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Abstract
The characterization of immunologically or biologically relevant proteins is prerequisite for the development 

of effective drugs or therapies. Since large amounts of proteins are often required for this purpose, more effective 
expression systems for recombinant human proteins must be developed. Among the various expression systems, 
the baculovirus expression system (BEVS) is an attractive tool with certain advantages for high-level expression and 
post-translational modifications. 

The silkworm BEVS utilizes silkworm larvae or pupae as bioreactors programmed by recombinant Bombyx 
mori nucleopolyhedrovirus (BmNPV) or bacmid DNA. Recombinant human protein production is generally higher in 
silkworm BEVS than insect cell line BEVS. In addition, transgenic silkworm technology has been developed for stable 
recombinant protein expression. In this review, we introduce the use of this silkworm BEVS for two human proteins 
that are potential targets for drug development, the ectodomains of immunoreceptors (i.e. IL-4Ra, IL13Ra, KIR2DL1 
and Fas) and guanine nucleotide-binding protein (G-protein) coupled receptors (GPCR) (i.e. µ-opioid receptor and 
nociceptin receptor). These proteins were successfully expressed in the silkworm BEVS, showing the advantages in 
both the expression level and simpler manipulation, as compared to other systems. The silkworm BEVS is expected 
to be convenient for recombinant protein production for molecular medical studies. 

Keywords: BEVS; BmNPV: Bacmid DNA; Silkworm; Immunorecep-
tors; GPCR

Recombinant Protein Production for Biomedical 
Sciences

The rapid evolution of biotechnology in recent years has enabled 
the identification of various proteins responsible for several diseases. 
To develop drugs or therapies targeting these proteins, precise 
understanding of their functions is crucially important. Therefore, 
many researchers are utilizing combinations of several methods to 
characterize the molecular basis of the functions of these proteins. 
However, such biomedical research generally requires large amounts 
of proteins, and thus efficient protein production is becoming more 
of a concern. In addition, medically important proteins themselves 
are expected to be employed as biopharmaceuticals [1]. In this regard, 
efficient recombinant protein production will presumably reduce the 
cost. 

Among the several recombinant protein expression systems 
currently available, the Escherichia coli (E. coli) expression system 
is one of the attractive tools for large-scale recombinant protein 
expression. This system has the advantages of low cost, simplicity, 
and high expression level; however, it also has some disadvantages 
for the expression of many human proteins, such as the lack of 
posttranslational modifications (i.e. intramolecular disulfide-bond, 
glycosylation, and phosphorylation). Recently, some improved E. coli 
systems with phosphorylation or disulfide-bond ability have been 
developed [2], but they are not always successful. On the other hand, 
eukaryotic cells, including mammalian cells (i.e. human 293, hamster 
CHO etc.) and yeast (i.e. Pichia pastoris, Saccharomyces cerevisiae 
etc.), are appropriate hosts for the production of these “difficult-to-
express” proteins [3-6]. Many human proteins with post-translational 
modifications and proper conformations have been produced by these 
systems. However, the costs are usually quite high and the expression 
levels are generally low. 

Among the available expression systems, the baculovirus expression 

vector system (BEVS) has many advantages for the expression of these 
proteins, including 1) high level expression by strong promoters 
(Polyhedrin and P10), 2) post-translational modifications similar to 
those generated by mammalian cell expression, and 3) more reasonable 
cost than mammalian cell culture. The commercially available BEVS 
utilizes Autographa californica nucleopolyhedrovirus (AcNPV) and 
insect cell lines (High five™, Sf9 and Sf21) [7]. This system employs a 
very useful bacmid DNA comprising the AcNPV DNA genome with 
the E. coli origin and transposition sequences. Therefore, we can 
construct recombinant AcNPV viruses by simple molecular biological 
techniques, because the AcNPV bacmid DNA can replicate in E. coli, 
and the recombinant virus can be expressed by direct transfection into 
an insect cell line. However, this still requires the time-consuming 
procedures of virus amplification, handling, and large-scale cultivation. 

