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Abstract 

This study presents practical and easy-to-implement approaches for determining appropriate, or “safe” sample 

sizes for routinely conducted statistical surveys. Finite populations are considered holistically and independently of 

whether they are continuous, categorical or dichotomous. It is proposed that in routinely conducted sampling surveys 

variance-ordered categories of populations should be the basis for calculating the safe sample size given that the 

variance within a target population is a primary factor in determining sample size a priori. Several theoretical and 

operational justifications are presented for this thesis. Dichotomous populations are often assumed to have higher 

variances than continuous populations when the latter have been standardized and have all values in the interval 

(0 1). Herein, it is shown that this is not a valid assumption; a significant proportion of dichotomous populations 

have lower variances than continuous populations. Conversely, many continuous populations have variances that 

exceed the limits that are broadly assumed in literature for determining a safe sample size. Finite populations 

should thus be viewed holistically. A simple first step is to partition finite populations into just two categories: 

convex and concave. These two categories are relative to a flat population with a known variance as the threshold 

between them. This variance is used to determine a safe sample size for any continuous population with a flat or 

positive curvature, including approximately 20% of dichotomous populations. For all other populations the value of 

0.25 is recommended for approximating the actual population variance as the primary parameter for sample size 

determination. The suggested approaches have been successfully implemented in fisheries statistical monitoring 

programs, but it is believed that they are equally applicable to other applications sectors. 
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Introduction 

This study stems from the author’s experience in implementing 

sample-based data collection programs in the  fisheries  sector.  In  

such situations the surveys are implemented on a routine basis with  

the purpose of systematically monitoring the exploitation of marine 

and inland fishery resources. A typical fishery statistical monitoring 

program consists of two sampling surveys that are conducted in parallel 

and are independent of each other. 

In the first survey the target populations are fish landings made by 

different fleet segments, such as trawlers, purse seiners, small artisanal 

boats, etc. The reason for segmenting the boats by vessel type and fishing 

method is to form statistical strata in each of which fish production is 

more homogeneous with respect to species composition, quantities 

caught, fishing grounds exploited, etc. The objective is to estimate on a 

monthly basis the average daily harvest of a boat from each fleet segment 

separately. Landings populations are continuous with frequency 

distributions that are specific to the boat type and fishing method 

employed. For instance, the distribution of landings by trawlers or 

boats using traps is usually skewed and at times approximately normal. 

Landings by purse seiners targeting small pelagic fish are at times U-

shaped since in this type of fishery there are days of large catches and 

others of little or no catch at all. Consequently, these data tend to be thin 

around the mean and denser near the lower and upper boundaries of 

their range. Small-scale fisheries that are practiced by small craft have 

distributions of varying positive curvature; at times the distribution can 

be flat (or orthogonal) without noticeable peaks within the data range. 

The second survey concerns the level of activity of boats. This      

is expressed by the probability that a boat of a fleet segment is active 

(i.e. fishing) on any given day. This probability is subsequently used to 

estimate the monthly fishing effort of a fleet segment (i.e. total days at sea 

during a month). There exist several sampling scenarios for estimating 

the level of activity and the respective target populations are specific to 

the sampling scheme in use. For instance, one scenario is to sample at 

random the activity state of boats; this state is conventionally expressed 

by 1 if the boat is found fishing and by zero if it is not. In this case the 

target population is dichotomous and its proportion p is equivalent to 

the probability of a boat being active. Another approach is to sample 

boats at random on a weekly basis and record the number of days fishing 

over the past week. In this case the population is categorical and consists 

of eight values (0 to 7) that appear with varying frequencies. 

The introductory information given above indicates that in routinely 

conducted fisheries surveys the target populations are of varying types: 

continuous for landings (comprising skewed, approximately normal, flat 

and U-shaped data) and dichotomous or categorical for boat activity. 

These populations are stratified by boat type and fishing method and by 

coastal zone, since the latter can also affect the species composition and 

the quantities caught. Thus, in a typical fisheries statistical monitoring 

program sampling operation apply to many statistical strata whose 

number can be as big as 200. It should be added here that in all cases 

the populations are finite and their respective size is known with good 

accuracy. 

 
 

*Corresponding author: Constantine Stamatopoulos, International 

Consultant, Fisheries Resources Monitoring  and  Assessment,  31, Viale  

Pio XI, Castelgandolfo, Rome-00073, Italy, Tel: +00393343399481; E-mail: 

cstamat@gmail.com. 

Received May 30, 2019; Accepted Juy 19, 2019; Published July 26, 2019 

Citation: Stamatopoulos C (2019) A Holistic View of Finite Populations for 

Determining an Appropriate Sample Size. J Marine Sci Res Dev 9: 272. 

Copyright: © 2019 Stamatopoulos C. This is an open-access article distributed 

under the terms of the Creative Commons Attribution License, which permits 

unrestricted use, distribution, and reproduction in any medium, provided the original 

author and source are credited. 

