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Introduction
Chemical pollution of aquatic systems has already become a major 

public concern in almost all parts of the world. It occurs because of the 
constant release of pollutants and the intense development of several 
activities that lead into aquatic systems a large variety of synthetic 
and geogenic compounds [1,2]. Among the released pollutants, heavy 
metals are frequently found in environmental samples (sediments, 
water, organisms and etc.) and its presence is mainly correlated with 
anthropogenic activities [3]. 

Heavy metals are commonly found in urban and industrial sewage, 
coming from geochemical and anthropogenic sources. Soil represents a 
major sink for heavy metal ions, which may then enter the food chain 
via plants or leaching into ground water [1]. Also, fertilizers, inks, 
pharmaceutical and cosmetic products and a large amount of synthetic 
products contribute to the environmental contamination by heavy 
metal, as well as their manufacturing processes [3,4]. These hazardous 
pollutants can enter into the aquatic systems through irregular discharge 
of urban wastewater, superficial drainage, agricultural activities and 
atmospheric deposition [5-7]. 

After to be released and through the processes of chemical 
adsorption and physical precipitation, metals can remain accumulated 
in the sediment for a long period [8]. Besides readily accumulate, the 
sediments also could serve as repository of these and other pollutants in 
aquatic environments when disturbing events occur [9]. 

Studies developed to evaluate heavy metals concentrations in the 
aquatic systems should consider the lithogenic/geogenic origin of 
these compounds. Lithogenic micro pollutants, as selenium, arsenium, 
chromium and cobalt, can be found in increased concentrations because 
the elevation of their content in geological formations or because reactions 
responsible to transform environmental conditions and consequently 
change the partitioning behavior on the aquatic system [1,2,10]. Therefore, 

high heavy metal concentrations might also result from natural processes 
and the presence of these compounds cannot be only from anthropogenic 
pollution [5]. These geochemical and background reference values are very 
important in environmental studies of the pollution and may be used to 
assess the natural source of trace elements [11]. 

Metal accumulations in sediments have been frequently investigated 
in urban rivers. Some elements are commonly found in specific sources, 
for example, cadmium and chromium are mainly present in domestic 
sewage [4], lead is mainly linked to traffic activities, cadmium to 
application of fertilizers, while copper, manganese, mercury and zinc 
are often associated with street dust samples from different urban and 
industrial areas [12,13]. The metals such as astatine, vanadium, lead and 
cobalt were already related to mixed natural and anthropogenic sources. 
Nevertheless, different parts of the world can present different natural 
sources due the diversity of soil compositions [12]. 

The history of the adjacent environment can be reflected in the 
presence of metals accumulated in sediments from lakes and rivers. 
Sediment cores can be used to reconstruct the scenario of land use, 
growing of urban cities and industrial activities, correlating with levels 
of these chemical pollutants, since remote decades [10,14,15]. The 
cores are useful for this purpose, once it can present data from up to 
thousands of years ago [16]. 

*Corresponding author: Karina Scurupa Machado, Department of Production 
Engineering, Federal University of Parana, Curitiba-PR, 81531-980, Brazil, Tel: +55 
41 995115715, E-mail: ksmachado@hotmail.com  

Received November 14, 2016; Accepted January 11, 2017; Published January 
18, 2017

Citation: Machado KS, Al Ferreira PA, Rizzi J, Figueira R, Froehner S (2017) Spatial 
and Temporal Variation of Heavy Metals Contamination in Recent Sediments from 
Barigui River Basin, South Brazil. Environ Pollut Climate Change 1: 108. doi: 
10.4172/2573-458X.1000108 

Copyright: © 2017 Machado KS, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the original 
author and source are credited.