Silkworm Expression System
The silkworm (Bombyx mori) expression system is a BEVS 

that uses the silkworm, in place of cell lines, as a bioreactor for the 
production of recombinant proteins. A quarter-century ago, Maeda 
et al. [8] reported the secreted production of human interferon α in 
the haemolymph of silkworm larvae, using recombinant Bombyx mori 
nucleopolyhedrovirus (BmNPV) encoding human α-interferon driven 
by the Polyhedrin promoter, as in the AcNPV system. That was the first 
report of the recombinant production of a medically relevant protein in 
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silkworm. The expression levels of recombinant proteins in silkworm 
are generally higher than those in cultured cells [9], and this provides 
the biggest advantage. Moreover, the procedures required for this 
system are relatively easy, because the silkworm larvae do not require 
sterile facilities and large-scale cultivation in flasks or culture bags. The 
recent progress in artificial diet production is also helpful for feeding 
larvae, and eliminates the need for prior experience in silkworm 
breeding and cultivation. 

However, the construction, amplification, and purification of 
recombinant BmNPV virus using the silkworm cell line are also time-
consuming, and require specific techniques as well as the AcNPV 
system. As a solution to this problem, transgenic silkworm technology 
is available without virus handling, for the stable expression of 
recombinant proteins [10], although it requires special skills and 
substantial time is needed to establish the transgenic lines. 

We recently developed BmNPV bacmid DNA systems, based on 
BmNPV genomic DNA, to solve these labor problems [11-14]. The 
BmNPV bacmid DNA is the simplest tool among silkworm systems, 
because the recombinant proteins are expressed in the silkworm by 
the direct injection of recombinant bacmid DNA in larvae or pupae, 
without the preparation of a recombinant BmNPV virus [11]. 

In order to use recombinant proteins in biomedical studies, the 
profiling of post-translational N-glycosylation is an important analy-
sis. The population of N-linked glycans on recombinant proteins 
expressed by silkworms is often investigated. Misaki et al. [15] re-
ported that mouse interferon-β, expressed in silkworm larvae using 
the BmNPV virus, had variable sets of high and paucimannose-type 
N-linked sugars. On the other hand, in the case of the BmNPV-bac-
mid expression system, Ishikiriyama et al. [16] demonstrated that the 
IgG protein consisted of only two paucimannose-type oligosaccha-
rides, Manα1-6Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAc (77.5%) and 
Manα1-6(Manα1-3)Manβ1-4GlcNAcβ1-4(Fucα1-6)GlcNAc (12.7 %), 
and Sasaki et al. [17] showed that the human KIR2DL1 ectodomain 
also had only two paucimannose-types, Manα1-6Manβ1-4GlcNAcβ1-
4(Fucα1-6)GlcNAc and Manα1-6Manβ1-4GlcNAcβ1-4GlcNAc. Thus, 
these sugar profiles on proteins expressed in the silkworm are nearly 
identical to those produced by other insect cell lines [18,19]. In hu-
man, sialylated complex type N-linked glycans are predominant in gly-
coproteins, while proteins expressed in insect cells and silkworm lack 
the sialylated complex, but have high-mannose or paucimannose-type 
oligosaccharides [19]. Glycosylation assists in both the adoption of the 
proper conformation and stabilization after purification. However, if 
glycosylation is not necessary for their functions, then the recombinant 
proteins with heterologous glycans will have endogenous activity. In 
addition, the small and relatively homogeneous N-linked sugar modi-
fications in the BmNPV bacmid-silkworm system would be an advan-
tage for structural studies.

The silkworm is expected to become one of the attractive systems 
for the expression of recombinant proteins with posttranslational 
modifications for biomedical sciences, and in fact, many human 
proteins have already been expressed using silkworm [9,20]. The 
following three silkworm systems are available now: 1) infection with 
recombinant BmNPV virus, 2) injection of BmNPV bacmid DNA, and 
3) construction of a transgenic silkworm (Figure 1). In this review, we 
describe the successful silkworm expression of the following typical 
biomedical targets, the ectodomains of human immunoreceptors 
and human guanine nucleotide-binding protein (G-protein) coupled 
receptors (GPCRs).