Research Article Open Access 

 

 
 
 

 
 

 
ISSN: 2155-9910 

mailto:cstamat@gmail.com


Citation: Stamatopoulos C (2019) A Holistic View of Finite Populations for Determining an Appropriate Sample Size. J Marine Sci Res Dev 9: 272. 

J Marine Sci Res Dev, an open access journal 

ISSN: 2155-9910 Volume 9 • Issue 4 • 1000272 

 

 

 
 

 
 
 

During the planning phase of a fisheries sample-based program    

it is essential to set-up data collection norms and standards for each 

stratum in the statistical area. The most important task is to determine 

the appropriate sample size for each stratum, separately for landings 

and for boat activities, bearing in mind that such settings may vary 

from month to month due to the dynamics of the fisheries populations 

under study. 

The determination of an appropriate sample size is known to be a 

key factor in all types of sample-based surveys. Data collection schemes 

in large-scale statistical program demand that the safe sample size is 

determined on an a priori basis at the beginning of each reference period 

(e.g., each month) and for each target population of the survey. Various 

approaches for this a priori determination is extensively discussed in 

the literature; a plethora of studies have been conducted to examine 

the use of Cochran’s formula [1], either in its original form or with 

modifications based on specific methodological and/or operational 

requirements. Although this introductory section is not intended for 

methodological presentations, Cochran’s formula for safe sample size 

merits some brief discussion since its parametrization is the focus of the 

present study. As shown in Section 2 this formula derives directly from 

the Central Limit Theorem and has the following form: 

 

t22 
n = 

2 
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that includes six standard deviations [4]. However,  in surveys that   

are routinely conducted, such approaches are not always feasible. As 

described earlier there are several sub-populations resulting from 

stratification schemes that combine geographical and technical criteria 

and that their number could well be as big as 200. In such situations it is 

impractical to conduct a priori approximations of the variances for each 

of these 200 sub-populations on a monthly basis, even in the unlikely 

event that statisticians are present during the production phase of a 

routinely conducted statistical monitoring program. Furthermore, the 

assumption that a continuous population is normal or approximately 

normal is not always valid: it was seen earlier that continuous data (such 

as fish landings) come in various forms and shapes and apart from some 

knowledge about the general configuration of the elements, not much is 

known in advance about the variance in the data. It is the author’s view 

that in routinely conducted surveys the approximation of variances for 

each target population separately is not a feasible approach. 

Here, it is advocated that in routinely conducted sampling surveys 

the parametrization of the sample size formula should always be based 

on the “pessimistic” approach, whereby a maximum variance replaces 

the population variance in the formula. To achieve this, we need to 

take a holistic view of the variance, irrespective of the population being 

continuous, dichotomous or categorical. We suggest that transforming 

finite populations into standardized ones (i.e., mapping the original 

elements onto the interval (0 1) allows all populations of a given size 

to be ordered on the basis of variance and partitioned into two major 

categories, each with known maximum variance. We can then use the 
where n is the resulting sample size, t is the abscissa of the normal 

curve that cuts off a total area of α at the tails, 2 is the population 
variance and  is the maximum error that the survey planner is willing 

to tolerate. 

A typical value for t is 1.96 which corresponds to an alpha level  

of 0.05. In practical terms this means that when the sample size is 

calculated from the above formula 95% of the sampling operations are 

expected to yield a sampling error that is lower than  . 

An immediate observation on the above formula is that the 

population variance is unknown. Approximating the population 

variance with the sample variance requires some extent of preliminary 

sampling which defeats the idea of a priori determination of sampling 

requirements. In dichotomous populations this difficulty can be 

overcome by replacing the population variance with the “pessimistic” 

constant 0.25 which is the maximum variance in dichotomous 

populations and occurs for population proportions that are equal to 

0.5. When the population proportion is not 0.5 the approach leads to 

oversampling, but most users are quite willing to accept this fact since it 

provides an even safer sample size and at the same time it mitigates the 

impact of the alpha level described earlier. 

When analyzing continuous data, the recommended actions for 

parametrizing the sample size formula are less straightforward. One 

would expect that using again a pessimistic maximum for the variance, 

a good and practical approach that works well with dichotomous data, 

could also apply to continuous data. Instead, most case studies in 

literature focus on the target population in hand and attempt to closely 

approximate the population variance using hypotheses and educated 

guesses. 

For instance, it has been suggested that the population variance 

can be estimated with a reasonable degree of accuracy [2,3]; it has 

also been hypothesized that the population is approximately normal 

“pessimistic” approach by means of which the variance in the sample 

size formula is replaced by the maximum variance of the respective 

population category. 

An example  of  such  a  holistic  approach  is  illustrated  in 

Figure 1 with standardized populations having values within the interval 

 
 

Figure 1: Standardized populations sorted in ascending order of variance and 

the two major categories of populations based on 2 = 1 / 12 . 
and that its variance can be approximated using a seven-point scale    
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(0 1) and ordered based on variance. The threshold line representing  

a flat population corresponds to a variance of and divides all finite 

populations of same size N into two major categories: 

(i) Populations with variances ≤ 1/12. 

