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Introduction
The System Identification (SI) technique plays important roles 

in structural health monitoring for damage detection. Various SI 
techniques using measured responses of building structures have been 
developed (see, for example, [1-11]). It is known that identification 
problems are often ill-posed due to noises and incompleteness in 
measurement.

In general, responses need to be measured at every floor above 
the target story for identification to evaluate the story shear force 
required in the stiffness-damping evaluation. Therefore, in order 
to identify physical parameters at the lowest story or at every story, 
responses at all stories are necessary. It is rather impractical to measure 
responses at every story from the viewpoint of instrumentation 
and data management, especially in high-rise buildings. However, 
limited location of measurement causes problems of non-existence 
or non-uniqueness of solution [12,13]. To avoid this difficulty, several 
approaches have been proposed. One approach is to alleviate the degree 
of ill-posedness using techniques such as the regularization technique 
[14]. Another approach is to certify the uniqueness of solution for the 
limited location of measurement. 

In the latter approach, theories for unique identification of local 
stiffness and viscous damping coefficients at a specified target story 
are proposed based on the local response records at the floors just 
above and below a target story [12,15]. Furthermore, some methods 
for elimination of noise effects have been proposed [16,17] based on 
these theories. In these papers, the mathematical limit manipulation 
toward an infinite frequency or zero frequency has been introduced 
and simultaneous identification of local stiffness and damping can be 
performed in a unified manner and only an FFT technique is needed.

As for the identification of physical parameters at whole stories 
using limited local records, it has been shown that unique identification 
can be performed using both the limit manipulation toward an infinite 
frequency and recurrence equations when records at the base and the 
second floor are obtained [12]. In this paper, two new SI methods are 
proposed when the responses at the base and the second floor are 
obtained. These methods enable one to avoid the limit manipulation 
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Abstract
A new method is proposed for stiffness-damping simultaneous identification in a building structure when 

responses are recorded at only two stories, i.e. the base and the second floor. Uniqueness of stiffness and damping 
is guaranteed if the transfer function of the absolute acceleration (or displacement) at the second floor relative to the 
base is given. Stiffness and damping distributions can then be obtained by minimizing the error between two transfer 
functions, i.e. the ratio of records at the above-mentioned two floors in the frequency domain and the corresponding 
theoretical value of the system with assumed stiffness and damping. The stiffness and damping for the theoretical 
transfer function are evaluated by using identification functions through the extrapolation of unrecorded story 
responses. The validity of the proposed method is investigated through numerical examples.

and use of recurrence equations and to overcome the difficulty in 
application to actually recorded data. The validity and effectiveness of 
the proposed methods are demonstrated through numerical examples 
using theoretical data in the frequency domain and time-history data.

Identification Method using Limit Manipulation
Identification of Stiffness and Damping Coefficient

The methods developed in [12,15] are explained here (Section 2) 
for the development of new theories in Sections 3 and 4.

Consider an N-story shear building model, as shown in Figure 1, 
with viscous damping. The node and element numbers are defined 
from the top. The jth node and the jth element from the top are called 
the “node j” and the “element j”, respectively. Let mj and  kj denote the 
mass of the node j and the story stiffness of the element j and let cj  be 
the viscous damping coefficient in the element j. The frequency-domain 
equations of motion for this shear building model subjected to the 
horizontal base acceleration ( )z t  can be expressed by

( ) ( ) ( ) ( )ω ω ω ω= ZA U F 			                   (1)

( )ωU and ( )ωZ  are the Fourier-transforms of the nodal absolute horizontal 
displacements ( )tu  and the base displacement ( )z t , respectively. The 
vector ( )ωF  in Eq.(1) indicates ( ) {0 0 i }ω ω= +

T
N Nc kF  and the 

symbol ( )⋅ T  means the transpose of a vector. The matrix ( )ωA  in Eq.(1) 
is defined by

2( ) iω ω ω= − + +A M C K 			                    (2)
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where, i indicates the imaginary unit.