Ectodomains of Immunoreceptors
Human immunoreceptors expressed on the cell surface regulate 

various immunological functions via specific binding to their 
physiological ligands. Immunoreceptors are often directly involved 
in immune-related diseases. Therefore, they are important for drug 
development, and moreover, they have potential not only as effective 
immunotherapeutic targets but also as biopharmaceuticals by 
themselves. In fact, the soluble ectodomains of such immunoreceptors 
or specific antibodies against them could become attractive 
biopharmaceutical drugs for immune regulation [21-23]. However, 
it is generally difficult to obtain sufficient amounts of functional 
immunoreceptors for biomedical research, because they frequently 
require some posttranslational modifications, such as glycosylation, as 
described above. Moreover, even if these modifications are not required, 
many immunoreceptor ectodomains require intramolecular-disulfide 
bonds to form the proper conformation; therefore, these proteins are 
expressed as inclusion bodies in the reductive environment of the E. coli 
cytoplasm. In this case, an appropriate refolding procedure is required 
to utilize these proteins in subsequent experiments. On the other hand, 
the BEVS are quite useful for the preparation of post-translationally 
modified recombinant ectodomains of immunoreceptors. We will 
introduce successful examples of the use of the silkworm system for the 
expression of immunoreceptor ectodomains. 

Interleukin-13 Receptor Using BmNPV Virus
Interleukin (IL)-4Rα and IL-13Rα1 form a heterodimeric receptor 

on the surface of immune cells, and mediate signal transduction to 
regulate inflammatory responses [24,25]. In 2008, Honjo et al. [26] 
reported the expression and purification of the extracellular region of 
the human IL-4 receptor α chain (IL-4Rα) and human IL-13 receptor α1 
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Figure 1: Schematic representation of silkworm expression system. Follow-
ing three methods are available:1) BmNPV virus infection, 2) BmNPV bacmid 
injection, and 3) construction of transgenic silkworm. Pupae are also used 
instead of larvae for the recombinant production of membrane proteins or 
intracellular proteins.
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chain (IL-13Rα1) by a silkworm-baculovirus system. They constructed 
the recombinant BmNPV virus [27] encoding the cDNA of IL-4Rα or 
IL13Rα1 with the Fc domain of murine IgG2a, and injected it into the 
body cavity of silkworm larvae. Each recombinant protein was purified 
from haemolymph by sequential chromatography using Protein-A 
resin and anion exchange resin. Finally, 0.19 mg of IL13Rα1 and 0.014 
mg of IL-4Rα without the Fc domain were successfully purified from 
1 ml of haemolymph (Table 1). As reported previously [28], these 
receptors formed a heterodimer and bound to IL-13. In addition, 
a surface plasmon resonance (SPR) analysis was performed, and the 
Kd value of IL-13 against IL-13Rα1-Fc was determined (2.3 nM) [26]. 
This was consistent with the previously reported Kd value (≈ 4 nM) 
calculated by a radiolabeled IL-13 binding assay, using IL-13Rα1 
expressed on mammalian CHO cells [29].

KIR2DL1 Using BmNPV Bacmid DNA
Human killer cell immunoglobulin-like (KIR) family genes, 

encoding transmembrane-type Ig-like glycoproteins, are expressed on 
natural killer cells and some T cell subsets [30] and mediate several 
forms of immune regulation [31]. Our group succeeded in the high-
level expression of a KIR family ectodomain, KIR2DL1, by using the 
BmNPV bacmid DNA-silkworm larvae system [17]. Using one-step 
affinity chromatography with a hexahistidine tag, ~ 0.2 mg of highly 
purified KIR2DL1 ectodomain was successfully obtained from the 
haemolymph of one larva (Table 1). The SPR analysis revealed that the 
KIR2DL1 bound to its physiological ligand, HLA-Cw4, with a Kd of 
8.6 ± 0.69 μM [17]. This was consistent with the previous report, using 
refolded KIR2DL1 from an E. coli expression and refolding system (Kd 
≈ 3.3 μM) [32]. In addition, a circular dichroism spectrum analysis 
suggested that the secondary structure is β-sheet rich, indicating 
the proper folding of the KIR2DL1 ectodomain [33]. The high level 
expression of the KIR2DL1 ectodomain was previously established 
with the E. coli system and refolding technique. However, the silkworm 
expression system can provide a sufficient amount of protein for several 
investigations, without large-scale cultivation and refolding. 

