
Review Article Open Access

Yamagishi et al., Clinic Pharmacol Biopharmaceut 2012, S1

Clinical Pharmacology & Biopharmaceutics DOI: 10.4172/2167-065X.S1-001

Clinic Pharmacol Biopharmaceut             A Possible Pharmacological Strategy for Nerve Diseases               ISSN: 2167-065X   CPB an open access journal 

Spine Homeostasis as a Novel Therapeutic Target for Schizophrenia
Satoru Yamagishi*, Sumiko Mikawa, Hiromu Furukawa, Takeshi Sasaki, Takeshi Ito, Takatoshi Ueki and Kohji Sato
Department of Anatomy & Neuroscience, Hamamatsu University School of Medicine, Japan

*Corresponding author: Satoru Yamagishi, Department of Anatomy & 
Neuroscience, Hamamatsu University School of Medicine, 1-20-1 Handayama, 
Higashiku, Hamamatsu, Shizuoka 431-3192, Japan, Tel: +81-53-435-2290; 
Fax: +81-53-435-2290; E-mail: yamagish@hama-med.ac.jp

Received September 13, 2012; Accepted October 06, 2012; Published October 
12, 2012

Citation: Yamagishi S, Mikawa S, Furukawa H, Sasaki T, Ito T, et al. (2012) Spine 
Homeostasis as a Novel Therapeutic Target for Schizophrenia. Clinic Pharmacol 
Biopharmaceut. S1:001. doi:10.4172/2167-065X.S1-001

Copyright: © 2012 Yamagishi S, et al. This is an open-access article distributed 
under the terms of the Creative Commons Attribution License, which permits 
unrestricted use, distribution, and reproduction in any medium, provided the 
original author and source are credited.

Abstract
Schizophrenia is a complex disorder with positive, negative and cognitive symptoms. Previously, great reduction 

in spine number has been reported in schizophrenia patients. Mutations in numerous genes that encode synaptic 
proteins are known as genetic risk factors. In addition, antipsychotic drugs change the number of spines, suggesting 
that disturbance in spine homeostasis is deeply involved in the pathogenesis of schizophrenia. On the other hand, 
abnormal release of dopamine is also reported to play a role in the disease. However, the relationship between the 
spine homeostasis and the dopaminergic system is largely unknown. Here, we review the related articles that can give 
us useful insight about spine homeostasis in schizophrenia. We hypothesize that the treatment for spine homeostasis 
can be a novel therapeutic method for schizophrenia.

Spine Disturbances in Schizophrenia
Schizophrenia is a complex disorder with positive, negative and 

cognitive symptoms [1]. In schizophrenia, a reduction in the number 
of dendritic spines on excitatory glutamatergic pyramidal neurons is 
reported in the frontal and temporal association cortex [2,3]. In addition, 
spine density of pyramidal neurons decreased in the dorsolateral 
prefrontal cortex [4]. The spine homeostasis in pyramidal neurons, 
playing important roles in corticocortical connectivity and working 
memory, is disturbed in schizophrenia. Also, the synaptic homeostasis in 
hippocampal formation is morphologically impaired [5,6].

The mutations in numerous genes that encode synaptic proteins in 
schizophrenia patients, such as DISC1, neuregulin-1, and dysbindin, have been 
reported [7]. DISC1, disrupted in schizophrenia, which was identified at the 
break point on chromosome 1q42 in Scottish family, is expressed at synapses 
of dendritic spines in the prefrontal and parietal cortex [8]. DISC1 is localized 
to mitochondria in cortical neurons and DISC1/FEZ1 complex is needed 
for the transportation of mitochondria from soma to axon and dendrites 
[9,10]. Neurons cannot extend their neurites without those mitochondria 
[11]. These  results suggest that DISC1 is an important component to keep 
spine homeostasis. Type I transmembrane protein Neuregulin-1 (NRG1), 
also known as heregulin or NDF, is expressed in cortical neurons and their 
synaptic terminals on spines, and its receptor ErbB4 is located in postsynaptic 
spines [12,13]. NRG-1 released from nerve terminals modulates transmission 
at excitatory synapses by modifying postsynaptic receptors [14]. Prevention 
of NRG1/ErbB4 signaling destabilizes AMPA receptors and leads 
to loss of synaptic NMDA currents and decrease in spine size [15]. 
The hypofunction of NMDA signaling via increased NRG1/ErbB4 
signaling was reported in post-mortem brains of schizophrenia [16]. 
In deed, the mutations of NRG1/ErbB4 have been reported as genetic 
risk factors in schizophrenics [17-20]. Dysbindin-1 expressed in 
the cortex is associated with microtubles and postsynaptic densities of 
spines at certain synapses [21]. At glutamatergic presynaptic terminals, 
Dysbindin-1 is also binding to Snapin, which primes synaptic vesicles 
for exocytosis [22]. Over-expression and SNP association of dysbindin 
is reported of Dysbindin-1 results in enhanced glutamate release at 
synapses and SNP association of dysbindin is reported [23]. Since these 
molecules play important roles in synaptic transmission, dysfunction 
of these molecules by genetic mutations may cause synaptic loss with 
disturbance of spine homeostasis and disruption of neural networks with 
loss of dendrites. 