The jth component ( )ωjU  in ( )ωU   can be obtained from Eq.(1) as

( )
( ) ( )

( )
ω

ω ω
ω

∆
= j

j
N

U Z
P

				                     (4)

( )ωjP  is the determinant of the upper-left ×j j  sub-matrix of ( )ωA  
and ( )ω∆ j  is the determinant of the matrix obtained from ( )ωA  by 
replacing its jth column by  ( )ωF . The definitions of , ,∆ j jPF  together 
with ( ) iω ω= +j j jb c k   provide the expression of  ∆ j .

1−∆ = j N j jb b P 				                     (5)

It should be noted that the matrix for which ∆ j  is defined has 
a tri-diagonal property only for =j N  and ∆N  can be expressed 
rather compactly. This property is closely related to the fact that the 
story stiffness of the element N and its material damping ratio can 
be identified uniquely when the acceleration ( )Nu t  of the node N is 
observed in addition to the base acceleration ( )z t .

Substitution of Eq.(5) into Eq.(4) provides the following relation.
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1
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ω
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+
=j j
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j j

U P
b

U P
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After some manipulations [15], the following relations can be 
derived.
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lim Im ( )
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ω
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j j

dc g
d

				                     (9)

The stiffness can be obtained from Eq.(8) and the damping 
coefficient can be derived from Eq.(9) when the masses mj are given and 
the floor accelerations or displacements are recorded (see Figure 1a). In 
Eq.(7), ( )ω

jU  and ( )ω

jU , Fourier transforms of the acceleration ( )ju t   
and the velocity ( ) ju t  at the jth floor, can be used instead of  ( )ωjU .

Uniqueness of identification of structural parameters 
including unrecorded story 

Uniqueness of stiffness and damping distributions is discussed here 
when there are some stories of unrecorded responses (see Figure 1b). 
The 2-story models with different sensor locations as shown in Figure 2 

(a) SI method developed in [15] (b) SI method developed in [12] 
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Figure 1: Sensor location in past methods.

 
(a) Sensors at base and second floor  (b) Sensors at base and top floor 
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Figure 2: 2-story shear building models with different sensor locations.
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are used and stiffness and damper distributions are derived analytically 
for both models. 

Sensor location guaranteeing uniqueness of identification: As 
for the sensor location as shown in Figure 2a, i.e. sensors at the base 
and the second floor, it can be proved that a unique identification of 
stiffness and damping distributions is possible based on the recorded 
response data [12,15].

From Eq.(4), 1( )ωU  and 2 ( )ωU   can be expressed as

1
1

2

( )( ) ( )
( )
ωω ω
ω

∆
=U Z

P 			    	              (10a)

2
2

2

( )( ) ( )
( )
ωω ω
ω

∆
=U Z

P 				                (10b)

From the definitions of ( )ω∆ j  and ( )ωjP , Eqs.(11)–(13) can be 
obtained.

1
1 1 2

2 2
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where 2(i ) iω ω= + +j j j ja m c k . Using Eqs.(10)-(13), the transfer 
functions 1( )ωH   and 2 ( )ωH  are expressed as follows.
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Here, two models with different sets of stiffness and damping 
coefficients, i.e. 1 2 1 2{ , , , }k k c c  and 1 2 1 2{ , , , } 

 k k c c , are assumed and 
the corresponding transfer functions of these models are expressed 
as  ( )ωjH  and ( )ω

jH , respectively. For the model shown in Figure 2a,   
2 ( )ωH can be evaluated from recorded response data. When 

2 ( )ωH  is 
equal to 2 ( )ωH , the following relation is obtained from Eq.(15).
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The left-hand side is equal to the right-hand side for every ω  if and 
only if the following relations hold.
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The following solution is then obtained which satisfies Eq.(17).

1 1 2 2 1 1 2 2, , ,= = = = 

 c c c c k k k k 			        (18a-d)

This means that, if the transfer function 2 ( )ωH  of the lowest story is 
given, there exists only one corresponding set of stiffness and damping 
coefficients. In this sensor location, the uniqueness of stiffness and 
damper coefficient distributions holds. This result holds also for the 
N-story structure [12]. In this paper, this sensor location is used later.

