T P R R  R T A T G  S Y S G A  G L *   

CCCCCCCGTGTGCGC GTGGCTGTGTGTGTG TGTGTGTGTGTGTGT GTGTGTGTGTGTGTG 

TGTGTGTGTGTGTGT 

GTGTGTGTGTGTGTG TGTGTGTGTGTGTGT GTAAATGATTTGTTT ATTTTTTCTTATATA A

AATTTGTATTCTAA  

AAAAAAAAAAAAAAA AAA  
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degenerate primers and an ovarian total RNA. The sequence of this 
1020 bp product was similar to other teleost CYP19A cDNA sequences 
(BLAST analysis, http://www.ncbi.nlm.nih.gov/blast/; data not 
shown). It is known that some genes are easily cloned as full-length 
forms and some are not. RACE reaction using Microgadus tomcod 
aromatase specific primers allowed identification of a 1415 bpcDNA, 
which encodes a gene product with a predicted molecular weight of 
52.5, representing an almost complete CYP19A sequence. The deduced 
amino acid sequence of Microgadus tomcod CYP19A was aligned 
with G. moruha (DQ402370), E. coioides (AY859425), L. calcarifer 
(AY510711), and M.cephalus (AY547354) (Figure 2). The 1342 bp ORF 
encodes a protein of 521 amino acids which covers 96% of the ORF 
size compared with the cDNA for Atlantic cod and fully aligns with 
the other teleost CYP19A proteins. The sequence shares 86% identity 
with Atlantic cod and 65–78% identity with the other selected fish 
species CYP19A sequence. Figure 3 represent multiple alignments of 
Microgadus tomcod CYP19A mRNA with other teleost aroamatase 
CYP19A mRNA sequences. 

Comparison of aromatase transcription levels in Microgadus 
tomcod reproductive development cycle 

Changes in CYP19A mRNA as an indirect measure of E2 level 

in the control group and on PCB/ PAH separately treated groups 
were evaluated on Figures 4 and 5, respectively. Both the control 
group and PCB / PAH separately treated groups showed the highest 
aromatase CYP19A mRNA level at spawing, followed by matured 
and the lowest at the spent stage of the reproduction cycle. Neither 
PCB nor PAH affected the expected CYP19A transcription pattern, 
(Spawing>matured>spent). This finding suggested that the level of 
E2 steroid for PCB or PAH individually treated groups was at the 
highest seasonal values during pre-spawing and spawning stage. After 
spawning, the ovaries were regressed and the E2 level in the plasma 
continued to fall to very low levels. 

Joint Effect of PCB and PAH on Aromatase CYP19A 
Transcript Level

Treatment groups exposed to PCB and PAH in combination 
showed the highest level of aromatase CYP19A transcript at matured 
stage, followed by spawning stage and lastly spent stage of reproduction 
cycle (matured>spawning>spent). Due to the additive affect of PCB 
and PAH on the combined treatment groups, the level of CYP19A 
mRNA and E2 production were disrupted (Figure 6). 

Figure 2: The nucleotide sequence and its predicted amino acid sewuence Microgadus tomcod aromatase CYP19A. A microsatellite region was underlined. 
The asterisk (*) represent the stop codon. Numbers to the left represent nucleotide base or amino acid residue position.
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Figure 3: Multiple alignment of Microgadus tomcod CYP19A with other teleost aroamatase CYP19A sequences. The deduced amino acid sequence of 
Microgadus tomcod CYP19A was aligned with G. moruha (DQ402370), E. coioides (AY859425), L. calcarifer (AY510711), and M.cephalus (AY547354). 
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Analysis of CYP19A Transcript Level Using Absolute 
Quantification

The interaction effect of PCB and PAH on CYP19A transcripts 
when reproductively mature female Microgadus tomcod aromatase 

CYP19A mRNA was analyzed using RT-qPCR assay (Figure 7). For 
individually treated groups, neither PCB nor PAH showed a significant 
effect on aromatase CYP19A mRNA level. For groups treated with 
both PCB and PAH, PCB significantly upregulated aromatase CYP19A 
transcript level at high-PCB/high-PAH (100 fold), and high-PCB/low-

