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Introduction 
Metallic glasses exhibit unique combination of physical, chemical 

and mechanical properties due to their amorphous nature which lacks 
long range order and defects such as grain boundaries and dislocations 
[1,2]. In the past two decades, they have been rapidly developed for 
application in many fields. However, the disadvantages such as poor 
plasticity and limited dimensions hamper their large-scale industrial 
applications [3,4]. The most common method to improve plasticity 
of the monolithic bulk metallic glasses (BMGs) is to produce glassy 
composites by introducing nano- or micro-scale crystalline phases 
into the metallic glassy matrix [5-9]. On the other hand, intensive 
efforts have been made to overcome dimension limitation. Powder 
metallurgy process is an alternative route to produce large-size metallic 
glassy alloy parts. It is also favor to fabricate the glassy composites by 
dispersing crystalline particulates into the glassy matrix. Spark plasma 
sintering (SPS) as a newly developed rapid sintering technique, has a 
great potential for producing glassy composites while crystallization of 
the glassy alloy and coarsening of the dispersed particles are avoided. 
Furthermore, it is also a type of solid-state compression sintering 
technique which is similar to hot pressing sintering process, so that 
the sintered samples with the large-size and complicated shape can be 
produced [10,11]. 

In this paper, a short review on history of the technology, features 
of the spark plasma sintering process, and present status for application 
to develop large size bulk metallic glasses and their composites is 
presented. 

History and Features of Spark Plasma Sintering Process
The pioneering works related to the SPS process started in 1906 

when the first direct current (DC) resistance sintering (RS) apparatus 
was developed by [12], subsequently carried forward by [13] and 
[14,15]. In Japan, based on the idea of using the plasma on electric 
discharge machine for sintering metals and ceramics, a similar process 
was developed and patented in the early 1960s by [16,17]. However, 
because of the lack of application technology at that time, limited 
fields where it could be applied and unsolved problems associated 
with industrial production, equipment cost and sintering efficiency, 
it was not put to wide use. There was little literature on investigation 
of the SPS process until the latter half of the 1970s. In the late 1980s, 
the patent expired, and various companies utilized these techniques to 
manufacture equipments. However, these equipments were only small-
scale experimental systems, used mainly for new materials development. 
From the beginning of 1990 to now, the SPS process has been developed 
to the third generation. The use in the fabrications of large-size gradient 
and composite materials as a new industrial processing technology has 
been conducted [11]. 

Figure 1 shows a typical schematic illustration of the SPS system. 
It is mainly consisted of a sintering machine with a vertical uniaxial 
pressuring system where the sample and the dies are inside, a DC-
pulse power generator, mechanical driving unit, an applied pressure 
display and control unit, a position measurement and control unit, 

a temperature measurement and control unit, punch electrodes with 
water-cooled system, vacuum system with water-cooled system, a 
vacuum/air/gas atmosphere control unit and a cooling water control 
system [18]. 

In the SPS process, the pulse electric current (typically, a few 
thousands of amperes of average electric current) directly flows through 
the sintered powder materials, a volumic heating rate resulting from 
the Joule effect, which is in contrast to the conductive heat transport 
applied in conventional sintering systems, permits a rapid increase in 
temperature that is able to enhance the mass transport mechanisms 
responsible for sintering phenomena, thus improving the consolidation 
rate. Furthermore, the surface effects that is induced by the SPS process 
also plays a significant role in the densification process. Figure 2 shows 
possible electric current path through powder particles inside the die 
and the temperature image on powder particles surface during the SPS 
process. 

Numbers of papers have described the various physicochemical 
phenomena during spark plasma sintering process [10,11,18-29]. The 
detail was summarized in the literature [5]. Because of an absence 
of the direct evidence about spark discharge in the spark plasma 
sintering process, some publications also called it as pulse electric 
current sintering (PECS) or plasma-activated sintering (PAS) process 
[20,21,23-30]. 
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Figure 1: Schematic illustration of a spark plasma sintering equipment [18].
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In summary, high heating rate (up to 1000 K min-1), the effect of 
the current or electric field, and the application of pressure are mainly 
features of the spark plasma sintering technique. 

Present Status 
Since an economical SPS system has been developed, this 

process has become more attractive for the development of advanced 
materials and the sintering/synthesis of those materials that are very 
difficult to be sintered by the conventional sintering processes such 
as hot pressing and hot isostatic pressing processes. Using the spark 
plasma sintering process, pure metals, alloys, ceramics, polymers, 
composites, superconductors, thermoelectric materials, functionally 
graded materials (FGMs), and so on, have been produced. During the 
last 20 years, the number of papers related to sintering/synthesis of 
the materials by the SPS technique, as shown in figure 3(a), exhibits 
a exponential increase. At present, about 500 papers per year are 
published. The data was collected from ISI Web of Knowledge.

Based on the features of the spark plasma sintering process, 
sintering/synthesis of the materials can be carried out at a lower 
temperature and in a shorter time than that by conventional sintering 
processes. Therefore, the SPS process is favored to sinter materials 
that need suppress crystallization and grain growth, such as metallic 
glasses and their composites. During the last 10 years, a large number 
of studies about consolidating metallic glasses and their composites 
by using the SPS process have been carried out. Figure 3(b) shows the 
number of papers associated to metallic glasses produced by using the 
SPS technique, exhibiting a continuously increase.

Using the SPS process, large-size and high-strength Zr-based [31-
34], Cu-based [35-37], Ni-based [5,6,38-40], Fe-based [40-43], Ti-
based [44-47], Mg-based [48,49] and Al-based [50] BMGs and their 
composites have been developed. It has been demonstrated that the 
BMGs produced by the SPS process exhibited high strength which 
was similar to that of as-casting glassy alloys. By spark plasma sintered 
the mixed powders of the glassy alloy powder blended with metal or 
ceramic particulates, bulk metallic glassy composites simultaneously 
with ultra-high strength, enhanced ductility, and satisfying large-size 
requirements have been produced.
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Figure 2: Possible electric current path through powder particles inside the die 
(a) and the temperature image on powder particles surface (b) [18]. 
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Figure 3: Number of papers published on: (a) the SPS process and (b) metallic 
glasses produced by the SPS process. Numbers collected from ISI Web of 
Knowledge. Data for 2013 appear incomplete. 
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