Sensor location without uniqueness: As for the sensor location 
shown in Figure 2b, i.e. sensors at the base and the top floor, it can 
be proved that the unique identification of stiffness and damping 
distributions is not possible from the recorded response data.

As in the previous section, two sets of stiffness and damping 
coefficients, i.e. 1 2 1 2{ , , , }k k c c , 1 2 1 2{ , , , } 

 k k c c , and the corresponding 
transfer functions ( )ωjH , ( )ω

jH  are assumed. For the model in Figure 
2b, 1( )ωH  can be evaluated from the recorded response data. When 

1( )ωH  is equal to 1( )ωH , the following relation is obtained from Eq.(14).
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The left-hand side is equal to the right-hand side for every ω  if and 
only if the following relations hold.
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The following two solutions are obtained which satisfy the relations 
of Eq.(20).

1 1 2 2 1 1 2 2, , ,= = = = 

 c c c c k k k k 	                         (21a-d)

1 2 2 1 1 2 2 1, / , , /= = = = 

 R R R Rc M c c c M k M k k k M               (22a-d)

where, 

1 1

2 1 2

= =
+R

M mM
M m m 				                  (23)

This means that, if the transfer function 1( )ωH  of the top story 
is given, there exist two corresponding sets of stiffness and damping 
coefficients. It is therefore concluded that, in this sensor location, the 
uniqueness of stiffness and damper coefficient distributions is not 
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guaranteed. In general, if the transfer function 1( )ωH  of the top story is 
given in the N-story model, it can be proved that there exists N! stiffness 
and damping coefficient distributions.

Identification Method Based on Extrapolation of 
Unrecorded Data (Method 1)

In this section, a new identification method using extrapolation of 
unrecorded data is proposed when responses are recorded at the base 
and the second floor (see Figure 1b). This method is called “Method 1”.

Extrapolation of unrecorded data

A method is proposed for generating unrecorded data based on 
extrapolation. Here, a ratio L of the interstory drift to that of the lowest 
story is introduced. The conceptual figure is shown in Figure 3. Let 
define the following ratio jL .

1

0

( ) ( )
lim

( ) ( )ω

ω ω
ω ω

+

→

−
=

−
j j

j
N

U U
L

U Z
			                 (24)

( )ωjU  is a complex number and the limit value of ( )ωjU  converges 
to a real number at frequency 0. Therefore, a real number is given 
to  jL . If all the parameters { jL } are given, the approximate interstory 
drifts and displacements in the unrecorded stories can be obtained 
from the known values ( )ωNU  and ( )ωZ  by using Eqs. (25), (26). 

{ }( ) ( ) ( ) ( )ω ω ω ω− = − 

j j j NU U L U Z 		              (25)
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1

( ) ( ) ( ) ( )ω ω ω ω
−

=

= + −∑

N

j N i N
i j

U U L U Z 		                (26)

Here, ( )  indicates the extrapolated data. It should be noted that 
Eqs.(25) and (26) are exact only at zero frequency. By substituting Eqs.
(25), (26) into Eq.(7) and applying Eq.(8) to the resulting equation, 
Eq.(27) is obtained. 

( / ) ( / )= ⋅j j N N jL M M k k 			                   (27)

Similarly by substituting Eqs. (25), (26) into Eq.(7) and applying 
Eq.(9) to the resulting equation, Eq.(28) is obtained. 

( / ) ( / )= ⋅j j N N jL M M c c 			                  (28)

In general (non-stiffness-proportional one), ( / )N jc c  is not equal to 
( / )N jk k . Therefore, jL  should be defined for stiffness and damping 
coefficients, independently. kjL  indicates jL  for identification of 
stiffness and cjL  indicates that for identification of damping coefficient.

Here, 1=kNL , 1=cNL  and 1 1−k kNL L , 1 1−c cNL L  should be 
assumed independently.