 

 
 

• Examples of error-prediction functions; 

• Examples of safe sample size determination. 

Assumptions, definitions and conventions 
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(ii) Populations with variances >1/12 and ≤ 1/4. 

The first (upper) category is conventionally referred to as “convex” 

and includes all continuous populations with flat or positive curvatures, 

including categorical populations whose peak frequencies are around 

the mean. Surprisingly enough, this category also includes dichotomous 

populations with proportions of p<0.09 or p>0.91 (this last property is 

proved in the annex). 

The second category is referred to as “concave” and includes 

continuous populations with negative curvatures (i.e., U-shaped 

populations), categorical populations with peak frequencies near the 

boundaries and dichotomous populations with proportions 0.09 ≤ p 

≤ 0.91. 

This introductory section concludes with a brief description of the 

main body of the document. 

Section 2 provides definitions and notations and describes the 

application of a population standardization process to map a finite 

population to values in the interval of (0 1). Next, all standardized 

populations of the same size are ordered by the variance and two major 

All populations in this study are finite, have a known size (N), and 

contain at least two elements that are different from each other. The 

population elements are denoted by an indexed variable (i=1, …, N). 

The population mean is denoted by. Without any loss of generality, the 

population elements are assumed to be arranged in increasing order so 

that for all i=1, …, N-1. Hence, there is always a minimum element 

and a maximum element. 

Herein, there is a distinction between the terms “curvature” (or 

“shape”) and “configuration”: the former refers to the form of the 

frequency distribution of the population while the latter refers to the 

positioning of the population elements within the interval defined by 

its boundaries. An example of this distinction is shown in Figure 1 

that illustrates standardized populations (with elements between 0 and 

1), which are ordered by the variance. Let us examine the U-shaped 

population shown near the bottom. The curvature of the population is 

described by its frequency distribution, whereas the configuration of 

population elements is described (just above it) by the positioning of its 

elements within the interval (0 1). 

For a random sample of size n denoted as (k=1, …, n) with a sample 

mean of the relative error is computed as follows: 

population categories are identified. The final step determines safe 

sample size for each category. 

Four case studies are included that show the practical application 

= 

yN − y1 

(1) 

of the proposed approach. All datasets contain actual data collected  

in the field and specifically from the fisheries statistical programs  

that operate in Qatar, the UAE, Lebanon and Algeria. All data have 

been standardized to take values within the interval (0 1) using the 

standardization method presented at the beginning of the section. 

Section 3 opens a discussion regarding the proposed approaches. 

Several conclusions are drawn in Section 4. 

The methodologies presented in Sections 2 and 3 are further 

analyzed in the annex in the form of mathematical proofs for most 

propositions. This was done with the purpose of providing the 

theoretical basis for the categorization of populations using as criterion 

It is recalled that are the minimum and maximum elements 

respectively. 

Herein, all populations in the study are assumed to have been 

transformed into standardized populations as shown in the following 

section in order to simplify the discussion of the relationship between 

sample size and relative error. 

Standardized populations 

Using the minimum and maximum elements Y
1
, Y

N 
the finite 

population, Y
i
, described above can be transformed into a standardized 

population, X
i
, according to the following formula: 

the variance. Most of the mathematical proofs in the annex concern 

the very questions of: (i) how the variance increases or decreases when 

the population elements change positions and (ii) what the global 

xi = 
yi  − y1 

 

yN − y1 

 

(2) 

minimum and maximum variances in standardized populations of a are 

given size. Admittedly the proofs of some known and/or self-evident 

facts might seem superfluous but the author has opted to include them 

nevertheless, more for his own reassurance than that of the reader. 

Materials and Methods 

The resulting standardized population has the following basic 

properties (these are self-evident and do not require a formal proof): 

 
(a) x1 = 0 x N = 1 0 ≤ Xi ≤ 1i=2, ….N-1. 

The topics in this section are presented in the following order: 

• Assumptions, definitions, and conventions concerning finite 

 
(b) Mean of the standardized population is 

2 1 
max 4 

populations; 
• Transformation method of a finite population into a standardized 

(c) Sample elements are mapped onto standardized sample elements 

which have a sample mean of 
− 

−
− y

 
 

population; 

• Description of variance-ordered standardized populations and the 

X =   
y 1 

yN − y1 

(d) From (a), (b) and (c), _it follows that the relative error given in 

pessimistic approximation of variances; (1) is also equal to:  =|− x |   (3) 

y − y 
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Property (d) indicates that the relative error can be measured 

directly from the unitless standardized population generated according 
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The classification for convex populations relies  on  the  use  of 

flat variance, 2 , as a pessimistic substitute for the variances of all 

convex  populati
f
ons,  including  those  with  Gaussian  and  Laplacian 

distributions and those with slight positive curvatures, etc. Likewise, 
to (2). An illustrative example of this property is provided in the annex. 

the global maximum, 2
 = 

1 , can be used as a pessimistic substitute 
4 

(e) If 
2 is the variance of a standardized population then, 

for the variances of all concave populations including those that have 

U-shaped distributions and those that are dichotomous without high 

according to the central limit theorem, for error in (3) we will have: or low proportions. Cochran and Krejcie and Morgan [1,5] have used 
2 
max for dichotomous populations. However, as shown in Section 3, 

  (4) 

 
where n is the sample size and t are the abscissa of the normal curve 

that cuts off a total area of α at the tails. To simplify the calculations, we 

assume that the populations are large enough, so that formula (4) need 

not contain the Finite Population Correction factor (FPC). 

