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Introduction
In the last 20 years speciation analysis has become an important 

method for separation, identification and quantification of different 
species of one individual metal. Hitherto, the total concentration of an 
element in a sample matrix was the sole aspect being evaluated. Today 
it is known that the total concentration of an analyte is not a sufficient 
criterion to assess the true hazardousness. But that bioavailability, 
mobility and toxicity are dependent to a great extent on the form of the 
element, i.e. oxidation states and different bonding forms [1,2].

As a consequence, elemental speciation is becoming more 
important. In most cases, liquid chromatography (LC) or capillary 
electrophoresis (CE) are used to separate the different species in 
the samples. Standard detectors like a UV-detector show only a low 
sensitivity and in addition no metals can be detected without e.g. further 
derivatisation of the metals. Hyphenation with other instruments 
being able to detect and quantify metals are necessary. Therefore, mass 
spectrometry with inductively coupled plasma (ICP-MS) is often used 
as detector. The ICP-MS shows a very low limit of detection (LOD), 
has a wide linear range and can be used for multi-element and isotopic 
analysis [3].

In 1980 speciation was introduced by Florence and Batley [4] for the 
identification and quantification of different species. But not before the 
90s the method has been accepted. Olesik [5] and Michalke [6] are the 
pioneers of the CE-ICP-MS hyphenation. Shortly after the publication 
of their work the number of new speciation methods increased but 
the application for natural samples was rare [4]. Whereas the number 
of publications with CE- ICP-MS slowly but constantly increased the 
papers with HPLC-ICP-MS increased rapidly [7].

Most research groups engaged with speciation analysis are 
particularly interested in the analysis of food, biological and medical 
samples like human serum, milk or urine [4]. Less common but not 
less important are environmental or geological applications. Especially 
important in this context are trace elements. They are essential for 
human health in low concentration but can become toxic in higher 
concentration. This is true for e.g. selenium, zinc, molybdenum and 
manganese [3]. Additionally, some metals are found alkylated in the 

environment due to anthropological input or after bio-methylation. 
Most interesting in this regard are the (semi) metals arsenic, 
bismuth, mercury, antimonium, lead and tin. A typical process is the 
biomethylation of metals on aqua-sediment-surfaces. The organic 
metal species are dissolved in the water and are accumulated in aquatic 
organisms for example methylmercury (MeHg(I)) in fish [8]. MeHg(I) 
is the most toxic species of mercury, can be accumulated through the 
food chain and is toxic for humans [9]. In some cases, it is possible that 
organometallic compounds interact with ligands present in the living 
organism. As a result, these toxic compounds are enabled to proceed 
along biochemical pathways normally only accessible for essential 
metals.

Hyphenation of CE and ICP-MS
The hyphenation of CE and ICP-MS as shown e.g. in Figure  1 

is used rarely compared to the hyphenation of HPLC and ICP-MS 
although the first hyphenation offers many advantages over the latter. 
For an analysis, only a small sample volume in the range of a few μL is 
required.

This is a great advantage for samples where only small volumes are 
available. Furthermore, the choice of the CE background electrolyte 
does not affect the plasma stability. Using smooth CE separation 
conditions, a separation of species with different charge and size in 
only one short analysis step is possible. High separation efficiency and 
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low costs are further advantages too [10,11]. The requirement of a low 
sample volume leads to a LOD which can be two orders of magnitude 
lower than in the case of hyphenation with HPLC.

As disadvantage, the applied separation conditions as well as the 
buffer- and electrolyte systems may influence the species distribution 
during the CE-separation thus falsifying the analytical outcome. 
Furthermore, due to the low sample flow rate from the CE instrument 
an additional make-up fluid can be necessary to guarantee a sufficient 
flow for constant nebulisation. Most of the time, nitric acid is used as 
make-up fluid due to its stabilizing influence on the Ar-plasma. With 
other make-up liquids the ICP becomes imprecise and shows a worse 
sensitivity. 

In the 90s the aims of the new CE-ICP-MS method were very 
elementary [6]. The total time of analysis was to be reduced and the 
LOD was to be lowered in order to enable the measurement of real 
samples taken from the environment. Today, the application of CE-
ICP-MS for metal speciation in natural samples is still a problem.