Identification method using extrapolated data

By using extrapolated response data in the previous section, unique 
identification of stiffness and damping coefficient distributions can be 
performed. The outline of the identification is shown in Figure 4. This 
method identifies the stiffness and damping coefficient distributions 
by determining ratios 1 1−k kNL L  and 1 1−c cNL L . This requires to 
equate the estimated transfer function of the lowest story based on the 
extrapolated data to the actual transfer function.
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A detailed algorithm of the proposed method is shown in Figure 
5. When the ratios 1 1−k kNL L  and 1 1−c cNL L  are assumed, all 
the displacement can be estimated from Eq.(26), and by using these 
extrapolated data, identification can be performed by using Eqs.(7)-
(9). When all the stiffness and damping coefficients can be obtained by 
substituting these values into Eq.(1), the transfer function of the lowest 
story can be estimated.

In general, this estimated transfer function constructed from 
extrapolated data is different from the actual transfer function 
constructed from recorded data. According to the discussion in 
Section 2.2.1, these two functions are equal if and only if the true 
distributions of stiffness and damping coefficients are used. When 
actual recorded data are used, it is difficult to guarantee the equality of 
these two functions exactly. Therefore, let us define a function ( )f L  
in Eq.(29) to estimate the error between these two transfer functions. 
Here, 1 1{ , , , , }=  k kN c cNL L L L L . ( )ωNH  is a target transfer function 
estimated from recorded data ( )ωZ  and ( )ωNU . ( , )ω

NH L  is an 
assumed transfer function estimated from L. The equality of these two 
functions is guaranteed by minimizing the following value of ( )f L .

2
( ) ( ) ( , )ω ω

=

= −∑ 

U

L

l

N l N l
l l

f L H H L 			                    (29)

where  lL and lU indicate the number related to the lower limit circular 

frequency ωL  and the upper limit circular frequency ωU  to estimate 
the error between two transfer functions.

Numerical examples

Investigation using theoretical data in frequency domain: The 
validity of “Method 1” is investigated here through numerical examples 
using theoretical data in the frequency domain. The input ( )ωZ  at the 
base is set to ( ) 1ω =Z  in all the frequency range and estimate ( )ωjU  
by Eq.(1). In this section, ( )ωZ  and ( )ωNU  are used as known recorded 
data.

As for the 2-story model shown in Table 1, functions to define 
kjL ,  

cjL  are shown in Figure 6 which use the exact response ( )ωjU . From 
Figure 6, the exact values are obtained as 1 0.5=kL , 2 1.0=kL , 

1 0.5=cL , 
2 1.0=cL . When the extrapolation is performed using these 

exact values, identification functions are estimated as shown in Figure 7. 
From Figure 7, the limit values of identification functions at frequency 0 

 

( ) ( , )N NH H Lω ω= 

( , ) ( , ) / ( )N NH L U L Zω ω ω= Estimate

{ }
1

( , ) ( ) ( ) ( )
N

j N i N
i j

U L U L U Zω ω ω ω
−

=

= + −∑Extrapolate

12( , ) ( , ) ( )L i L Zω ω ω ω ω
−
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Figure 5: Flow chart of the proposed identification method using extrapolation.
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Figure 6: Ratios of interstory drifts corresponding to Lkj and Lcj.

Node and Element 
number j

mj [kg] cj [Ns/m] kj [N/m]

1
 

51.0 10× 61.0 10× 91.0 10×

2
 

51.0 10× 61.0 10× 91.0 10×

Table 1: 2-story model.
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converge to the exact values of stiffness and damping coefficients. Figure 
8 shows the function ( )f L  when 2kL  and 2cL  are set to 1.0 and 1kL  
and 1cL  are set independently in a range of 10 2.5≤ ≤kL , 

10 2.5≤ ≤cL . 
This figure indicates that the function ( )f L  has the minimal value only 
when 1 0.5=kL , 1 0.5=cL , and these are the exact values. 

In the examples of this paper, the optimization is performed 
by using the SQP. Design variables and their initial values are set as 

1.0=kjL , 0.1=cjL  (1 1)≤ ≤ −j N  and the ratios LkN, LcN  of the lowest 
story are set to 1.0. kN  and cN of the lowest story can be identified from 
Eqs.(7)-(9) using the known response ( )ωZ  and ( )ωNU . Therefore, in 
the numerical examination below, it is assumed that kN and cN can be 
identified exactly. 