Assuming the equal sign in (4) and solving the equation for n, we 

obtain Cochran’s general formula for a safe sample size: 

t2 2 

 
 

not all dichotomous populations have high variances and not all 

continuous populations have low variances. Therefore, in the case 

where the researcher considers only two population categories, it 

would be more accurate to use the term “convex” for populations with 

variances between 0 and 1/12 inclusive and “concave” for populations 

with variances that are higher than 1/12 and lower than or equal to 1/4. 

The pessimistic variance approach using two major population 

categories (i.e., convex and concave) is efficient and easy to implement. 

The author has been involved in the design and implementation of 

routinely conducted fishery surveys in several countries, and in his 

experience, the use of these two major categories is robust and durable. 

It  should  be  noted  here  that  fishery  surveys  involve simultaneous 
n = 


2 

(5) 
dealing with various population types: normal (or about normal), 

Based on properties (d) and (e), it can be concluded that sampling 

aspects can be examined with respect to standardized populations only. 

The propositions following, (f)-(j), hold for all standardized populations 

of size N and are proved in the annex. 

(f) When an element is moved away from the mean and toward 

either of the two boundaries, 0 and 1, the variance of the population 

increases. 

(g) When an element is moved toward the mean, the variance of the 

population decreases. 

(h) In standardized populations, the variance has a global 

maximum  of  
2 1 . This maximum occurs in dichotomous 

convex with a slight curvature, flat, U-shaped, and dichotomous. The 

examples presented in this section are based on actual data compiled 

from the field. 

Therefore, it is recommended that this approach is used as a first 

step when determining safe sample size, considering that it could later 

be replaced by a more refined categorization scheme if this new scheme 

is equally reliable, robust, and durable. One such case is illustrated in 

Figure 1: a thin line representing a variance of 1/24 (which is half of the 

flat variance 1/12) further divides the convex populations into those 

that have normal or relatively sharp curvatures and those with zero or 

slightly positive curvatures. This shows that more refined classifications 

of populations yield safe sample sizes that are more economical because 

max 
= 

4 
populations with a proportion of p=0.5 and when the population size, 

N, is an even number. When N is an odd number this maximum is 

slightly lower, as shown in Proposition 2 in the Annex, but the difference 

between the two maximum values is quite negligible so that the value of 

the pessimistic variances were designed to be applicable to smaller 

population categories. As an example, if the population size, N, is large 

enough to permit the use of the limit-values for variances, the following 

refined categorization can be used: 

Convex with a normal or relatively sharp curvature: 
1/4 is accepted in all cases. 

(i) The variance has a global minimum of 

practically zero for large values of N. 

 

2 

min 
=

 1 
which is 

2N 

0   2  
 1 

  2 
24 

N
 

Convex with no curvature or a slight curvature: 

(j) There is a unique “flat” standardized population that does not 
1 

  2  
1 

  2 
  

contain regions of high or low element densities. The variance of this 24 12 f 
type of population is 2 = N +1 and has a limit of 1/12 for large 1 2 1 2 

 values of N. 
f 

12(N −1) Concave:       max 

Convex and concave populations 

Once all populations have been standardized and ordered by their 
variance, 2 , they can be partitioned into two major categories based 

on the “flat” variance, 2 , defined in property (j) above as follows: 

Convex populations: 0   2    2   
1 (6) 

 

12 4 
 

It should be noted that categories (i) and (ii) also contain 

dichotomous populations with proportions in the ranges of p<0.09 or 

p>0.91 while category (iii) contains U-shaped continuous populations 

and dichotomous populations with proportions in the range of 0.09 ≤ 

p ≤ 0.91. 
As mentioned earlier, the use of two major categories, convex and 

f 12 

2 2 1 
 

 

concave, as described by (6) and (7), is recommended here. The sub- 

division of convex populations into two sub-categories, (i) and (ii), 

Concave populations: f
     (7) 

4 
is done in order to show that the general approach presented here is 
flexible enough to accommodate the use of more refined categorizations 
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Figure 2: Error prediction for a normal population. 

 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3: Error prediction for a flat population. 

 

 

 

 
 

if it can be justified by available information about the shape of the 

target populations. 