Abstract
Heavy metals (Cd, Cr, Cu, Pb, Mn and Zn) and artificial radionuclides (137Cs and 210Pb) were investigated in three 
sediment cores from the Barigui river Basin, South Brazil, in order to reconstruct the spatial and temporal evolution of 
the pollution by heavy metals. According to the reference standards established by the Canadian quality guidelines, 
the area presents levels of pollution considered significant. Enrichment factors (EFs) were calculated to estimate 
the level of contamination in these sediment storages over time. EFs showed a steady increase from bottom to 
core top throughout the years and this pattern is present in all cores. The magnitude of the EFs suggests that 
higher contamination is observed in the central and lower parts of the basin, due to regional history and geographic 
characteristics. The evolution of the contamination by heavy metals is more intense as from the middle of the 19th due 
to the high demographic, economic and industrial growth in the region. This study clearly contributes to understand 
when the anthropogenic activities became harmful for the environment in South Brazil, which events were more 
significant and which parts of the studied area were more affected.
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In this study the concentration of heavy metals in recent sediments 
from three sectors of the Barigui River basin (upper, central and lower) 
was measured with the following objectives. i) To assess the level of 
contamination of the area by heavy metals, based on international and 
reliable reference standards, ii) To analyze the spatial variation of the 
heavy metals contamination along the basin, iii) To reconstruct the 
historical evolution of heavy metals contamination and iv) To identify 
the most significant sources of heavy metals pollution over time.

Materials and Methods

Study area
Barigui River watershed, located in Brazil (25º13’’24’-25º38’’23’S; 

49º15’’00’-49º22’’29’W), runs through the city of Curitiba, and it is 
around its basin that a third of its population live. The road system, local 
industries and the urban sewage are the main sources of environmental 
impact of this watershed, especially since the 1950s when there was a 
rapid and unorganized peak in urban occupation activities [17].

This watershed has a 279 km² drainage basin and can be divided 
into three sectors with distinct characteristics. The upper sector 
presents low urbanization, intermediate road system development and 
some vegetation cover. The central part is dominated by its urban and 
commercial occupation, while the main industrial conglomerate of the 
Paraná state and a local landfill site are in the lower sector [18].

Barigui River is 60 km long and cuts through the city of Curitiba 
with N-S orientation. It is the destination of urban and industrial wastes 
and that material has riverine sediments as final sink. This region was 
chosen as a study area of inorganic contamination due to the need for 
a historic data collection on heavy metals [19]. 

Sand and silt are the particles size that predominate in the Barigui 
River basin, with a sedimentation rate relatively constant, over time 
(0.44 gcm−2.yr−1, ± 0.09) and a drainage pattern predominantly dentritic 
[17,19].

Sampling and sample treatment

Three sediment cores were sampled in the center of the river, in 
flat areas of the different watershed sectors: core E-0 in the upper 
sector, core F-0 in the central sector and core G-0 in the lower sector. 
Sampling sites are shown in Figure 1. Each core was divided into 2 cm 
deep subsamples between 0 and 40 cm, 4 cm deep subsamples between 
40 and 60 cm and 10 cm deep subsamples between 60 and 80 cm. Those 
subsamples were frozen and lyophilized.

Analyses

The granulometric distribution of the sediments was assessed 
through laser diffraction integrated technique in a laser diffraction 
granulometer (Cilas, model 1064, 0.03-2.36 mm range). For this 
analysis, the granulometric ranges were separated with standardized 
sieves to sort out the sand, silt and clay fractions. Then the fine-grained 
fractions were analyzed in the granulometer. The total carbon content 
(TOC) was measured using a CHN analyzer (Carlo Erba, model 
FLASHEA 1112) with the samples treated as described previously.

Radiometric technique involving unsupported 210Pb and 137Cs was 
used to create an age model of the sediment cores. For this analysis, 10 
g of sediment were transferred into air-sealed cylindrical polyethylene 
containers for gamma counting in a hyperpure low-background 
gamma spectrometer (EG&G ORTEC, model GMX25190P). The 
method, previously described by Figueira [20], consists of detector 
calibration, background radiation detection, efficiency assessment and 

sample counting for 50,000 s. The determination of age of sediment 
deposition was performed using the CRS (Constant Rate of Supply) 
model [21], which considers that unsupported 210Pb is supplied to the 
sediment at a constant rate through time. The results of 210Pb modeling 
is then compared to the 137Cs historical peak of the past nuclear fallout 
maximum of 1963 to evaluate the goodness of the generated age model.