In this review, only original research articles concerning speciation 
of geological or environmental samples by CE-ICP-MS are discussed. 
Further publications dealing with speciation analyzes performed by 
CE-ICP-MS can be found in many other reviews over the last five years 
[12-27].

Geological Samples
The application of CE-ICP-MS for geological samples shows a high 

diversity of analytes, however, most of the studies analyze samples with 
spiked radionuclides as analytes. Objective of the research on the one 
hand is to optimate the separation method for different metal species, 
and on the other hand to evaluate complex stability constants of the 
spiked radionuclides with natural organic matter like fulvic or humic 
acids. An overview is given in Table 1.

CE-ICP-MS is used in the context of the safety analysis for nuclear 
waste repositories. Pitois et al. [28] have determined fission products 
for safety analysis in geological disposals for radioactive wastes and 
analyzed leak water of MOX fuel rods. The single ICP-MS method 
could not be used due to the isobaric interferences at which the isotopes 
of fission products interfere with the natural isotopes of other elements. 
A preceding chemical separation is necessary. In this case the partition 
of Ba2+ and Cs+ with a phosphate buffer was conducted. The barium 
was complexed by phosphate und therefore migrates slower than the 
cesium ion. The advantage of the speciation is that all isotopes can be 

analyzed by ICP-MS. In comparison to gamma spectroscopy where 
only gamma emitters like Eu-155 can be determined. 

The research group of Reich and Trautmann [29,30] is dealing with 
a similar problem. In a nuclear disposal in a deep geological formation 
the elements neptunium and plutonium are primarily responsible for 
the amount of radiation present after 1000 years. The separation of Np 
and Pu species allows an assessment of the behavior of these metals in 
clay as natural host rock or in the pore water of the clay. As a result, 
the Np(V) species is the stable species over a wide pH range, is well 
soluble in water and shows no relevant tendency for sorption onto the 
host rock. Under redox conditions, e. g. in presence of Fe2+, Np(V) is 
reduced to Np(IV) which shows a high sorption tendency. The redox 
speciation of Np(V) and Np(IV) can be conducted under natural 
conditions in clay pore water. A LOD of 10-9 mol L-1 when using a Mira 
Mist CE nebulizer has been achieved. 

Topin et al. [31,32] are interested in neptunium and plutonium 
speciation, too. The research group investigated the complexation 
of these metals with sulfate, chloride and carbonate and found only 
small complex stability constants. At higher concentrations the Pu(V) 
disproportionates into Pu(IV) and Pu(VI). Therefore speciation studies 
are only possible with very small concentrations (<10-8 mol L-1). Apart 
from Pu(V), Np(V) is the most stable actinide and shows a similar 
behavior as Pu. The influence of small, environmentally relevant, 
inorganic ligands on these metals is very important due to a possible 
mobilisation of the metals in a future disposal. In the speciation 
analysis experiments conducted using CE-ICP-MS the complex ligands 
have a concentration of 1  M at maximum. Higher concentrations 
produce Joule heat and are clogging the nebulizer. The Np and Pu 
species show the same migration time. The values determined for 
the sulfate (log β(PuO2SO4

-) = 1.30 ± 0.11; log β(NpO2SO4
-) = 1.34 ± 

0.12) and chloride complexes of Np and Pu (log β(PuO2Cl) =  -(0.40 
± 0.07);  log  β(NpO2Cl)  =  -(0.40 ± 0.07) are in the same order of 
magnitude. An analogous behavior  of Pu and Np is verified.