Error fluctuation and sample size 

In Section 2.2, it was shown that formula (5) for determining the 

safe sample size is a rearranged form of formula (4), in which the error, 
 , is a function of the sample size, n. This error-prediction function 

envelops most of the error points resulting from the varying sample 

size with some exceptions depending on the selected alpha level, which 

is represented by t value in the formula. For instance, for an alpha level 

of 0.05 (or 5%), it is expected that if sampling is repeated 100 times, 

in 95 cases the relative error    will be lower than the allowable error 

margin (such as 0.1 and 0.05). This expectation is based on the actual 

population variance that appears in formula (5). Evidently, when the 

population variance is substituted by a higher (e.g., pessimistic) value, 

the sample size will increase, with increasing proportion of “good” 

occurrences for the error  . 

As the sample size increases, the error decreases and its fluctuation 

are mitigated. In case of large samples and when the sample size 

continues to increase, the error curve begins to converge toward zero. 

In the following examples, the sample size, n, ranges from 1 to 

500. For each sample size, a random sample is taken and its mean is 

combined with the population mean to derive the relative error, given 

in formula (3). The series of plotted errors form an oscillating curve that 

becomes smoother as the sample size increases. In each example, the 

three error-prediction curves defined for categories (i)-(iii) (as defined 

in Section 2.3) are plotted together in order to illustrate how efficiently 

each one envelops the actual error fluctuation. As mentioned earlier, 

this efficiency (or lack thereof) depends on the pessimistic value that is 

chosen to represent the population standard deviation in (4). 

In the error plots presented for the following examples, the 

horizontal axis represents the ratio, log(n)/log(N), where N is the 

population size, rather than the sample size, n. This is done simply  

for the sake of convenience because plotting the error as a function   

of sample size has a hyperbolic shape so much that the error function 

is very close to the axis and, thus, is blurred and difficult to visualize. 

Conversely, with a logarithmic scale, the plot is magnified horizontally 

and the curve takes on an exponential shape that is easier to analyze. 

This type of graphical representation is only for plotting purposes and 

it does not affect the methods, or the formulae used. 

Illustrative examples of error prediction 

Example 1: Figure 2 illustrates an application of the error-prediction 

formula (4) to a standardized population of fish landings by trawlers, 

which is known to be approximately normal. The function represented 

by the dotted line was parametrized for populations that are normal   

or sharper than normal (i.e., those in category (i) as defined in Section 

2.3). The pessimistic variance was set to 1/24 and the acceptable margin 

of error was chosen to be 0.05. 

The plot shows that the error fluctuation is well enveloped by the 

dotted line with no exceptions. This is because the upper limit for the 

variance (1/24) is higher than the actual population variance, which 

diminishes the impact of t in formula (4). The dashed line in the same 

plot corresponds to the flat variance of 1/12. This variance is intended 

for populations in category (ii); it thus yields, as expected, an even 

safer sample size with an acceptable extent of oversampling. Regarding 

the external curve (solid line), its use would clearly result in large 
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oversampling, as it is based on the global maximum value for variance 

(e.g. 0.25). 

Example 2: Figure 3 illustrates another variance parametrization 

for a standardized population of fish landings by small  artisanal  

craft. The population elements are placed at approximately regular 

intervals, resulting in a frequency distribution that is flat. Therefore, 

the pessimistic variance is 1/12, which corresponds to category (ii) as 

defined in Section 2.3. Alpha level and margin of error are both 0.05. 

The applied error-prediction curve (dashed line) effectively 

envelops the error fluctuation with some sporadic exceptions, which 

are due to the chosen alpha level of 0.05. It is notable that the curve 

that was acceptable for a normal population (dotted line) is no longer 

adequate for enveloping a flat population as several error points that 

penetrate it are due to the lower variance limit applied rather than the 

chosen alpha level. The use of external curve (solid line) would result 

in large oversampling, as the external curve is based on the global 

maximum value for variance (e.g., 0.25). 

Example 3: In this example we deal with a standardized population 

of fish landings by purse seiners. As mentioned in the introduction such 

populations are at times U-shaped, with higher element density near 

the boundaries and a lower density around the mean. The pessimistic 

variance used in the error-prediction formula (4) is now set to the 

maximum value of 1/4, which applies to concave populations (category 

(iii) as defined in Section 2.3). Alpha level and error margin are again 

set to 0.05. 

The plot in Figure 4 shows that the error-prediction curve (solid 

line) effectively envelops the error fluctuation as the maximum variance 

of 1/4 is higher than the population variance. Thus, the impact of the 

parameter t in the error-prediction formula is mitigated. The first two 
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Figure 6: Determination of the safe sample size by using error-prediction 
functions. 

 

 

 

 
 

curves, which were used for convex and flat populations (dotted and 

dashed lines, respectively) are no longer adequate as there are several 

error points that lie outside them due to their lower variance limits 

rather than the chosen alpha level. 

Example 4: Here, the target population is dichotomous with 

elements of 0 and 1 and a proportion of p=0.765. This standardized 

population represents the average state of activity of fishing boats over 

a period of one month. Its proportion expresses the probability that a 

boat is active on any day. The pessimistic variance used in the error- 

prediction formula (4) is again set to a maximum of 1/4, which applies 

to concave populations (category (iii) in Section 2.3). Again, alpha level 

and error margin are set to 0.05. 