Fas Receptor Using BmNPV Virus
The Fas receptor (FasR)-Fas ligand (FasL) system is an effective 

apoptotic system used by immune cells. The recombinant expression 
of the ectodomains of these proteins, using various expression systems, 
was previously reported [34-38]. Muraki and Honda [39,40]  applied 
the silkworm expression system to produce the FasR ectodomain 
by a simple procedure using silkworm larvae. They generated the 
recombinant BmNPV virus encoding the fusion protein, composed 
of the human FasR ectodomain and the Fc domain of human IgG1 
(hFasRECD-Ig), based on the BmNPV genome lacking the cysteine 
protease gene [27]. The recombinant virus was injected into silkworm 
larvae, and hFasRECD-Ig was successfully secreted as a disulfide-linked 

dimer in the haemolymph. Using protein G affinity chromatography 
and anion exchange chromatography, they purified 22.5 mg of 
hFasRECD-Ig from 26 ml of haemolymph (Table 1). As compared 
with the Sf9 system, the expression level of hFasRECD-Ig in silkworm 
haemolymph was 150 times higher. Using the recombinant human 
FasL ectodomain produced from a Pichia pastoris expression system 
[41,42], they confirmed the binding activity of hFasREDC-IG to hFasL 
by immunoprecipitation and size exclusion chromatography. 

These examples of IL-4R, IL13R, KIR2DL1, and FasR expression 
clearly showed that the BmNPV bacmid DNA-silkworm expression 
system is quite useful for the efficient production of ectodomains, as 
secreted, functional recombinant proteins, in comparison with the 
insect cell expression system.

GPCRs

GPCRs are seven transmembrane-type proteins with cytoplasmic 
regions that associate with a trimeric G protein, composed of alpha 
(Gα), beta (Gβ), and gamma (Gγ) subunits [43]. The binding of specific 
ligands (peptides, lipids, steroids, etc.) to the extracellular region of 
GPCRs causes the activation of the GTPase activity of the trimeric G 
protein, which is released from the GPCRs. This dissociation triggers 
the following signal transduction to induce several biological events 
related to diseases [44,45]. Thus, although approximately ~50% of 
commercial drugs target GPCRs [46], the molecular basis of their 
effects on GPCRs remains unclear. 

To develop new effective drugs as agonists or antagonists of GPCR 
ligands, many researchers are trying to elucidate the molecular basis 
of drug effects on GPCRs by physicochemical methods, including the 
determination of three-dimensional structures. In addition, despite 
the presence of several hundred GPCRs in the human genome [47], 
the physiological ligands of many GPCRs remain unknown, and thus 
these GPCRs are designated as “orphan receptors” [48]. To understand 
orphan GPCRs, many researchers are searching for physiological 
GPCR ligands by ligand screening assays. For this purpose, large 
amounts of recombinant GPCRs are often required; however, GPCRs 
are quite difficult to express, due to their low solubility and instability. 
To successfully express sufficient amounts of functional GPCRs, 
several expression hosts have been employed [49]. Among them, the 
BEVS are a powerful tool for the large-scale expression of functional 
GPCRs. In fact, the first-determined three-dimensional structure of a 
human GPCR, β adrenergic receptor, utilized the recombinant protein 
produced by BEVS with insect cell lines [50-52]. Silkworm technology 
is expected to be a simpler, user-friendly alternative method to express 
GPCRs.