Sonke and Salters [33,34] as well as Kautenburger et al. [35-39] 
investigate the complexation behavior of different humic substances like 
fulvic (FA) and humic acid (HA) with REEs as chemical homologues of 
the actinides. These experiments are important to assess the behavior 
of actinides in a nuclear disposal in presence of organic substances. 
Some of the actinides show high sorption behavior onto the potential 
host rock Opalinus clay. In presence of organic substances like FA 
and HA the species distribution changes and partly the metal mobility 
increases. The stability constants log  β are important parameters 

Figure 1: Typical hyphenation of a capillary electrophoresis (CE) and an inductively coupled plasma-mass spectrometer (ICP-MS) by a homemade interface 
(combination of two images due to right angle position of CE and ICP-MS; white arrow indicates the aerosol flow from interface to ICP-MS).
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in order to understand the above described process and to design 
subsequent experiments. Both groups apply different methods for the 
determination of their log β values. In order to avoid an adsorption of 
the high valent metal ions onto the capillary wall the addition of Ca2+ 
is one possibility. But the added metal can influence the equilibrium 
between analyzed metal and humic/fulvic acid. The modification of the 
capillary surface charge with a surface modifier inhibits the sorption 
of metal ions onto the capillary wall. However, the employed organic 
complex ligands can adsorb very good on the modified wall surface. 
As an alternative, EDTA was added to the sample. This method, the so 
called disequilibrium method, was chosen by Sonke and Salters [33,34]. 
The lanthanides dissociate partly out of the HA/FA complex and are 
complexed by the present EDTA. The inert metal-EDTA and metal-
HA/FA species (chelate complexes) are separated by CE. Complexes 
of REE with EDTA are well known and the log β values can be found 
in the literature. The log  β values of HA and FA with REE can be 
calculated from the known log β values of EDTA-REE complexes via the 
distribution of the different metal-organic species. For this calculation 
Sonke and Salters assumed a monodentate carboxyl-bonding process. 
The total ligand concentration was calculated out of the carboxyl group 
density and the dissolved HA/FA concentration. The determined 
log β values are clearly higher than log β values determined by other 
methods. Additionally, with the disequilibrium method weak metal 
organic complexes are only analyzed if kinetically slow metals are 
used which are stable during the separation. Kautenburger et al. [35-
39] used the applied voltage to influence the equilibrium during the
CE-separation. During the measurement the applied voltage of 30 kV
pulls the weakly bound metal out of the HA complex. As result, three
species were separated, the free, HA uncomplexed metal (peak 1), the
weakly complexed metal (peak 2) and the strongly bound metal (peak
3) as shown in Figure 2. With this method, the influence of competing
cations on the complex stability can be determined [35,38]. In addition, 

log  β values can be calculated (log β (EuHA) = 6.43 ± 0.15; log β 
(UO2HA) = 4.51 ± 0.17) [36,37]. The determination of weak complexes 
is not possible because of the applied high voltage which destroys the 
complexes during the CE separation. Additionally, a modification of 
the HA is necessary for successful detection of the HA in the ICP-MS. 
In this case, an iodination reaction was chosen to introduce iodine as 
ICP-MS marker into the HA.

Mendes et al. [40] have set their focus on protactinium whose 
isotopes Pa-233 and Pa-231 originate from thorium reactors. The 
behavior of Pa in combination with naturally occurring organic 
complexation substances, for example oxalate, and the obtained 
structural and thermodynamic data are particularly important for the 
radioactive waste management.

The stable oxidation state of Pa is +5 and it has a strong tendency 
for hydrolysis which allows a sorption onto solid surfaces. This relation 
is not yet fully explored and especially at lower concentrations even less 
results can be obtained because of an irreversible polymerisation in the 
presence of higher concentraded HCl or H2SO4. As CE make-up fluid 
a 2% HNO3 with 10% ethanol was used. Bismuth was added as internal 
standard and 0.5 mol/l oxalic acid was used as electrolyte. In order to 
facilitate the interpretation of charge and structure of the protactinium 
oxalate complex the results are compared with the oxalate complexes 
of uranium(VI) and neptunium(V). The uranium oxalate migrates 
slower than the neptunium oxalate. This can be explained with the 
formation of a fourfold negatively charged uranium complex while the 
other complexes are only threefold negatively charged. The Pa oxalate 
complex is smaller than the Np oxalate which results in a shorter 
migration time. The Pa forms only one complex with oxalate. The 
CE-ICP-MS hyphenation method is not able to analyze this complex. 
The structure was resolved with XAS methods and quantum chemical 
calculations in which the PaO(Ox)3

3- complex was examined.