Based on the half-life of 22.2 years of 210Pb, its measurement enables 
the dating of samples at a theoretical maximum of 178 years (7 half-
lives) or, in the case of this study, since the 1830s. The interpretation 
of the results respected this dating maximum; however, the graphic 
representing the variations in time of the levels of heavy metal also 
have ages of sediment deposition beyond this limit. This was only done 
to give a sense of continuity to the generated data that goes past this 
boundary. Figure 2 presents the vertical profiles of the radionuclides of 
interest. It can be seen that all cores presented the predicted behaviour 
for a water body with little recent changes on the local sedimentation 
rate. This data was used in the age dating based on the CRS model 
equations from Appleby and Oldfield [21]. Moreover, the pattern of 
137Cs indicated the occurrence of a vertical maximum in each core, 
which can be related to the past nuclear fallout maximum of 1963.

For the heavy metals analysis, approximately 1 g of sediment was 
treated with an acid digestion technique with HCl and HNO3 [22]. The 
digested extract was then analyzed in an atomic absorption spectrometer 
(Perkin Elmer, model 2020FS). Recovery rates were between 85 and 
100% for all elements and analytical precision, evaluated with the 
analysis of 6 homogenized sample replicas, reported a standard 
deviation lower than 9% for all elements. All analytical blanks and 
standards were regularly quantified between each 15-samples series.

Data processing

For an unbiased interpretation of heavy metals levels in sediments, 

Figure 1: Map of Barigui river basin with the current land use, the location of the 
sampling points and the main pollution sources in the past.
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the choice of the background values is of utmost importance. 
Even though many studies use predefined mean values or Earth’s 
crust mean abundance, the best alternative is the comparison with 
uncontaminated sediment of similar mineralogy and texture [23]. 
In this study, the concentration of the core’s bottom most samples 
was used as background value, which is considered to be previous to 
the human influence in the region. The evaluation of contamination 
intensity was assessed with the |enrichment factor (EF) [15], calculated 
with Equation 1.

EF=[(Cm/Cn)sample]/[(Cm/Cn)background]

Where (Cm/Cn) sample is the concentration of the element of interest 
(m) normalized with the reference element (n) in the sample, and 
(Cm/Cn)background is the concentration of the element of interest (m) 
normalized with the reference element (n) in the core’s bottom most 

sample, i.e., the background sample. Based on the radiometric age 
modelling, this bottom most sample is previous to human influence 
in the area.

Moreover, to further evaluate the contamination of heavy metals 
in the Barigui River, the metals concentrations of the three cores 
were compared to ISQG (interim sediment quality guideline) and 
PEL (probable effect level) reference values for superficial freshwater 
sediments [24], to evaluate the contamination of heavy metals in the 
Barigui River.

The statistical data analysis involved ANOVA to check the existence 
of statistically significant differences among data variables variance 
(heavy metals, TOC, granulometry) variance for the cores and Pearson 
correlation analysis to assess the presence of relationships among the 
data variables for each sediment profile.

Discussion
Sediment composition

Particle size has a profound influence on the accumulation of heavy 
metals in sediments. Fine-grained sediments frequently present higher 
levels of heavy metals due to its higher grain superficial area when 
compared to the grain volume, in addition to its enrichment in organic 
matter enrichment and Fe-Mn oxides [25].

Being so, significant vertical granulometric variations can lead to 
characteristics in the heavy metals distribution that do not represent 
the real changes on its concentrations. In this study, the granulometric 
analysis (Table 1 and Figure 3) showed that sand (90-2360 µm) and silt 
(3-64 µm) are the dominant fractions in all three cores. This dominance 
can be related to hydrological factors of the region, such as intensity 
of water currents and water column depth. Heavier particles (such 
as sand) tend to deposit, whereas lighter ones (such as silt and clay) 
tend to be transported by the riverine flux [26]. The observed tendency 
of both silt and clay (<3 µm) distributions are similar and inverse to 
the sand distribution (Figure 3). All cores presented some level of 
vertical variation in the granulometric distribution; however, there is 
no statistically significant difference (p>0.05) in the cores’ particle size 
composition.