The result of the identification for the 2-story model based on the 

“Method 1” is shown in Table 2. It can be observed that the identification 
based on “Method 1” has been performed effectively. Figure 9 shows 
the transfer functions of the lowest story using given data ( )ωZ  and 

( )ωNU  and using the identified stiffness and damping coefficients. Two 
functions coincide with high accuracy.

The above-mentioned 2-story model has proportional damping. The 
“Method 1” is then applied to a 5-story model with non-proportional 
damping shown in Table 3. The result of the identification is shown in 
Table 5 which indicates that the “Method 1” can identify the stiffness 
and damping coefficients of all the stories with high accuracy using 
only two given response data.

Investigation using simulated time-history data: The validity 
of “Method 1” is investigated through numerical examples using 
simulated time-history data. The input ( )z t  at the base is generated 
as a band-limited white noise as shown in Figure10. A time-history 
response analysis is performed using ( )z t  and the responses ( )ju t  
are obtained.  ( )z t  and ( )Nu t  are used as the known recorded data. 
Fourier transforms of ( )z t  and ( )Nu t  provide ( )ωZ  and ( )ω

NU . In 
“Method 1”,  ( )ω

jU  are estimated by extrapolating these given data. 
Furthermore stiffness and damping coefficients should be identified by 
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Figure 7: Identification function (Eqs.(8), (9)).

  

Figure 8: Function f(L).

Exact value Identified value 
(Method 1)

kL
1kL 0.50000000 0.50000005

2kL 1.00000000 1.00000000

cL
1cL 0.50000000 0.49999999

2cL 1.00000000 1.00000000

Stiffness
[N/m]

1k 1000000000 1000000014

2k 1000000000 1000000000

Damping
coefficient

[Ns/m]

1c 1000000.000 1000000.004

2c 1000000.000 1000000.000

( )f L 4.5242×10-11

Table 2: Result of identification (2-story model, “Method 1”).

Node and Element 
Number j

mj [kg] cj [Ns/m] kj [N/m]

1
 

51.0 10× 61.0 10× 91.0 10×

2
 

51.0 10× 61.0 10× 91.0 10×

3
 

51.0 10× 61.0 10× 92.0 10×

4
 

51.0 10× 1.0 10× 92.0 10×

5
 

51.0 10× 61.0 10× 93.0 10×

Table 3: 5-story model.
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using the identification function of Eqs.(8), (9). Figure 11 indicates an 
identification function in the lowest story of the model shown in Table 
1. This figure was obtained by applying ( )ωZ  and ( )ω

NU  to Eq.(8). This 
figure shows that the identification function using time-history data 
converges to 0 at frequency 0 because of the unfavorable effect of noise. 
Therefore, some approximation methods may be necessary to estimate 
the limit value and it is difficult to use time-history data directly in 
“Method 1”. In the next section, another identification method without 
the limit value is proposed.

Identification Method Based on Direct Estimation of 
Physical Parameters
Identification method without limit manipulation

The second approach for identification is proposed in this section 
when responses are recorded at the base and the second floor. This 
method is called “Method 2”. This method does not use extrapolation 
and directly identify the physical parameters, i.e. stiffness and damping 
coefficients.

Let us introduce the following ratios  Xkj and Xcj.

/= kj j NX k k 					                 (30)

/= cj j NX c c 					                 (31)

where, kN and cN can be identified by applying recorded data 
( )ωZ , ( )ωNU  to Eqs.(7)-(9). XkN and XcN are equal to 1 and 1 1−k kNX X , 

1 1−c cNX X  can be specified independently. 