Elements/ Isotopes Method Species Buffer Separation  
conditions LOD Ref.

Lanthanides, Cs-
133,134, 
135, 137,  

Ba-134,135, 
136,138

CE-ICP-QMS/ CE-
ICP-SFMS

different isotopes and 
elements

15 mM Phosphate pH 2.5 for Cs 
/ 0.8 mM picolinic acid, 10 mM 

HIBA, 25 mM formic acid  
pH 4.7, adjusted with Tris

hydrodynamic injection, 
separation at 30 kV

QMS: 6 μgCs L-1 / 8 
μgLn L-1/

SFMS: 9 ng Cs L-1 / 7 
ngLn L-1

[28]

Eu-153, 
Gd-158 CE-ICP-MS Eu3+, Eu-HA, Gd3+, Gd-HA

100 mM acetic acid + 10 mM 
Na-acetate,  

pH 3.7

hydrodynamic injection, 
separation at 30kV + 3psi 100 ng L-1 [35,36]

Nd-146 CE-ICP-MS Nd-FA / Nd-EDTA 500 pmol L-1 [33]

Np-237 CE-ICP-MS NP(V), NP(IV) 1 M acetic acid,  
pH 2.4

hydrodynamic injection, 
separation from 15 to 30kV

NP(IV) 1 nmol L-1 
Np(V) 0.5 nmol L-1 [30]

Pu-239,  
Np-237 CE-ICP-SFMS NpO2

+; NpO2
-carbonates; 

PuO2
+; PuO2

-carbonates

100 mM Na2CO3, 50 mM Good 
buffer, 2 mM tetradecyl-trimethyl-

ammonium bromide  
pH 5.3 -11.5

10 kV / -10 kV in 
dependency of pH 1 pmol L-1 [31]

Pu-239,  
Np-238 CE-ICP-MS

NpO2
+; NpO2

-clorides, 
sulfates;  PuO2

+; PuO2-
chlorides, sulfates

0-0.15 M Na2SO4; 
0-1 M NaCl; 

pH 6

hydrodynamic injection; 
separation from 5 to 10 kV 

at 0.8 psi
1 pmol L-1 [32]

Np-237,  
U-238, 
La; Th

CE-ICP-MS NpO2
+; UO2

2+; La3+, Th4+ 1 M acetic acid,  
pH 2.4 50 μg L-1 [29]

U-238 CE-ICP-MS UO2
2+,  

UO2-HA

100 mM acetic acid + 10 mM 
Na-acetate,  

pH 3.8

hydrodynamic injection, 
separation at 30 kV + 2psi 50 ng L-1 [37]

Pa-233 CE-ICP-MS PaO(C2O4)
+; PaO(C2O4)2

-; 
PaO(C2O4)3

2- 0.5 M oxalic acid
hydrodynamic injection, 
separation at -3kV and 

0.8psi
1 pmol L-1 [40]

Table 1: Application of CE-ICP-MS for metal speciation in spiked geological samples
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Environmental Samples
At the end of the 20th century the dumping of Pt into the 

environment increased strongly due to the use of catalytic converters 
in automobiles. Pt can be found in soil sediments near the streets and 
the prevalent species is of interest. Lustig et al. [41,42] determined the 
different species in dust and soil. At this time, the experiments with 
CE-ICP-MS were in the early stages. Therefore, it was important to 
double-check the behavior of the CE-electrode which is made of Pt too. 
The authors confirm the assumption that all of the Pt species originate 
from the sample and no alteration of the electrode was detected. 
Additionally, they found out that the species distribution of Pt changes 
once in contact with soil very fast. To a great degree, this observation is 
dependent on the initial species. 

Since the 21st century researchers in the field of speciation analysis 
are dealing with other topics. An overview of the applications of CE-
ICP-MS for environmental samples is given in Table 2. 