Regarding TOC, cores F-0 and G-0 presented a vertical reduction 
in TOC content. For core E-0, it was observed a statistically significant 
(p<0.05) difference in TOC variance, probably due the local 
characteristics such as the predominance of vegetation cover, which is 
a natural source of organic matter in the watershed.

The concentrations of the heavy metals presented strong and 
significant correlation (p<0.05) with all granulometric fractions in 
cores F-0 and G-0, which can be taken as an indicative of the strong 
influence of the sediment core composition on the deposition of heavy 
metals. In core E-0, the absence of such correlations can be related to 
the other factors, such as a deeper association of the heavy metals with 
Fe-Mn oxides content, carbonate levels and redox potential [27].

Distribution of heavy metals in recent sediments

The distribution of heavy metals (Figure 4) showed that, before the 
1850s the values suffered little variation and can be taken as the regional 
background. Fluctuations took place from the 1850s and a substantial 
increment occurred from the 1950s, with several value peaks. This 
pattern is due to the responses of the watershed to the anthropogenic 
activities in the region since the 1850s.

The comparison of the concentrations of heavy metals with the 

 

Figure 2: Vertical profiles of 210Pb and 137Cs in the sampled cores. Continuous 
line=predicted behaviour of unsupported 210Pb; dashed line=moving average of 
137Cs. (a) core E-0, (b) core F-0, (c) core G-0.
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Canadian quality guidelines showed that, in all sampled cores, the 
maximum values of Cd, Cr, Cu, Pb and Zn (Table 1) were above the 
ISQG threshold and below the PEL values [24], being just Pb in the 
core E-0 as exception for this statement. This range of values is typical 
for regions with considerable levels of human pollution. The observed 
mean values in all three cores are characteristic of recent sediment from 
urban areas, according the comparison with other literature reports on 
heavy metals contamination [15,27-29]. 

As reported in Table 1, there is little variation of the heavy metal 
content among the cores. The highest values of Cu were observed in 
core E-0, Pb, Zn in core F-0 and Cd, Cr in core G-0. This distribution 
can be due to the specific features of each sample site and the geographic 
distribution of the main pollution sources, discussed below in the text. 
Those observations are corroborated by the ANOVA performed with 
the data from Table 2, showing that there is no statistically significant 

difference (p>0.05) of the heavy metals levels among the cores (the only 
exception is Cr on core G-0, p<0.05).

Enrichment factors of the heavy metals

The study of sediment vertical profiles can be an important source 
of information of historic contamination in watersheds. Metals in 
the environment can be originated from lithogenic sources (natural 
intemperism of rocks and minerals) or anthropogenic ones (derivative 
from human activities) [27]. Therefore, the degree of pollution can be 
estimated from the comparison of the observed levels of heavy metals 
before human activities and levels above this distinguish the area as 
anthropogenically affected [30].

However, it is necessary that a differentiation between heavy metals 
from natural to anthropogenic loads, in other words, the influence 
of lithogenic-originated metals in the regional deposition of metals, 

E-0 F-0 G-0 CCME, 2002
Mean Min. Max. S.D Mean Min. Max. S.D. Mean Min. Max. S.D. ISQG PEL

Cd 1.3 0.3 2.6 0.7 1.4 0.3 2.7 0.7 1.2 0.3 3.4 0.8 0.6 3.5
Pb 21.1 7.5 58.5 11.6 31.8 7.5 68.5 18.6 24.3 6.5 49.0 12.0 35.0 35.0
Cu 29.4 6.8 77.7 17.2 28.4 7.1 61.5 18.9 20.6 1.6 58.7 12.8 35.0 197.0
Cr 28.3 7.2 69.8 15.4 39.5 8.1 75.6 24.6 69.7 10.9 204.4 48.3 37.0 90.0
Mn 133.7 48.8 228.9 52.5 103.6 42.9 207.4 39.4 97.8 62.0 167.7 26.8 - -
Zn 101.4 53.3 229.0 51.0 135.0 31.8 312.4 92.0 143.0 48.1 291.6 81.9 123.0 315.0

