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Abstract

Various cytotoxicity assays using 96-well microplate have often been performed by measuring biological
indicators, such enzyme activity, uptake quantity of dye, or cellular ATP content, and as a matter of course, they
have been reported in several manuscripts as a tool for expressing cell viability. However, recently reported that
cytotoxicity assays, such as ATP and MTS, were underestimated cytotoxicity when chemicals such anti-cancer drug
or mutagens induced cell hypertrophy with increasing intracellular ATP content. In addition, there are few studies
using many chemicals to compare the cell viability of the cytotoxicity test using the abovementioned indicators and
the actual cell counting. Therefore, the authors have revealed that cytotoxicity tests using biological indicators, such
as those mentioned above, do not necessarily produce cell viability that accurately reflects the number of cells as
target for 25 chemicals. Moreover, authors clarified that cell hypertrophy and cell cycle are correlated with the use of
HCIA (high-content image analysis). Based on these results and the authors’ experience, we summarized the
features of the 96-well microplate-based cytotoxicity test. Finally, the authors demonstrated the usefulness of the
HCIA assay, which can obtain a large number of cytological parameters at once from a single microplate by using
cell cycle-specific inhibitors.
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Introduction
The cytotoxicity test is used to evaluate the influence of chemicals

on cell death or cell growth inhibition. Because cells are the smallest
units that make up an organism, cytotoxicity test is used in various
fields, such as pharmaceuticals, medical devices, chemicals, cosmetics,
and agricultural chemicals, as the first step in predicting human
toxicity. In particular, in the field of medical devices, cytotoxicity test is
registered in ISO10993-5 (Part 5: Tests for in vitro cytotoxicity) as a
test necessary to be applied by authorities such as OECD. The degree of
cytotoxicity test is basically expressed as cell viability by comparing the
number of cells following chemical exposure with the number of of
controls, so if adherent cells are used for cytotoxicity test, detaching the
cells from the plate and counting the number of cells are necessary.
However, this method is not practical because it not only uses a lot of
chemicals and cells but also takes time. Therefore, by using a 96-well
microplate and measuring a biological indicator that correlates with
the number of cells by microplate reader, even with a small amount of
chemicals, cell viability can be easily achieved in a short time [1].

Methodology
Several comparative studies have examined various cytotoxicity

assays that use microplates [2-7]. The 3-(4,5-dimethylthiazol-2yl)-2,5-
diphenyltetrazolium bromide (MTT) assay is a reaction in which MTT
is reduced to insoluble purple formazan by dehydrogenase in the
mitochondria of cells. It has been used most often to evaluate
cytotoxicity and cell growth inhibition for more than 30 years [8]. The

NRU (neutral red uptake) assay utilizes the phenomenon that weak red
cationic dye, NR is accumulated in lysosomes in cells and is not only
recognized as a test required for the use of medical device
(ISO10993-5) but also used in OECD phototoxicity test (OECD
TG421). What is common to these two methods is that the operation
of eluting insoluble formazan and NR accumulated in the cells is
necessary and is thus complicated. Highly water-soluble tetrazolium
salt, WST-8 (2-(2-methoxy-4-nitrophenyl)-3-(4-nitrophenyl)-5-(2,4-
disulfophenyl)-2H-tetrazolium, monosodium salt), is reduced by
NADH, which is required for dehydrogenase activities in the
mitochondria, to give a water-soluble formazan dye (yellow color),
which is soluble in the tissue culture media [9,10]. Alamar blue
(resazurin), which is used in the Alamar blue assay, is a nonfluorescent
blue redox dye that is converted into fluorescent red dye, resorufin,
when the medium is reduced by cell growth. The fluorescence or
colorimetric signal generated by the conversion is proportional to the
number of living cells in the sample and can be used to detect cell
viability [11-13]. Since the water-soluble formazan and resorufin
produced in these assays are cell permeable and are easy to operate
considering a cell lysis step is not required and have high detection
sensitivity, these assays have recently become more popular than MTT
and NRU.

The ATP (adenosine triphosphate) assay uses bioluminescence as an
indicator of the number of living cells and represents a simple, rapid,
and sensitive cytotoxicity test [14]. The ATP assay can be used to
measure the functional integrity of living cells since all cells need ATP
to stay alive. The ATP assay is especially useful because it is not limited
to cancer cell lines [15] and has a 100-fold higher sensitivity than the
MTS (3-(4,5-dimethylthiazol-2-yl)-5-(3-carboxymethoxyphenyl)-2-(4-
sulfophenyl)-2H-tetrazolium) assay for measuring the number of cell
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lines [16,17]. Moreover, it has shown excellent linearity and a wide
dynamic range (0 – 750,000 RLU) in RPMI-8226 cells [18].
Furthermore, a major advantage of the ATP assay over other
microplate-based cytotoxicity tests is that the ATP assay can be used to
assess cytotoxicity in cell suspensions and monolayers [19]. Therefore,
ATP assay was utilized as cytotoxicity test associated with chromosome
aberration test [20]. The high sensitivity, absence of artifacts,
versatility, speed, and simplicity of the ATP assay make it a
recommended routine cytotoxicity test [21].