The application of pesticides is inevitable to guarantee the nutrition 
of the increasing human population. However, the use of pesticides has 
disadvantages, too, since the uptake of pesticides can bear harmful 
consequences for the human being especially for the nervous system. 
Usually, pesticides are incorporated together with the food plant upon 
its consumption. This increases the health risk for the consumer. 
In order to minimize the risk, for some pesticides a maximum 
concentration inside the plants was regulated. Owing to the close 
chemical relationship between different pesticides their differentiation 
poses an analytical problem. Wuilloud et al. [43] hold the opinion that 
CE is a good method for separation of different pesticides even if the 
differences in their structures are small. Nevertheless, UV detection 
shows a low sensitivity when detecting pesticides. Again, this problem’s 
solution is coupling of CE with ICP-MS. The next critical aspect lies 
in the element to be quantified. Some pesticides, namely the organo 
phosphorus pesticides, contain phosphate. Though, the P-31 has a 
high ionization energy and polyatoms like 15N16O+ show the same 
mass-to-charge-ratio. As a consequence, the measurement of this 
isotope results in a false high reading. With the developed octopole 

reaction or collision cell the mentioned polyatomic interferences are 
excluded thereby offering a better detection of P-31. In addition, with 
this hyphenation LODs being ten to twenty times lower than with 
photometric flame analysis are possible. 

Yang et al. [44] examined a similar problem. In the case of real food 
samples a high dilution is inescapable due to sample preparation and 
dilution with the CE buffer. Hence and owing to the high LOD, only a 
qualitative analysis is possible with the online hyphenation of CE and 
ICP-MS. The only approach to a proper quantification of the different 
pesticides in food is a sample collection after the separation step and 
subsequent CE quantification. The LODs of this offline method are 
quite better than those of the online method. A further drawback is 
the inability to differ pesticides with differences of less than 20 seconds 
in their migration times. Yang et al. show that synthetically prepared 
samples that mimic natural samples can be quantified well both with 
and without a reaction cell. 

Another important element for speciation analysis is selenium. As 
trace element, Se is an essential element for humans. It acts as anti-
cancer agent and is very important to the immune system of both 
humans and animals. A selenium deficiency e. g. triggers many diseases 
and can lead to deformity of the unborn child. The uptake of Se through 
the human body is dependent on the available species. 

First separation of different Se species was performed by Michalke 
[6,45] in 1997 and 1998. With the separation of inorganic Se species 
such as Se(IV) and Se(VI) the CE method was optimized. The LOD 
was decreased and the time per analysis was reduced. Additionally, 
no suction flow was observed and no system peaks were found. This 
optimisation makes the method interesting for real, natural samples. 
Besides of the inorganic selenium Se(IV) and Se(VI), organic selenium 
compounds like cystamine, glutathione, methionine (SeMet) and 
cysteine can be separated by CE. However, the concentration of 
selenium in natural samples is very small and therefore lies below the 
LOD in most of the cases. For such samples a preconcentration step is 
necessary which provokes further problems. Zhao et al. [46] identified 
Se species in rice samples and pointed out the unfavourable ionisation 
behavior of Se in the ICP-MS plasma. An addition of methanol to 
the CE electrolyte increases the amount of ionized Se in the plasma 
significantly and leads to a good sensitivity. Additionally, a modification 
of the capillary surface with CTAB is necessary for a successful 
separation of the different Se species due to their negative charge. In 
rice samples only the SeMet species was found. Quantification of the Se 
species shows that the concentration for SeMet is identical to the total 
concentration of Se.

Besides of Se, Cassiot et al. [47] have determined the elements 
arsenic, antimony and tellurium. Once released to the environment, 
all of these elements form metalloid species. In experiment, they can be 
very well separated by CE. Once more, the UV detector is not suitable 
for the complex matrix of natural samples necessitating a coupling of 
CE to ICP-MS. In this regard, Cassiot et al. describe issues with the 
interface and the placement of the capillary in the nebulizer. The inlet 
and outlet capillary ending should be on the same height to reduce 
siphonic effects. Otherwise, instability of the separation voltage and a 
reverse flow of make-up fluid towards the beginning of the capillary 
can be the result. Moreover, the addition of an electro osmotic flow 
modifier to the background electrolyte is crucial in order to reverse the 
electro osmotic flow thus increasing the migration velocity of the Se 
species towards the detector.