TOC 5.4 1.9 8.2 1.2 2.6 0.6 4.3 1.3 2.6 0.3 5.1 1.5 - -
Clay 7.2 2.1 13.8 3.1 5.7 0.5 12.8 2.6 6.6 0.5 10.6 3.0 - -
Silt 29.3 11.6 59.2 12.4 31.4 2.7 55.7 14.1 37.4 2.8 61.8 16.9 - -

Sand 63.6 27.0 86.1 15.4 62.9 31.5 96.9 16.3 56.0 27.6 96.7 19.8 - -

Table 1: Averages, ranges and standard deviation of the metals concentrations (mg.kg-1), compared with the ISQG (Ínterim Sediment Quality Guideline) e PEL (Probable 
Effect Level) values from Canadian Quality Guidelines, and percentages of TOC, sand, silt and clay of the sediment cores.

Figure 3: Vertical distribution of particle size and TOC of all sediment cores in percentage.
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which is observed in the significant correlation with the granulometric 
fractions (Table 2). The enrichment factor is a tool for such an 
evaluation, distinguishing the deposition of natural levels of elements 
to those that are enriched by human activities [31].

The enrichment factors (EFs) are interpreted according to 
Sutherland [32], where EF<1 indicate no enrichment, EF between 1 and 
2=low contamination, EF between 2 and 5=moderate contamination, 
EF between 5 and 20=significant contamination, EF between 20 
and 40=high contamination and EF>40 indicate extremely high 
contamination.

Al, Co, Fe and Ti have been consistently used as reference metal 
in the EF calculation [15,23,27,28]. Still, the choice of the reference 
metal is not universal and depends in the geological, hydrological and 
chemical features of the study region [32]. In this study, Mn was chosen 
as a reference element because: 1) Mn is strongly associated with the 
fine-grained particles, 2) It has geochemical characteristics similar to 
many commonly studied trace elements, 3)It has a tendency of uniform 
distribution in sediments [33]. Liu et al. [34] and Loska et al. [35] 
reported good results using Mn as a reference metal for EF calculation.

The observation of the vertical variation on the EF (Figure 5) shows 
a steady increase of the EF from bottom to core top throughout the 
years, and that this pattern is present in all the cores. Values close to 
the background were observed until the 1850s (no enrichment). From 
the 1850s there is EF between 1 and 2 in core E-0 (low contamination) 
and between 2 and 5 in cores F-0 and G-0 (moderate contamination). 
From the 1950s a new increment is observed until 2011, EF between 2 
and 5 in core E-0 (moderate contamination) and above 5 in cores F-0 
and G-0 (significant contamination).

According to the magnitude of the EFs, it can be seen that a sequence 
of intensity of pollution can be established among the cores, being 
G-0>F-0>E-0 (Figure 5), the contamination probably being stronger 
in F-0 and G-0 due to the historic and geographic characteristics of the 
region, explained in detail below.

Historical changes on the heavy metals pollution

Human activities have magnified the accumulation of heavy 
metals in water bodies and it became crucial the understanding of this 
enrichment process, as well as the main sources and deposition drivers. 
The primarily anthropogenic metals studied here (Cd, Cu, Cr, Pb, Zn) 
presented three distinct stages or stratigraphic zones of accumulation 
in sediments [36]. They can be called: chemozone I (before the 1850s) 
- before the human influence, chemozone II (between the 1850s and 
the 1950s) - representing the arrival of large immigrant contingents 
in the region and chemozone III (from the 1950s to the present) - 
period of great demographic, economic and industrial growth in the 
study area. The averages, ranges and standard deviation of the metals 
concentrations (mg.kg-1) per chemozone are presented in the Table 
3. Chemozone I represent background values, while chemozone III 
reflects high levels of anthropogenic activities.

Based on Figure 5, anthropogenic alterations were observed on the 
heavy metals contents from the 1850s, period of intense immigration, 
predominantly Polish immigrants, to the area, which tripled the 
population of Curitiba in less than 20 years [37,38]. Factors such as 
deforestation, beginning of agricultural activities and use of compounds 
such as paints and insecticides (rich in heavy metals) [39], contributed 
to the increase of heavy metals in the environment, given the levels of 
heavy metals in such human products [40-42].