A detailed algorithm of the proposed method is shown in Figure 
12. When the ratios 1 1−k kNX X  and 1 1−c cNX X  are assumed, all 
the stiffness and damping coefficients can be obtained. By substituting 
these values into Eq.(1), the transfer function of the lowest story can 
be estimated. As discussed in Section 3.2, a function ( )f X  is defined 
by Eq.(32) to estimate the error between two transfer functions. Here, 

1 1{ , , , , } k kN c cNX X X X X . ( )ωNH  is the target transfer function 
estimated from recorded data ( )ωZ  and ( )ωNU . ( , )ω

NH X  is an 
assumed transfer function estimated from X. The following function 

( )f X   is minimized so as to make these two functions nearly equal.

( ) ( )
2

( ) ,ω ω
=

= −∑ 

U

L

l

N l N l
l l

f X H H X 		              (32)

The characteristics of the “Method 2” are that stiffness and damping 
coefficients are used directly as the design variables in the process 
of optimization and the limit manipulation for frequency 0 is not 
necessary.

Numerical examples

Investigation using theoretical data in frequency domain: In this 
section, the validity of “Method 2” is investigated through numerical 
examples using theoretical data in the frequency domain. An input 

( )ωZ  at the base and responses ( )ωjU  are given by the same procedure 
in Section 3.3.2. In this section, ( )ωZ  and ( )ωNU  are used as known 
recorded data.

As for the “Method 2”, the design variables and their initial values 
are set as 0.2=kjX ,  0.1=cjX  (1 1)≤ ≤ −j N  and the ratios XkN, XcN of 
the lowest story are fixed to 1.0. In the numerical examination below, it 
is assumed that kN and cN can be identified exactly and the optimization 
is performed by the same procedure as in Section 3.3.
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Figure 12: Flow chart of the proposed identification method without 
extrapolation.
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The result of identification for the 2-story model (Table 1) is shown 
in Table 5. The result of identification for the 5-story model (Table 3) 
is shown in Table 6. These tables indicate that “Method 2” can identify 
stiffness and damping coefficients of all the stories based on only two 
given response data with a high accuracy comparable to “Method 1”.

Investigation using simulated time-history data: The validity of 
“Method 2” is investigated here through numerical examples using 
simulated time-history data. An input ( )z t  at the base is generated 
as a band-limited white noise. A time-history response analysis is 
performed for ( )z t . ( )Nu t  and ( )z t  are then used as known recorded 
data. It is assumed here that kN and cN can be identified exactly from the 
recorded data by using Eqs.(8), (9) and the optimization is performed 
by the same procedure as in section 4.2.1.

The frequency range of Eq.(32) affects the result of identification. 
The upper bound of frequency ωU  is varied every 10rad/s and the 
value corresponding to the lowest objective function ( )f X  is used. The 
frequency ωU  is 170rad/s for the 2-story model and 180rad/s for the 
5-story model.

The results of identification for the 2-story and 5-story models are 
shown in Table 7. “Method 2” has a better performance because of 
avoiding the limit manipulation. The accuracy of the 2-story model is 
higher than that of the 5-story model and the value of ( )f X  are greater 
than that in Tables 4,5 and 6 using theoretical data in the frequency 
domain. Figures 13 and 14 show the target transfer function and the 
identified transfer function at the lowest story corresponding to the 
2-story and 5-story models, respectively. In both figures, the difference 
between two transfer functions increases in higher frequency range. 
To investigate this error, two transfer functions of the 2-story model 
estimated by a different approach is shown in Figure 15, i.e. the transfer 
function estimated using theoretical data in the frequency domain 
and the transfer function estimated using time-history data. Figure 15 
indicates that the difference between two functions increase in higher 
frequency range. The validity of “Method 2” depends on the assumption 
that these two functions are considered to be equal with sufficient 
accuracy. By improving the performance in this accuracy problem, the 
identification based on “Method 2” is expected to be useful.

Conclusions
In order to overcome the difficulties in the past work [12] in 

which stiffness and damping coefficients are identified uniquely when 

Exact value Identified value 
(Method 1)

Stiffness
[N/m]

1k 1000000000 1000000008

2k 1000000000 999999991

3k 2000000000 2000000003

4k 2000000000 2000000023

5k 3000000000 3000000000

Damping
coefficient

[Ns/m]

1c 1000000.000 1000000.110

2c 1000000.000 999999.928

3c 1000000.000 1000000.104

4c 1000000.000 1000000.060

5c 1000000.000 1000000.000

( )f L 1.7468×10-11

Table 4: Result of identification (5-story model, “Method 1”).