Figure 2: Typical electropherogram (after different washing and preconditioning 
steps not shown here, the CE-separation starts at 300 sec) of uncomplexed and 
HA-complexed Eu and Cs (200 μg L-1) as CE flow marker analyzed by CE-ICP-
MS, pH 5, c(Eu): 500 μg L-1, c(HA): 25 mg L-1, U: 30 kV, CE-electrolyte: 100 mM 
HAc/10 mM NaAc [38].
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Elements/ 
Isotopes

Method Species Buffer Sample
Separation  
conditions

LOD Ref.

Se-78,80
octopole reaction cell-

CE-ICP-MS

Se(IV), Se(VI),  
selenocysteine (SeCys2), 

selenomethionine (SeMet)

20 mM NaH2PO4 + 10 mM 
Na2B4O7 + 0.2 mM cationic 

surfactant (CTAB)  
pH 8.6

rice
seaweed

-16 kV 0.1-0.9 μg L-1 [46]

As CE-ICP-MS
As(III), As(V), monomethyl-arsonic 
acid (MMA), dimethylarsinic acid 

(DMA)

20 mM NaH2PO4 +  
5 mM Na2B4O7,  

pH 6.5

shrimps 
clams

12 kV 0.03-0.043 μg L-1 [53]

As CE-ICP-SFMS
As(III), As(V), MMA, DMA, 

arsenobetaine (AsB), arsenocholine 
(AsC)

16 mM H3BO3,  
pH 3

soil solution, soil 
water extracts

30 kV 5-12 ng L-1 [58,59]

As CE-ICP-MS
As(III), As(VI), MMA, DMA, AsB, 

AsC
15 mM Tris + 15 mM sodium 
dodecyl sulfate (SDS), pH 9

fish, oyster
hydrodynamic injection, 

separation at 22 kV
0.3-0.5 μg L-1 [54]

As
CE-ICP-MS  / CE-ESI-

TOF-MS
As(III), As(V), AsB, DMA

25 mM borate buffer with 10% 
methanol,  

pH 9.2
fish 30 kV

ICP-MS:
62-95 nmol L-1

ESI-TOF-MS:
0.1-1 μmol L-1

[52]

As CE-ICP-MS As(III), As(V), AsC, AsB, MMA DMA
20 mM borate buffer with 6% 

methanol,  
pH 9.2

fish 30 kV
ICP-MS:

0.10-1.08 μg L-1 [60]

As CE-ICP-MS
As (III), As (V), DMA, MMA, AsB, 
AsC, 3-NHPAA, 4-NPAA,o-ASA 
(o-arsanilic acid) and p-UPAA

12 mM NaH2PO4 +  
8 mM H3BO3,  

pH 9.2

lobster, fish 
protein, plants

30 kV
ICP-MS:

0.9-3.0 ng g-1 [61]

As-75,  
Se-82,  
Sb-121,
Te-126

CZE-ICP-MS
AS(III), As(V), MMA, DMA/ Se(IV), 

Se(VI), SeCys2, SeMet, Sb(V), 
Te(IV), Te(VI)

sodium chromate 
(0.5 mmol), sodium 

trimethyltetradecylammonium 
bromide (0.5 mmol),  

pH 11.2

soil -20 kV 6-58 μg L-1 [47]

P-31
CE-ICP-MS with 
collective sample 

introduction technique

organo-phosporus pesticides: 
dimethoat, trichlorphon, glyphosate

150 mM Na2B4O7 + 50 mM H3BO3 
+ 20 mM SDS, pH 8.5

spiked, vegetable 
sample (cabbage)

eletromigration 
injection, separation 

at 15 kV
0.05-0.07 mg L-1 [45]

P-31 CE-ICP-MS

organo-phosporus pesticides 
(OPP): glyphosate, glufonisate, 
aminomethyl-phosphonic acid 

(AMPA)

40 mM NH4 acetate,
pH 9

natural river water 20 kV 0.11-0.19 mg L-1 [44]

Hg CZE-ICP-MS Hg(II), MeHg, EtHg
50 mM H3BO3 + 12.5 mM Na2B4O7,

pH 9.2
fish, natural water 18 kV 0.021-0.032 μg L-1 [50]