Figure 4: Changes in CYP19A transcript levels as an indicator of E2 level. A) Bars represent means +1S.E. of aromatase CYP19A transcript levels of female 
tomcod for control (DMSO) group. Spawning stages and sample size (N) are shown x-axis below the graph. B) Changes in plasma E2 and testosterone values 
for female winter flounder. Values are mean ± SEM; (PREP 1 initial rapid phase of gonadal growth; PREP 2 continuing phase of slower growth of gonads; PRES 
pre-spawning phase; SPW spawning; POST post spawned interval) (Figure 4B Modified from (Harmin et al., 1995).
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PAH, (50 fold) treatment groups. At the highest level of PCB, increasing 
the levels of PAH increased CYP19A mRNA expression because the 
toxicity of PCB was enhanced in the presence of PAH. In contrast, at 
zero and low levels of PCB, increasing level of PAH had no significant 
effect on CYP19A mRNA expression level. The toxic interaction effects 
(S) of PCB and PAH mixtures were mainly synergistic (S=1.9 to S=755 

TU). The toxic interaction effects of the low-PCB/low-PAH and low-
PCB/high-PAH treatment groups (4.5 and 1.9 TU, respectively) were 
not significantly high compared to those of the high-PCB/low-PAH, 

Figure 6: Effect of PCB and PAH in combination on aromatase CYP19A transcript levels. Bars represent means ± 1S.E. of aromatase CYP19A transcript levels of 
female tomcod. Sample size is shown below x-axis (see materials and methods for a description of the reproductive stages). The above pattern is different from the 
expected CYP19A transcription pattern, which is, matured>spawning>spent.
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(437.9 TU), and high-PCB/high-PAH (754.5 TU) treatment groups.

Gonadosomatic Index (GSI) 
For either PCB or PAH individually treated groups, a significant 

gonadal loss occurred only in the high-PCB/high-PAH level of 
treatment (Figure 8). GSI did not change with low-PCB, and low 
or high-PAH individually treated groups compared to the control 
group. Exposure to estrogens mimicking compounds such as PAH 
and PCB can have various detrimental effects in fish. It can reduce 
general viability, induce gonadal malformations or feminization of 
genetic males, or lead to sterilization [45]. Even though there was no 
significant GSI for most treatment groups; we observed reproductive 
impairment ranging from underdeveloped gonads to decrease egg 
production and abnormal larval offspring. Morphological analysis was 
not conducted since it was beyond the scope of this study. However, 
abnormal morphological variation such as aplasias, atrophy, fusions, 
degeneration and intersex due to environmental pollutants need 
further study. 

Condition Factor (CF)
The result of this study showed that there was no statistically 

significant difference in CF due to PCB or PAH exposure in any 
treatment group. There was also no significant PCB/PAH interaction 
observed in any treatment group. CF and the length-weight 
relationship comparison conclude that neither PCB nor PAH influence 
the wellbeing of fish reproductive cycle. 

Discussion
This study demonstrated major differences in the way Microgadus 

tomcod CYP19A mRNA response to the effects of PCB and PAH 
at molecular and organismal levels. The individual effect of either 
PCB or PAH on Microgadus tomcod ovaries are not significant, but 
PCB caused higher CYP19A transcript levels in the PCB/PAH joint 
treatment groups. Moreover, low levels of aromatase CYP19A mRNA 
and lower GSI during the spawning stage of reproductive cycle was 
resulting from the additive effect of high-PCB and high-PAH. Previous 
studies on various teleosts found E2, testosterone, GSI, and oocyte 
diameter to peak during pre-spawning and spawning stages, and to be 
low or undetectable at spent stage [25,46-48]. This finding suggested 
that the level of CYP19A mRNA was compromised by the additive 
effect of PCB and PAH at any treatment group.

The results of all CYP19A transcription level, GSI, and CF tests 
revealed little or no significant effect of PAH exposure, suggesting that 
Microgadus tomcod from the Hudson River might have developed a 
protective mechanism against PAH. This result may be explained by the 
fact that PCBs caused reproductive impairment by reducing aromatase 
expression whereas the effect of PAH was reduced or compromised in 
Microgadus tomcod from the Hudson River. 