Okubo et al. [24] found that dopamine D1 receptor was reduced 
in prefrontal cortex in schizophrenia patient. The reduction correlates 
with the severity of the negative symptoms. Therefore, the 

disturbance of spine homeostasis may result in negative 
symptoms and cognitive deficits in schizophrenia.

Spine Homeostasis and Dopamine D1 Receptor System
Spine homeostasis is an important phenomenon to keep brain 

functions. Spine plasticity consists of two categories. One is short-term 
plasticity, which is regulated by conductance changes of ion channels 
located in spines, and plays a pivotal role in working memory [25]. The 
functions of prefrontal cortical working memory depend on pyramidal 
cell networks that interconnect on dendritic spines. The strength of 
prefrontal cortical network connections can be rapidly increased or 
decreased by molecular signaling events within spines. This form of 
neuroplasticity provides great adaptability in mental state, but also 
gives vulnerability and limits mental capacity [25]. Many genetic and/
or environmental insults to this short-term plasticity are associated 
with cognitive disorders [25]. The other is long-term plasticity, which 
needs protein synthesis and rearrangements of cytoskeleton in spines, 
playing a pivotal role in memory and learning [26]. In the mammalian 
forebrain, spines are very plastic and can rapidly change the shapes in 
response to numerous stimuli. This dynamic remodeling of dendritic 
spines is thought to be important for processing, cognition and 
memory of information [26].

Antipsychotic drugs, clozapine and haloperidol, change the 
number of spines, suggesting that disturbance in spine homeostasis 
is deeply involved in the pathogenesis of schizophrenia [27]. On the 
other hand, abnormal release of dopamine is also reported to play a 
role in the disease [28].

Interestingly, dopaminergic D1 system is involved in both types 
of spine plasticity. For the short-term plasticity, dopamine acts at 
D1 receptors on spines to sculpt network inputs to decrease noise 
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in the prefrontal cortex [29]. D1 receptors exist on dendritic spines 
near excitatory network inputs in the prefrontal cortex [30]. The 
microcircuits consist of recurrent excitatory pyramidal cell networks 
that interconnect on spines, and excite each other via NMDA 
receptor signaling. Persistent firing of pyramidal cells is sculpted by 
lateral inhibition from GABAergic basket and chandelier cells, thus 
creating tuned, persistent firing needed for accurate representational 
knowledge [29]. The strength of pyramidal cell network connections is 
weakened by dopamine D1 receptors via opening hyperpolarization-
activated cyclic nucleotide-gated channels in dendritic spines, 
resulting in decreased noises [31]. Thus, dopamine D1 receptor plays 
an important role to keep short-term spine homeostasis.

In addition, the dopaminergic D1 system is involved in synaptic 
stability and long-term plasticity. Epac2, a GEF for the small 
GTPase Rap, has recently been described as a novel cAMP target 
localized to dendritic spines [32]. Signaling of Epac2 in response to 
pharmacological stimulation or cAMP accumulation, via dopamine 
D1 receptors, activates Rap and promotes structural destabilization 
of dendritic spines and functional depression due to removal of 
glutamate receptor (GluR2/3)-containing AMPA receptors [26]. Brief 
exposure to a D1 agonist increased surface expression of GluR1-
containing AMPA receptors by increasing their rate of externalization 
at extra-synaptic sites and promoted LTP [33]. Taken together, both 
short-term and long-term spine plasticity are tightly regulated by 
dopamine D1 receptors. 

Compensatory Dopaminergic Changes
Dopamine D1 signaling keeps adequate functions in the prefrontal 

cortex. If spine homeostasis is disturbed and cognitive deficits appear, 
an intrinsic compensation system for dopamine may be activated to 
increase the amount of dopamine to keep the adequate functions in 
the prefrontal cortex. The prefrontal cortex receives dopaminergic 
fibers from the ventral tegmental area. Dopaminergic neurons are 
known to show several patterns of activity [34,35]. The population 
activity, i.e. the proportion of dopamine neurons firing spontaneously, 
is regulated by the ventral subiculum of the hippocampus [36,37]. In 
contrast, burst firing, related to the behaviorally important out-put of 
the dopamine system, is driven by the brainstem pedunculopontine 
tegmentum [37,38]. When an animal is exposed to a behaviorally 
important stimulus, the pedunculopontine tegmentum elicits a burst 
of action potentials in dopamine neurons. However, this bursting 
only happens in the portion of the dopamine neuron population 
that is firing spontaneously [38]. This proportion is regulated by the 
ventral subiculum. Therefore, the ventral subiculum provides the gain 
for the behaviorally important stimulus. Interestingly, the anterior 
hippocampus, the human homolog of the ventral subiculum, is 
overactive in schizophrenia patients [39-43]. The over-activation in the 
anterior hippocampus may increase the proportion of dopaminergic 
neurons firing spontaneously, resulting in the hyperactive states of 
dopaminergic system. Therefore, antagonist of dopamine D2 receptor, 
such as Chlorpromazine, seemed to be useful treatment for positive 
symptoms.

Consequences 
As consequences, we want to postulate a story for the pathogenesis 

of schizophrenia as follows. Epigenetic vulnerability, prenatal 
events, developmental events, emotional factors and environmental 
factors may disturb spine homeostasis. And, the disturbance of 
spine homeostasis may result in negative and cognitive deficits. 
To adapt these conditions, dopamine D1 receptors are activated 
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