Hg
CE-volatile species 
generation (VSG)-

ICP-MS
MeHg(I)Cys-, EtHg(I)Cys-, Hg(II)Cys2

- 20 mM Na2B4O7,
pH 9.3

certified biological 
reference material 

(DOLT-2)

hydrodynamic injection, 
separation at 25 kV

1-30 μg L-1 [51]

Hg
short column CE-

ICP-MS
Hg(II), MeHg

30 mM H3BO3 + 5% methanol,
pH 8.6

spiked, river 
water

hydrodynamic injection, 
separation at 21 kV

9.7-12 μg L-1 [48]

V-51,  
Fe-56

CE-bandpass reaction 
cell-ICP-MS

VO2-EDTA3-,  
VO2-Fe-EDTA-,

Fe-phen2+

15 mM tris(hydroxymethyl) 
aminomethan (Tris)+ 0.5 mM 

EDTA or 0.5 mM o-phenatroline 
(phen), pH 8.75

waste water 22 kV
V: 0.1-0.5 μg L-1; Fe: 

1.2-1.7 μg L-1 [59]

Cr-52
CE-bandpass reaction 

cell-ICP-MS
CrO4

2-,  
Ce-DTPA

10mM ammonium citrate + 0.5mM 
diethylentriamine pentaacetic acid 

(DTPA) + 0.01% polybrene
waste water -22 kV 0.4-1.3 μg L-1 [59]

Pt-195 CE-ICP-MS
PtCl6

2-, PtCl4
2-,  

Pt-HA

50 mM NaH2PO4 + 50 mM 
N2HPO4,  

pH 6

Pt treated soil, 
tunnel dust

- - [41,42]

Cd-111,114, 
Cu-63,  
Zn-64

LVSS-CE-ICP-QMS metallothioneine
70 mM Tris +  
5% methanol,  

pH 7.4
eel

hydrodynamic injection, 
separation at 20 kV

6-454 μg L-1 (Cd) [56]

Cd-111,114, CE–VSG–ICP–(Q)MS metallothioneine
70 mM Tris +  
5% methanol,  

pH 7.4
rabbit

hydrodynamic injection, 
separation at 20 kV

0.1-4.33 mg L-1 [57]

Pb CE-ICP-MS
Pb(II), trimethyl lead (TML), triethyl 

lead (TEL)

15 mM Tris + 10 mM SDS + 0.2 
mM EDTA, 2% methanol,  

pH 8.25
fish

hydrodynamic injection, 
separation at 26 kV 0.2-0.6 μg L-1 [55]

Pb CE-ICP-MS
Pb(II), trimethyl lead (TML), triethyl 

lead (TEL)

70 mmol/L H3BO3,
17.5 mmol/L Na2B4O7,  

0.4 mmol/L CTAB, 2% methanol
pH 8.85

clam 
oyster

electromigration 
injection 
−12.5 kV

0.012-0.084 μg L-1 [62]

Table 2: Overview of the applications of CE-ICP-MS for metal speciation in environmental samples
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Typical natural samples are different types of fish and seafood. 
Since both serve as foodstuff stringent quality control checks are 
obligatory. (Semi) metals such as lead, arsenic or mercury have toxic 
effects on humans and often critical quantities thereof are present in 
fish and seafood. 

Mercury is one of the most toxic metals and is on the third place 
of the ATSDR most hazardous substances priority list. Of course, the 
chemical form of mercury influences its bioavailability, the mobility 
in the environment and the lifetime. A severe problem with mercury 
is the bioaccumulation in fish and seafood. Through accumulation a 
fish can contain hundred thousand times more mercury than the water 
which surrounds it. Beyond, 95% of this Hg is methyl-Hg which is 
formed by bio organisms. Therefore, in the 70s mercury containing 
chemicals were forbidden as fertilizers. The major sources of release 
to the environment are volcanic eruptions, decomposition of rocks 
and minerals and the man-made pollution as a result of production 
processes connected with electric instruments, paper, fungicides, 
colours and pharmaceuticals.