The error-prediction curve shown in Figure 5 (solid line) effectively 

envelops the error fluctuation with some sporadic exceptions that are 

allowed by the chosen alpha level of 0.05. The two other curves are 

no longer adequate as they are penetrated by the error fluctuation at 

several points due to their lower variance limits rather than the chosen 

alpha level. 

Safe sample size 

The previous section paved the way for an effective determination 

of a safe sample size. It has been shown that error formula (4), when 

appropriately parametrized, efficiently envelops the error fluctuation 

for varying sample size. Such a parametrization is primarily dependent 

on the pessimistic variance that substitutes the population variance. 

Thus, it is expected that applying pessimistic variance and desired error 

margin ε to formula (5) will yield a sample size that will guarantee that 

the relative error will generally be lower than ε. 

This concept is demonstrated by the example illustrated in Figure 6. 
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The three error-prediction functions applied earlier use the same alpha 

level of 0.05. The horizontal line starting from any error value intercepts 

each curve at a point that corresponds to the safe sample size for that 

error margin for each major category or sub-category. For instance, the 

line starting from ε=0.1 yields safe sample sizes of 32 and 96 for convex 

and concave populations, respectively. 

Table 1 shows examples of safe samples size computed for each of 

the four populations examined in the examples in Section 2.5. At first, 

the error margin, ε, is set to 0.1, which is acceptable in most routinely 

conducted large-scale surveys. The sample size is determined based on 

two major population categories described in Section 2.3- convex and 

concave. Since the population size, N, is large enough in all cases, we 

          can use the limit-values for the upper boundaries of the variance: 1/12 

for convex populations and 1/4 for concave populations. The chosen 

alpha level is 0.05, which corresponds to t=1.96 in formula (5) for 

calculating the safe sample size. 

With these parameters, the formula yields a safe sample size of 32 

for convex populations and 96 for concave populations. If the formula 

contained the actual population variance, these sample sizes would 

have been lower and 95 out of 100 times, the error ε, would have been 

lower than or equal to the acceptable limit of 0.1 (recall that alpha level 

is 0.05 or 5%). In this specific case, we have substituted the population 

variance in (5) with a pessimistic (i.e., higher) value. As a result, the 

proportion of results in which ε 0.1 should be increased. 

Figure 4: Error prediction for a U-shaped concave population. 
 

   
 

Figure 5: Error prediction for a dichotomous and concave population. 

Table 1 was generated by computing the error ε, using the safe 

sample size and comparing it to 0.1; this was repeated 1000 times for 

each population. As shown in the last column of Table  1, there are   

no exceptions in which the error ε, exceeded the desired margin of 

0.1 for the normal population. Similarly, there are no exceptions for 

the U-shaped population as the error was below 0.1 in all 1000 trials. 

However, there was one exception for the flat population and three for 

the dichotomous population. 

Table 2 was formed using the same two major population categories 

as in Table 1 (convex and concave) but applying a more rigorous error 

margin of 0.05. The increase in precision resulted in a significant 

increase in the safe sample size: the new sampling requirements are four 

times higher than those determined for an error margin of 0.1. 

Table 3 uses the three population categories (i)-(iii) as defined in 
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Section 2.3. Alpha level and error margin are both set to 0.05. The upper 

boundaries of the variance for the different populations are as follows: 
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models for the target populations. For dichotomous populations the 

model variance is 1/4=0.25; this has already been discussed thoroughly 

2 1  in this study. For a standardized distribution shaped like a right triangle 

Population in Example 1: N 
= 

24
 

Population in Example 2: 
2 

= 
 1 

 

the model variance is 0.056, while for an isosceles triangle it is 0.042. 

For standardized rectangular (i.e. flat) populations the model variance 

is 1/12=0.083. We can see here that standardized flat populations have 

already been earmarked as potentially useful models, albeit not as a 
f 12 

Population in Example 3: 
2 

= 
1
 

threshold between major population categories. 

Seeking a population model that closely fits the characteristics of 
max     4 

Population in Example 4: - 
2 

= 
1
 

4 

the target population results in a more economical safe sample size 

and this is a much desirable result. In fact such a refined approach is 

justified if the sampling survey is of large-scale, it is to be conducted 

The sampling scheme shown in Table 3 is slightly more economical 

than in Table 2 owing to the refined categorization of target populations 

and has resulted in lower sample size for normal population (first table 

entry). However, this improvement is counteracted by a loss of stability 

since this population may at times have higher variance than that which 

was assumed (1/24). An obvious solution to prevent this issue is to 

opt for the broader categorization shown in Tables 1 and 2 in cases of 

uncertainty regarding the stability of target population shape. 