Exact value Identified value
(Method 2)

Stiffness
[N/m]

1k 1000000000 1000000130

2k 1000000000 999999853

3k 2000000000 2000000098

4k 2000000000 2000000077

5k 3000000000 3000000000

Damping
coefficient

[Ns/m]

1c 1000000.000 1000000.133

2c 1000000.000 1000000.000

3c 1000000.000 1000000.244

4c 1000000.000 999999.868

5c 1000000.000 1000000.000

( )f X 2.3254×10-11

Table 6: Result of identification (5-story model, “Method 2”).

Exact value Identified value 
(Method 2)

Stiffness
[N/m]

1k 1000000000 999999992

2k 1000000000 1000000000

Damping
coefficient

[Ns/m]

1c 1000000.000 999999.992

2c 1000000.000 1000000.000

( )f X 1.0590×10-11

Table 5: Result of identification (2-story model, “Method 2”).

Model Element number j ( )f X

1 2 3 4 5
2-story model Error of kj (%) -6.67 0 - - - 458.8

Error of cj (%) +8.71 0 - - -
5-story model Error of kj (%) -12.9 +19.7 +3.83 -13.4 0.0 472.1

Error of cj (%) +50.0 +50.0 -25.0 -11.4 0.0

Table 7: Identification error from the exact value.
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Figure 13: Target transfer function and identified transfer function (2-story 
model, “Method 2”).
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responses at the base and the second floor are obtained, more practical 
and stable physical-parameter SI methods called “Method 1” and 
“Method 2” have been proposed in this paper.

The advantageous features of these methods can be summarized as 
follows:

i. These methods enable identification by minimizing the error 
between the target transfer function and an assumed transfer function. 
The target transfer function is estimated directly from recorded data. 
The assumed transfer functions are estimated in a different way in each 
method. This approach is based on the uniqueness of identification 
proved in the previous paper [12] and it enables one to avoid the process 
to solve the recurrence equation.

ii. “Method 1” uses the extrapolation of unrecorded responses in 
the frequency domain. By introducing the ratios among interstory 
drifts, unrecorded data (floor acceleration or displacement) can be 
extrapolated. Applying the previously proposed SI method with limit 
manipulation [15,16] to these extrapolated data, physical parameters 
can be obtained at all stories. Based on these assumed physical 
parameters, the transfer functions can be calculated. Then optimization 
is performed to minimize the error between the target transfer functions 
and assumed transfer functions with the ratios among interstory drifts 
as the design parameters.

iii. The validity of the proposed method, “Method 1”, has been 
investigated numerically. When the theoretical data in the frequency 
domain is used, SI is performed with sufficiently high accuracy. 
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Figure 14: Target transfer function and identified transfer function (5-story 
model, “Method 2”).
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Figure 15: Comparison between transfer functions based on theoretical data 
in frequency domain and corresponding transfer function based on time-history 
data (2-story model).

However, when the time-history data are used, the limit manipulation 
is difficult to perform because of the effect of noise in the low frequency 
range. 

iv. To overcome the difficulty in the limit manipulation, “Method 2” 
has been proposed. This method enables one to avoid the extrapolation 
of data and the limit manipulation by regarding directly the physical 
parameters as the design variables. Optimization has been introduced 
to minimize the error between the target transfer function and an 
assumed transfer function with the physical parameters as the design 
parameters.

v. The validity of the proposed method, “Method 2”, has been 
investigated. When the theoretical data in the frequency domain is used, 
SI can be performed with the accuracy comparable to the “Method 1”. 
Furthermore, when the time-history data are used, this method is able 
to perform SI very well. However, the deterioration of the accuracy is 
caused by the error between two transfer functions, i.e. the transfer 
function estimated using theoretical data in the frequency domain and 
the transfer function estimated using time-history data. 
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