Li, Zhao et al. and Silva da Rocha et al. [48-51] have determined 
mercury species in environmental samples. Typical CE capillaries have 
a separation time of three to five minutes. During this time the ICP-
MS is idle. This dead time could be increased with a higher separation 
voltage but this option is limited in the CE system due to Joule heat. 
An alternative solution is the use of a shorter CE column. That is the 
concept of Li and coworkers who employ a short CE column resulting 
in a better efficiency compared to normal capillaries [9,49]. Fortunately, 
the optimized method can be applied for natural waters, too. 

Zhao et al. [50] describe the separation of Hg(II), Me-Hg and Et-Hg 
as difficult due to the undissociated Hg species in solution. As remedy 
an ionic substance with functional thiol groups e. g. cysteine or MMA 
can be added. The thiol groups can form coordination complexes with 
Hg thus enabling a separation of different Hg species with CE. 

Silva da Rocha et al. [51] points out difficulties with the intake of 
the nebulizer. The capillary creates a laminar flow which brings along 
negative effects on the separation of species. Contrarily, in the case of 
an online generation of volatile species with addition of NaBH4 no such 
sucking-in effect was observed. 

The bioaccumulation in seafood and fish is observed for arsenic, 
too. The toxicity of As is strongly dependent on the availability of 
organic or inorganic species. Arsenite and arsenate are very toxic 
and the methylated arsenic acid is known  to be a cancer promoter. 
Meermann et al. [52] applies CE-ICP-MS for quantification of 
positively and negatively charged arsenic species. Supplementary, a 
hyphenation of CE and ESI-TOF-MS for qualification of unknown 
samples was developed.

Yang et al. [53] extracted arsenic species from dried shrimps and 
soft-shell clams. The extraction process has a key position because the 
species may not to be altered during the extraction step. With CE-
ICP-MS four different As species (As(III), As(V), dimethyl-arsinic 
acid (DMA), monomethyl-arsonic acid (MMA)) were separated. In 
all samples As(III) is found, in the clams additionally DMA and in 
shrimps MMA is present. The sum of the different species is equal to 
the total concentration of As. 

Yeh and Jiang [54] determined As species in fish and oyster after a 
microwave assisted extraction of dried samples. The chosen extraction 
step involves problems with the As(III) species in oyster samples. 
The As(III) is either too volatile or remains in the matrix during the 

centrifugation step. An identification of all different As species is not 
possible due to the high number of different species present in fish and 
oyster. Therefore a hyphenation of CE and ICP-MS is necessary. 

Lee and Jiang [55] used the CE-ICP-MS for separation of different 
Pb species in fish. Their results differ from the results of other research 
groups. After a microwave assisted extraction they found Pb(II) as main 
component. The Pb(II) concentration is equal to the total concentration. 
Alvarez-Llamas et al. [56] introduced the large volume sample stacking 
(LVSS) for CE measurements. This online preconcentration system 
facilitates low detection limits in real samples. In the case of Cd the 
detection limit is decreased by one magnitude with the LVSS. For Cu 
and Zn the detection limits decrease too. All of these metals are present 
in fish liver proteins. Additionally, Alvarez-Llamas et al. [57] found 
an enhancement in the transport efficiency of species leaving the CE 
capillary towards the ICP. Therefore, the volatile species generation 
technique (VSG) was used. This technique increases the transport of 
the analyte and removes non volatile species (i.e. the matrix). Besides, 
the elemtents As, Hg, Se and Cd can be determined, too.

Conclusion and Outlook
This review gives an updated overview of studies dealing with metal 

speciation in various geological and environmental sample matrices. 
CE-ICP-MS has matured to an effective analytical tool developed for 
analysing and understanding metal speciation in the presence of natural 
organic and inorganic matter in geological and environmental samples. 
Doubtlessly, this hyphenated techniques will continue to grow during 
the next years. However, even at its present stage of development, CE-
ICP-MS contributes significantly to the understanding of chemical 
mechanisms affecting the complexation behavior of many relevant 
metals with NOM or inorganic matter in the environment. This 
knowledge is and will be very helpful to characterise and evaluate 
the true toxic potential of metal species present in or released to the 
environment.
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