Classification Name Method Tissue Tag Yield Ligand-binding affinity (value from other hosts) Reference

Immunore-
ceptor

IL4-Rα virus haemolymph Fc 0.19 mg/ml haemolymph N.D. (Binding activity was confirmed by gel filtration 
analysis) [26]

IL13-Rα virus haemolymph Fc 0.014 mg/ml haemolymph Kd = 2.3 nM (≈ 4 nM, CHO cells [29]) [26]
KIR2DL1 bacmid haemolymph 6xHis ~0.2 mg/larva Kd = 8.6 ± 0.69 μM (33 μM, E .coli [32]) [17]

FasR virus haemolymph Fc 22.5 mg/26 ml haemolymph N.D. (Binding activity was confirmed by immunoprecipi-
tation and size exclusion chromatography) [39]

FasR virus haemolymph Fc 13.5 mg/25 ml haemolymph N.D. (Binding activity was confirmed by size-exclusion 
chromatography) [40]

GPCR
u-opioid receptor transgenic fat body 6xHis 150–250 ng/larva* Kd = 1.4~2.1 nM (0.37 ± 0.09 nM, Sf9 [55]) [54]
nociceptin receptor bacmid fat body 6xHis N.D. EC50 = 9.3~24 nM (12 nM, Sf9 [62]) [56]

Table 1: Human immunoreceptors and GPCRs expression using silkworm.
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µ-Opioid Receptor Using Transgenic Silkworm
In 2009, Tateno et al. [53] generated a transgenic silkworm 

expressing the µ-opioid receptor, one of the human GPCRs related 
to the analgesic action of morphine [54], in the silk glands and 
fat body of larvae. To our knowledge, this is the first report of the 
successful expression of a recombinant human GPCR in silkworm. 
The recombinant human µ-opioid receptor exhibited a similar level 
of diprenorphine-binding activity (Kd = 1.4 ± 0.95 ~ 2.1 ± 1.4 nM) to 
those produced from Sf9 cells (Kd = 0.37 ± 0.09 nM) and HEK293 cells 
(Kd = 0.29 ± 0.26 nM) [55]. They estimated that one transgenic larva 
expresses ~250 ng of μ-opioid receptor (Table 1), equivalent to ~20–
30 ml of Sf9 culture. The establishment of transgenic strains is time-
consuming and requires laborious technical skills. However, this report 
clearly showed the potential of the silkworm as an attractive host for 
the expression of recombinant human GPCRs. 

Nociceptin Receptor Using BmNPV Bacmid DNA
Using the BmNPV bacmid system, the human nociceptin receptor 

was expressed in silkworm larvae [56]. Nociceptin receptor, a member 
of the opioid receptor family, is expressed in the central nervous 
system, and its physiological ligand, called nociceptin peptide, binds 
to the extracellular region to control several neurological responses 
[57,58]. Upon the injection of the recombinant BmNPV bacmid 
DNA, silkworm larvae expressed human nociceptin receptor on their 
fat body. The microsomal fraction expressing recombinant human 
nociceptin receptor, fused with the Giα subunit at C-terminus [59-62], 
exhibited [35S] GTPγS-binding activity dependent on the nociceptin 
concentration. The EC50 value (9.3 ± 3.4 nM) was consistent with the 
previous report using recombinant Giα-fused nociceptin in Sf9 cells 
(EC50 = 12 nM) [62]. The expression level of nociceptin receptor was 
not determined; however, the microsome fraction from one larva was 
sufficient to perform 500 ligand-screening assays [56].

Conclusion
The silkworm expression system is a powerful tool for recombinant 

protein production [9]. In this review, we described the successful 
expression of human immunoreceptor ectodomains and human GPCRs 
with posttranslational modifications in silkworm. These proteins are 
considered to be important targets of biomedical research; however, it 
is generally difficult to express them by using bacterial and mammalian 
expression systems. The proteins were expressed in silkworm BEVS at 
higher expression levels and with simpler methodology than the other 
BEVS using insect cell lines. Therefore, the silkworm system will open 
the door to the biomedical analyses of these medicinal targets. 
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