The agrarian nature of Poland and the shortage of lands explain 
most those immigrants (90%) being subsistence farmers [43], activity 
which, together with livestock raising, was their main income source 
[37,38]. Organic fertilizers were commonly used by those activities due 
to the lack of synthetic ones and poor soil (mainly sandy) (Figure 3). 
According to Pereira et al. [42] such fertilizers present high levels of 
metals (300 mg kg-1 Cu, 500 mg kg-1 Zn, 2 mg kg-1 Cd, 62 mg kg-1 Pb 
and 17 mg kg-1 Cr) and are subject to being naturally transported to the 
adjacent water bodies. Evidences also point to the use of insecticides 
in the region, which was a practice present in the Polish culture of the 

Figure 4: Vertical distribution of selected heavy metals in the sediment cores in mg.kg-1.
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19th century, both in agriculture and for the eradication of anthills [41]. 
Salts such as lead hydrogen arsenate and copper acetoarsenite (Paris 
green) (representatives of the first generation of pesticides) were used 
as pesticides [44].

Concentration peaks of Cr and Pb can be observed in cores F-0 and 
G-0 between 1890 and 1920 (Figures 4 and 5) and can be due to the 
presence of local tanneries managed by the Municipal Code of Postures 
(Código Municipal de Posturas) decreed in 1895 [39], whose wastes 
present high levels of Cd, Cr and Pb [45].

The considerable increase in the reported contamination levels 
since the 1950s (chemozone III) can be related to the demographic, 
economic and industrial development of the city. In 1960, the 
population of Curitiba raised from 180,000 (in 1950) to 350,000 [39], 
caused by rural immigration from external regions to the urban areas 
of the city [46]. In 2000, the population goes from 870,000 (in 1970) to 
2.7 million, motivated by the economic development of the region [46]. 
Previous studies have shown that the accumulation of heavy metals in 
sediments is strongly influenced by urbanization [47].

Therefore, uncontrolled urban growth usually results in decline 
in sanitation conditions with the increase of urban wastes, which can 
negatively impact the surrounding environment if release without 
previous treatment. That given that approximately 150 mg kg-1 Zn and 
40 mg kg-1 Cu and Pb can be found in untreated urban wastes [48].

Other important contributors of heavy metals related to 
urbanization and demographic increase are cars and metallic structures 
[23]. The main activities that release metals to the environment related 
to vehicular traffic are: tire and brake wearing (Cd, Cu and Zn) [27], fuel 
combustion (Pb) [49] and engine fluids leaks (Cu and Cr) [50]. Those 

vehicular emissions presented a considerable increase in the region 
from 1960, period of profound economic growth in Brazil, called “the 
economic miracle”, a sudden rise in the collective purchasing power. 
In this period, there was a 300% increase in car sales in the country 
[17,19,51,52], which was a factor in the intensification of the deposition 
of heavy metals in the sampled cores since 1960.

Besides the automotive sector, the chemical industries in Curitiba 
also passes through a growth period since 1960, concurrent to the 
development of the city, and went from 6.5% to 48.8% of the industrial 
fraction of the region between 1974 and 1980 [51]. In the industrial 
scenario of the area, the pulp/paper and metallurgical industries stand 
out [51], and their wastes have high levels of heavy metals [53,54]. Such 
industries are distributed throughout the whole watershed, but are 
dominantly based on the central and lower sectors, areas of the cores 
F-0 e G-0. This explains why those cores have higher levels of metals 
than core E-0.

For those reasons explained above, the spatial distribution of 
heavy metals and its variation over the years is directly related to the 
characteristics of the area of sampling site. The impacts of the local 
street network and urbanization act over all core sites and are the main 
sources of anthropogenic contamination for core E-0, and moderately 
act over in the regions of cores F-0 and G-0.