Both PCBs and PAHs are known to mimic sexual hormones 
and/or disrupt steroidogenic enzyme function, [44,49], including 
aromatase CYP19A [22,50-52], PCBs and PAHs binding to the Aryl 
hydrocarbon receptor (AhR) can result in synergestic effects due to 
cross-talk between the AhR and the ER [53,54]. PCBs have also been 
shown to alter or inhibit hormone production by steroidogenic tissue 
in reproductive organs [16,55]. 

AhR is known to be involved in modulating estrogen-dependent 
transcription [34,39,56,57], to control target-specific regulation 
of ER [37,58], and to have crosstalk with several other important 

signal transduction pathways [9,24]. Some species are inherently 
capable of tolerating a contaminant through existing physiological 
acclimation mechanisms [59-61]. Previous exposure of environmental 
contaminants most likely decreases the sensitivity of the AhR pathway 
in Hudson River Microgadus tomcod population. The recent finding 
by Wirgin et al., [3] that a six-base deletion in the AhRreseptor 2 
(AhR2) of Hudson River Microgadus tomcod is ths basis of six-base 
deletion as the bases for resistance. The finding suggests that the 
Hudson River Microgadus tomcod population has undergone rapid 
evolution, probably due to contaminant exposure. This finding of 
the basis of resistance in a vertebrate population provides evidence of 
evolutionary change due to selective pressure at a single locus. There is 
a possibility that Microgadus tomcod may instead develop a tolerance 
defense mechanism by which Microgadus tomcod do not reduce PAH 
toxicity or its action, but instead alleviate the negative consequences 
of such contaminats and action [62,63]. Previous studies have shown 
that wild caught Microgadus tomcod from the Hudson River have been 
developing various stages of resistance compared to Atlantic tomcod 
from relatively uncontaminated tributaries [1,3,9,61,64]. Tolerance 
to contaminants within cellular organelles is possible by preventing 
toxicants from exerting their toxic effects despite their elevated presence 
in receptor tissues. Further investigations are required to determine 
if resistance may be due to genetic or epigenetic modifications on 
Microgadus tomcod from Hudson River.

When EPA banded the production of PCB in 1977, it was estimated 
that 1.3 million pounds of PCBs were discharged in the Hudson River 
from two General Electric capacitor manufacture plants located in the 
town of Fort Edward and Hudson Falls, New York. This study supports 
the idea that resistance to pollution is a recent phenotype in Microgadus 
tomcod from the Huddson River, suggesting that Microgadus tomcod 
have rapid evolutionary responses with respect to their environment. 
Besides, future study is needed to determine if resistance is a common 
or rare response of chronically exposed fish populations with different 
selective pressure mechanisms. An important question is, how much 
does resistance among Microgadus tomcod is matter to the ecology of 
the contaminated Hudson River? Is an adapted population necessarily 
an “unhealthy” one? Whether resistance evolves or the population is 
eliminated depends on the rapidity of onset and severity of the stress, 
and the capacity of the population to adapt to it. Answering these 
difficult questions will require to be addressed by moving resistance 
studies beyond the species-contaminant pairings method. The 
evolutionary costs of resistance to Hudson River populations or to 
their communities remain to be experimentally determined. 

In general, the polluted sites of the Hudson River may become 
well known for PCBs and PAHs contaminants, but it is rare that 
these compounds were released into the environment by industry or 
municipalities without the release of many other compounds. This issue 
may be particularly critical for a species such as Microgadus tomcod 
that appears to serve a unique position in estuarine food chains. Thus, 
exposures to single or two contaminants can be made in the laboratory, 
but their results are often confounded by the unknown effects of pre-
exposures to a great variety of other contaminants in wild population. It 
is believed that studies of two major contaminants are the appropriate 
departures for future resistance research. The possibility exists that 
resistance is fostered by synergies among contaminants, at least in 
some instances. Future analysis will address whether AhR is potentially 
responsible for conferring resistance in population adapted to chronic 
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exposure to chemical pollutants in the different superfound sites.
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