Results and Discussion 

As it was pointed out in the introduction several known methods in 

the literature make use of the pessimistic variance approach, albeit for 

dichotomous populations only. With continuous data they attempt to 

approximate the population variance based on a general idea about the 

shape of the population distribution. To this effect Cochran [1] suggests 

several mathematical distributions with known variances to serve as 

 
 

Population 
Population 

variance 

Population 
major 

category 

Pessimistic 

variance 

Safe 
sample 

size 

Cases where 
error ε > 0.1 
(1000 trials) 

Example 1- 

approx. normal 
0.016 Convex 1/12 32 0 

Example 2- flat 0.082 Convex 1/12 32 1 

Example 3- 
U-shaped 

0.158 Concave 1/4 96 0 

Example 4- 

dichotomous 
0.179 Concave 1/4 96 3 

Table 1: Determination of safe sample sizes for populations in the two major 

categories with an alpha level of 0.05 and an error margin of 0.1. 

 
 

Population 
Population 

variance 

Broad 

category 

Pessimistic 

variance 

Safe 
sample 

size 

Cases where 
error ε > 0.05 
(1000 trials) 

Example 1- 

approx. normal 
0.016 Convex 1/12 128 0 

Example 2- flat 0.082 Convex 1/12 128 0 

Example 3- 
U-shaped 

0.158 Concave 1/4 384 0 

Example 4- 

dichotomous 
0.179 Concave 1/4 384 2 

Table 2: Determination of safe sample sizes for populations in the two major 

categories with an alpha level of 0.05 and an error margin of 0.05. 

only once and the error level is as low as 0.05 or 0.01 (such error levels 

require large samples and therefore any reduction in sampling effort 

would mean lower operational costs). 

In contrast to the above situation this study addresses the question of 

regularly conducted sampling programs in which the target populations 

are many and of various types, thus making it practically impossible 

to associate each of them, on a monthly basis, with a population 

model of known variance. It has been shown that the categorization  

of populations into convex and concave allows for a generalized use of 

the pessimistic approach by means of which only two model variances 

are used as pessimistic substitutes in formula (5): the flat variance of 

1/12=0.083 for convex populations and the global maximum 1/4=0.25 

for the concave ones. 

The concept of using two categories of finite populations was used 

by the author some time back [6], when examining the geometric 

properties of sampling error in finite populations. To be sure an 

important aspect of this approach is the correct placement of a target 

population into the appropriate category. However, this task is a 

relatively simple one and it is easier than approximating population 

variances that keep changing between periods and across statistical 

strata; a problem addressed by several authors and most notably by 

Israel and Bartlett et al. [4,7]. 

The introductory part of the study presented some examples of 

populations and their placement into each of the major two categories. 

It has been mentioned that fish landings are generally populations of 

zero or positive curvature which makes them convex. For all these 

populations the flat variance of 1/12=0.083 is used as a pessimistic 

substitute for the population variance in formula (5). Exceptions are 

fish landings by purse seiners which can at times be U-shaped. For 

these the pessimistic variance of 0.25 for concave populations is used. 

In fact, it is always never wrong to use the global maximum of 0.25 (in 

the annex it is proved that 0.25 is a global maximum for the variances 

of all standardized populations). This over-pessimistic approach would 

often lead to over-sampling, but this shortcoming would be justified 

in situations of uncertainty regarding the correct categorization of the 

target population. 

Here some other examples are provided to show that continuous, 

dichotomous or categorical populations should be examined holistically 

and not as separate categories. 

 

Population Population variance Refined category Pessimistic variance Safe sample size Cases where error ε > 0.05 (1000 trials) 

Example 1- approx. normal 0.016 Normal, sub-category (i) 1/24 64 1 

Example 2- flat 0.082 Flat, sub-category (ii) 1/12 128 1 

Example 3- U-shaped 0.158 Concave, sub-category (iii) 1/4 384 0 

Example 4- dichotomous 0.179 Concave, sub-category (iii) 1/4 384 2 

Table 3: Determination of safe sample sizes using three categories of populations with an alpha level of 0.05 and an error margin of 0.05. 
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For instance, we may encounter dichotomous populations (which 

are generally expected to be concave) that are convex; this would be 

the case with dichotomous data in which the population proportion 

lies outside the range 0.09-0.91. Proposition 6 of the annex proves this. 

With such dichotomous populations, the use of the pessimistic variance 

of 0.25 in formula (5) for determining the safe sample size would lead to 

a significant level of oversampling. 

Figure 7 illustrates an example of such a case: a dichotomous 

population that has a proportion of p=0.95 and a variance of 0.073.  

As the population variance is lower than the flat variance of 1/12, 

formula (5) for safe sample size determination should contain 1/12 and 

not 1/4. In the plot, the error curve associated with the flat variance   

of 1/12 (dotted line) is very close to the curve formed based on the 

actual population variance (dashed line), whereas the use of the curve 

representing the maximum variance of 1/4 would lead to a large extent 

of oversampling. However, in the case of dichotomous populations, 

the application of a lower pessimistic variance should be allowed only 

with the firm knowledge that the target population has always high or 

low proportion (p). Without this knowledge, the maximum variance  

of 1/4 is the safest choice. According to Fink [8] oversampling is often 

necessary if the main issue is obtaining a safe sample size. 