However, Chan et al. and Tahara et al. reported that drug-induced
increases in ATP content were associated with increased cell size by
measuring the number and area of cells using a simple high-content
imaging method [22]. This method used for image analyzing number
and area of cells have not reported to compare with traditional method
measuring suspended cells directly for ensuring accuracy. Since this
method enables the measurement of the area of elongating cells that
adhere to the plate in two dimensions, estimation of the size of cells
may not be a substantive method and the size of cells suspended by
enzyme treatment is considered original one. Therefore, in this study,
the number and diameter of cells suspended by enzyme treatment were
measured by automatic cell counter in three dimensions. We
considered these values as standard and evaluated the accuracy of
NRU, MTT, WST-8, Alamar blue, and ATP assay in 25 chemicals. In
addition, the same evaluation will be conducted for the HCIA assay
using the image analyzer that we developed, and its usefulness will be
elucidated.

96-well microplate-based cytotoxicity test
The authors selected 25 chemicals from the cytotoxicity tests

reported previously, and differences between cell viability calculated
from 4 types of cytotoxicity tests (Alamar blue assay, WST-8 assay, ATP
assay, and HCIA assay) and that calculated from automatic cell counter
were compared. As a result, the correlation coefficient (r2) between
each of the four cytotoxicity assays and automatic cell counter was low
(r2<0.8, at least 2 out of 3 experiments) as follows: ATP assay, 7
(acetaminophen, catechol, 5-fluorouracil, p-phenylenediamine,
daunorubicin, doxorubicin, and rotenone); WST-8 assay, 2
(acetaminophen and doxorubicin); Alamar blue assay, 3
(acetaminophen, p-phenylenediamine, and doxorubicin); and HCIA
assay, 0. The common point of these seven chemicals was cell
hypertrophy [22]. Image analysis revealed that cell hypertrophy is
about 1.4 to 2 times larger than that of the control in the state of cell
adherence to the plate. Regarding the area, the cell may have just
expanded transversally and not swelled actually, so the cells became
spherical after they were detached from the plate by enzyme treatment
was measured by automatic cell counter. As a result, the diameter was
1.15–1.25 times that of the control [23], i.e., in terms of volume,
confirming that the cells were enlarged [22]. Furthermore, when the
cell cycle was analyzed with the image analyzer using the images of
chemical treated-cells, those treated with acetaminophen, catechol,
and 5-fluorouracil had an increased proportion of cell population in S
phase (data not shown). Although no report was found on catechol,
the results of acetaminophen and 5-fluorouracil are consistent with
those reported in a study [24,25]. Daunorubicin, doxorubicin, p-
phenylenediamine, and rotenone had an increased ratio of G2/M
phase population and are consistent with the findings of some studies
[26-29]. Among the 25 chemicals tested for cytotoxicity, as a
representative example, two chemicals without cell hypertrophy (m-
chloroaniline, nicotine) and two chemicals with cell hypertrophy (S
phase arrest type, acetaminophen; G2/M phase arrest type,

doxorubicin) are shown in Figure 1. For these chemicals, the cell
viability calculated from seven types of cytotoxicity tests, including
MTT and NR assays, in addition to automatic cell counter and WST-8,
Alamar blue, ATP, and HCIA assays. As a representative photograph of
cells treated with chemicals, a photograph of unchanged cells treated
by nicotine or enlargement of cells treated by acetaminophen is shown
in Figure 2.

Figure 1: Comparison of cell diameter, cell cycle, and cell viability
values obtained from seven cytotoxicity assays following treatment
with four chemicals.

Cells (4 × 103) were seeded into 96-well microplates for NRU, MTT,
WST-8, Alamar blue, ATP, and HCIA assays. Cells (4 × 104) were
seeded into 12-well plates for automatic cell counting. After pre-
culture for 24 h, cells were treated with four chemicals for 24 h, and
viability was measured using seven cytotoxicity assays. Cell dia.
indicates the mean diameter of cells (ratio of control). Cell cycle
indicated the percentage of three populations ((%), G1 phase, S phase,
and G2/M phase). Cell survival rate indicates the percentage of control

Automatic cell counter (red      ).
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Figure 2: Photograph of cells treated by nicotine or acetaminophen.
Fluorescence images showing staining with Hoechst 33342 (dark
blue, nuclei) and Cell Mask (red, cytoplasm).