Industrialization is the main contamination driver for core F-0. As 
can be seen in Figure 5, there is a contamination peak for all elements 
of interest between 1960 and 1970. In 1950, the implementation of 
three landfill sites in the area is another contamination source for the 
core. Bakis and Tunca [55] reported levels of 422 mg kg-1 Cu, 2,394 mg 
kg-1 Zn, 120 mg kg-1 Cr and 190 mg kg-1 Pb in landfill leachates.

Figure 5: Enrichment factors of the heavy metals of the sediment cores.
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Cd Pb Cu Cr Mn Zn TOC Clay Silt Sand
Cd 1
Pb 0.505* 1
Cu 0.527* 0.743** 1 E-0
Cr 0.280 0.325 0.598** 1
Mn -0.312 0.184 0.227 0.373* 1
Zn 0.731** 0.742** 0.626** 0.383* -0.067 1

TOC -0.235 -0.259 -0.009 0.040 0.153 -0.327 1
Clay -0.034 0.371* 0.217 0.034 0.018 0.289 -0.501* 1
Silt -0.042 0.41* 0.290 0.096 0.013 0.301 n0.449* 0.976** 1

Sand 0.052 -0.402* -0.281 -0.088 -0.027 -0.292 -0.501* 0.982** 0.996** 1
Cd Pb Cu Cr Mn Zn TOC   Clay   Silt Sand 

Cd 1
Pb 0.830** 1
Cu 0.843** 0.779** 1 F-0
Cr 0.790** 0.912** 0.889** 1
Mn 0.742** 0.912* 0.738** 0.539* 1
Zn 0.811** 0.804** 0.892** 0.897** 0.641** 1

TOC   0.463* 0.444* 0.356 0.348 0.249 0.421* 1
Clay   0.244 0.401* 0.377* 0.437* 0.079 0.440* 0.037 1
Silt 0.484* 0.493* 0.587* 0.604* 0.196 0.574* 0.097 0.791** 1

Sand -0.491* -0.516* -0.587* -0.605* -0.224 -0.597* -0.134 0.836** 0.985** 1
Cd Pb Cu Cr Mn Zn TOC   Clay   Silt Sand 

Cd 1
Pb 0.769** 1
Cu 0.707** 0.867** 1 G-0
Cr 0.652* 0.729** 0.694** 1
Mn 0.206 0.375 0.059 0.108 1
Zn 0.831** 0.884** 0.813** 0.670** 0.236 1

TOC   0.293 0.375 0.460* 0.447* -0.122 0.350 1
Clay   0.465* 0.356* 0.548* 0.504* -0.303 0.388* 0.733** 1
Silt 0.560* 0.453* 0.564* 0.496* -0.162 0.494* 0.652* 0.922** 1

Sand -0.546* -0.444* -0.562* -0.513* 0.179 -0.472* -0.657* 0.939** 0.995** 1
* Significant correlation P<0.05
** Significant correlation P<0.01 

Table 2: Pearson correlation coefficients among metals, TOC, sand, silt and clay.

E-0 F-0 G-0
Chemozone I

Mean Min. Max. S.D Mean Min. Max. S.D. Mean Min. Max. S.D.
Cd 0.6 0.4 0.8 0.1 0.5 0.3 0.9 0.2 0.4 0.3 0.6 0.1
Pb 12.2 8.9 21.2 5.1 9.6 7.5 12.1 1.8 9.7 6.5 15.7 4.1
Cu 11.6 6.8 25.3 7.7 9.2 7.1 10.5 1.3 7.0 6.5 7.6 0.5
Cr 11.8 7.2 15.7 3.1 10.0 8.1 11.0 1.1 15.1 10.9 17.4 2.9
Mn 128.9 85.4 209.2 57.8 92.0 69.6 124.4 23.1 88.1 62.4 107.0 19.7
Zn 61.0 53.3 68.4 6.5 54.6 42.3 66.5 11.8 57.9 48.1 78.4 14.2