Here it should be noted that in dichotomous populations with very 

high or very low p values, the main concern may not be obtaining a safe 

sample size but rather deriving important conclusions as to the presence 

or absence of an event in the population. If the objective of the survey is 

to furnish a reasonably good estimate of the mean for strictly statistical 

monitoring purposes, then the approaches described above hold well. 

However, such an estimate would be of significantly lower utility if 

the main object is to draw conclusions of a strong impact, such as the 

presence of a disease in a population of animals. In a fisheries context 

an example of such a finding would be to determine the proportion   

of (few) fishermen who do not comply with fishing regulations during 

closed seasons. According to Shuster [9], not all sample-size-related 

problems are the same and the importance of the sample size varies 

greatly between studies. 

Naing et al. [10] posited that a much larger sample size than     

that calculated by the safe sample size approach is needed in cases of 

extreme values of the proportion (p). For example, in a medical survey 

that examines the probability of a person contracting a disease, the real 

p-value is very small and sampling with the predicted sample size may 

result in subjects with no disease. 

The author does not share this view. He believes that in situations 

where it is important to reveal rare facts of significant impact, the 

regularly conducted surveys for statistical monitoring purposes are 
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not the right tools. Cochran [1] suggests the method of continuing 

sampling until a pre-fixed number of rare items have been found in the 

sample. This method is known as inverse sampling. 

The other parameters used in formula (5), namely the alpha level 

and the corresponding value of t, are briefly discussed here. The reader 

may have noticed that the choice of an appropriate alpha level was not 

examined in much detail. The study posits that, although this point    

is important, its role in safe sample size determination becomes less 

significant if the substitute for the population variance in formula 

(5) is not appropriately set-up. Furthermore, in using a pessimistic 

variance approach, the effect of the alpha level is reduced because   

the error-prediction curve will be higher than the curve based on the 

actual population variance (Figure 7). Likewise, the Finite Population 

Correction term that adjusts the variance of the sample mean was 

omitted because its effect on sample size would be of no importance  

if the substitute for the population variance has not been set-up 

appropriately. The same consideration applies to adjusting the safe 

sample size according to its proportion to the population size; such 

finishing touches are important but the predominant factor in this 

study is the appropriate variance substitution in formula (5). 

Another deliberate omission concerns Yamane’s  formula  [11]  

for safe sample size determination. Yamane’s formula is frequently 

recommended in the literature because it is simple, robust, and efficient. 

However, it is omitted here because its use is limited to dichotomous 

populations. Whether it can be generalized to offer a more uniform 

approach like that described here it remains to be seen. The same could 

be said of other reputable approaches [5]. The safe sample size of 384 

used for concave populations, as shown above and in Tables 2 and 3, is 

comparable with that recommended in recent literature for an alpha 

level of 0.05 and an error margin of 0.05 [12,13]. 

Conclusion 

Based on the methodology and examples presented in this study, it 

would seem reasonable to suggest that in routinely conducted surveys, 

formula (5) remains a viable tool for safe sample size determination 

when it is used properly. Its two most notable merits are that (i) it is 

directly derived from the central limit theorem and (ii) it is stable and 

robust. 

Herein, two broad categories of standardized populations (convex 

and concave) were used for substituting the population variance in 

formula (5). In the author’s experience, this population grouping tends 

to remain reasonably stable in regularly conducted sampling operations. 

It is also sustainable when the desired alpha level is 0.05 and the error 

margin is 0.1 since it yields an achievable maximum of 32 samples for 

convex and 96 samples for concave populations. 

It is worth noticing that the categorization of populations into 

convex and concave provides us with a quick way of determining safe 

sample size. When the alpha level of 0.05 remains constant (and this 

occurs in many surveys) all is needed is to memorize the number 32 

which is the safe sample size for convex populations with a desired error 

of 0.1 and an alpha level of 0.05. This number is the base for the simple 

calculations given below: 

Desirable error=0.1: Since in formula (5) the flat variance of 

1/12 is one third of 1/4, it follows that the safe sample size for concave 

populations is 3 × 32=96. 

Desirable error=0.05: Using this error in formula (5) the 

denominator will be 4 times lower than the one containing 0.1. It 

 

 

 
 

 

 
 

 

 
 

 

 
 

 
Figure 7: Error fluctuation in a dichotomous and convex population. 
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thus follows that the new safe sample size for convex and concave 

populations will be 4 × 32=128 and 4 × 96=384, respectively. 

However, it is stressed here that the maximum population variance 

in use (e.g. 0.25) also applies to continuous populations, specifically 

to those with a negative curvature. When dealing with continuous  

data that are convex this study tends to yield higher sample sizes than 

those presented in the literature, the reason being that the pessimistic 

variance of the flat population used in this study (e.g. 1/12) is higher 

than those used in other studies to approximate the population variance 

in the sample size formula. 

Further, it was demonstrated that the presented holistic approach is 

open to more refined population groupings in which, for the same error 

margin, a more economical sample size can be achieved. It is worth 

emphasizing however that in regular surveys statistical parameters that 

are based on refined categorizations tend to be less stable than those 

that use broader ones because of the variance eventually falling outside 

the foreseen category boundaries. 
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