Chemozone II
Cd 1.3 0.3 2.5 0.7 1.2 0.7 2.1 0.4 0.7 0.3 1.5 0.4
Pb 16.0 7.5 24.8 5.9 26.6 12.5 68.5 16.7 20.5 10.3 49.0 10.7
Cu 26.5 15.4 50.4 9.3 19.8 7.7 44.0 13.0 16.4 5.8 36.1 8.7
Cr 33.0 8.1 69.8 16.3 28.3 9.4 49.2 15.2 59.8 15.6 97.1 29.6
Mn 162.2 97.7 228.9 41.2 112.1 42.9 207.4 55.7 98.9 62.0 167.7 34.3
Zn 75.1 56.2 137.7 24.0 83.9 31.8 197.5 50.8 102.7 49.1 291.6 70.4

Chemozone III
Cd 1.8 0.9 2.6 0.5 2.0 1.2 2.7 0.4 2.0 1.0 3.4 0.7
Pb 30.3 20.5 58.5 12.1 47.2 26.3 56.3 8.9 34.3 24.2 41.4 5.9
Cu 40.3 16.6 77.7 19.0 45.8 17.8 61.5 12.8 31.5 24.4 58.7 9.7
Cr 31.2 13.9 52.4 13.2 64.1 45.8 75.6 9.9 104.3 62.5 204.4 47.5
Mn 107.3 48.8 191.4 49.5 100.5 53.0 133.8 23.7 95.0 74.1 117.8 14.3
Zn 146.0 93.4 229.0 49.0 222.5 133.4 312.4 69.5 221.0 184.1 255.0 22.2

Table 3: Averages, ranges and standard deviation of the metals concentrations (mg.kg-1) per chemozone.



Citation: Machado KS, Al Ferreira PA, Rizzi J, Figueira R, Froehner S (2017) Spatial and Temporal Variation of Heavy Metals Contamination in Recent 
Sediments from Barigui River Basin, South Brazil. Environ Pollut Climate Change 1: 108. doi: 10.4172/2573-458X.1000108 

Page 8 of 9

Volume 1 • Issue 1 • 1000108
Environ Pollut Climate Change, an open access journal 
ISSN: 2573-458X

The area of core G-0 is the most impacted region by the local 
industries, as it is in a downstream area and receives part of the 
urbanization impacts. Another aggravating factor is the occurrence of 
an oil spill in 2000 [56], which are probably responsible for the peaks in 
Cd, Cr, Cu and Pb levels in that year (Figures 4 and 5). Levels between 
100 and 2,000 mg kg-1 of those elements can be found in unprocessed 
crude oil [57].

Conclusion
The results of this study reflect the evolution of the anthropogenic 

impact in the aquatic system of Barigui River in the last centuries. 
Sediments accumulated during the 19th century were already affected 
by a moderate heavy metal contamination, mainly in the central and 
lower sectors of the basin. These data are well correlated with the arrival 
of large immigrant contingents in the region in the period between the 
middle of the 19th and the middle of the 20th. This contamination 
increased drastically in the sediments accumulated during the last 
decades. It was assigned to the high demographic, economic and 
industrial growth in the region, in 1950s onward, resulting in the 
contamination by heavy metals, mainly from vehicular traffic and 
substantial increase of urban and industrial wastes.

Metal deposition is strongly influenced by the sediment core 
composition in the central and lower parts of the basin, while in the 
upper part, which presents low urbanization, the deposition process is 
led by other factors, such as Fe-Mn oxides content, carbonate levels or 
redox potential. Background values for the selected metals are also well 
defined in this study. 

According to the enrichment factors the central and lower sectors 
of the basin are considered moderate to significantly contaminated, 
while the upper sector is considered low to moderate contaminated. 
These results corroborate with the classification based on the values 
established by the Canadian quality guidelines. The temporal and 
spatial difference in the metals contamination along the basin was 
assigned to the local characteristics related to the current and historic 
land use.

Finally, the pattern of results of this study provides a historic 
perspective that establishes a reference framework very important 
to determine: 1) when anthropogenic activities began to introduce 
excessively harmful changes in the Barigui River basin, 2) which events 
significantly contributed to accelerate this environmental change and 
3) which areas of the basin were more affected. Therefore, this study 
significantly contributes to the decision-making in order to protect the 
environment affected by the mentioned metal sources pollution in the 
present and future.
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