Effect of cell cycle-specific inhibitor-induced cell hypertrophy
on the accuracy of cytotoxicity tests

There are a few reports concerning chemically induced cell
hypertrophy and increased ATP content through cell cycle.
Methotrexate (MTX) was shown to induce an increase in K562 cell size
with arresting S phase [30]. Reversine, a synthetic purine, has been
shown to induce cell cycle arrest in G2/M phase followed by an
increased cell size of PC3 cell [31]. Moreover, DNA damage caused by
anti-cancer drug elevated cellular ATP content [32-34]. Oyama et al.
reported that H2O2 and doxorubicin induced G2/M cell cycle arrest
with an increase of p21 expression in H9c2 cells, which was related to
cellular hypertrophy [35]. Moreover, in normal cells, there are also few
reports concerning change in cell size or intracellular ATP through cell
cycle. Barberis et al. reported the following: RNA and proteins increase
exponentially, whereas the DNA content shows a typical double
amount with increasing cell size until the cells divide to generate a
newborn daughter from G1 phase to M phase [36]. Marcussen et al.
indicated that the cellular ATP concentration varies through the cell
cycle, reaching a peak at G2/M phase and minimum at late G1/early S
phase [37]. Recently, Chan et al. reported the following: under low
concentrations of repairable DNA damage, drugs can be arrested at S
or G2/M phase that induces an increase in the size and amount of ATP
content per cell [38].

Considering the findings of previous reports and the present study,
because size, dehydrogenase activity, and ATP content per cell increase
during cell division from G1 phase to G2/M phase in the cell cycle,
increasing cellular ATP content and dehydrogenase activity can often
cause cell hypertrophy when cells are treated with chemicals that can
arrest them in S or G2/M phase (Figure 3). This phenomenon is
thought to be the cause of the deviation in cell viability rates between

the method using biological indicators (NRU, MTT, WST-8, Alamar
blue, and ATP assay) and method using cell count (the automatic cell
counting, HCIA assay).

Figure 3: Relationship among cell cycle, cell hypertrophy, and
biological indicators used in cytotoxicity tests during cell division.

Summary for features of various 96-well microplate-based
cytotoxicity tests

Table 1 summarizes the features of NRU, MTT, WST-8, Alamar
blue, ATP, and HCIA assays, which are 96-well microplate-based
cytotoxicity tests. In the NRU cytotoxicity test, neutral red is added to
the medium and taken up into the cells for several hours. Then, the
cells are washed, and the NR accumulated in the cells is eluted with
alcohol, and the colorimetric concentration of NR is measured as
absorbance. In my experience, the amount of NR uptake into cells may
vary depending on the manufacturer, so care must be taken. In the
same way as NRU, MTT is added to the medium and taken up by the
cells for several hours, and then the cells are washed. Insoluble MTT-
formazan reduced by dehydrogenase in the cells is eluted with alcohol.
The colorimetric concentration of MTT-formazan is measured as
absorbance.

 NRU MTT WST-8 Alamar blue ATP HCIA

Target indicater Uptake quantity of
NR

Dehydrogenase
activity

Dehydrogenase
activity

Dehydrogenase
activity ATP content Number of whole cell

Detection Reagent Neutral red MTT (yellow) WST-8 (yellow) Alamar blue
(resazurin) (blue) Luciferase

Nuclear staining:
Hoechst33342 Cytoplasmic
stainingCellMask

Fixation time --- --- --- --- --- Yes (ethanol, 1530 min)

Reaction time (time) 180240 min
(uptake) 180300 min 60240 min 60240 min 10 min 15 30 min (staining)
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Reaction product Neutral red
MTT formazan
(insoluble, dark
blue)

WST-8 formazan
(water-soluble,
orange)

Resorufin (red) Light
Hoechst33342: Blue
fluorescence CellMaskRed
fluorescence

Extraxtion step Yes (1030 min) Yes (1030 min) No No No (Simultaneous
with reaction) No

Measuring device Plate reader Plate reader Plate reader Plate reader Plate reader Image analyzer

Detection reagent

Absorbance
(reference)

Absorbance
(reference)

Absorbance
(reference)

Fluorescence
(Ex/Em) Chemi-

luminescence

Fluorescence (Ex/Em)

540 nm 570 (650) nm 450(650) nm 560/590 nm H33342: 350/461
nmCellMask588/612 nm

Required time (one plate) 5 h 5 h 3 h 3 h 0.5 h 1.5 h

Operability A little hassle A little hassle No hassle No hassle No hassle No hassle

Correlation vs. Automatic
cell counter Good Good Good Good Good Very Good

1) There were some chemicals showing abnormal values 2) Correlation is low when chemicals induce cell hypertrophy

Table 1: Summary for features of various 96-well microplate based cytotoxicity tests.

Results and Discussion
The common problem with NRU and MTT is the low detection

sensitivity, so that the incubation time between the detection reagent
and cells is long, and the step of lysing the cells is necessary, so that the
cells after the cytotoxicity test cannot be used for other purposes (data
not shown). In this study of 25 chemicals, the authors initially
examined the correlation between NRU or MTT assay and automatic
cell counter, but there were some chemicals showing abnormal values
(data not shown). This seems to have been caused by the cytotoxicity
test having many steps, such as washing and elution. WST-8 and
Alamar blue have the same measurement principles as the MTT assay,
but because the reaction product produced by intracellular
dehydrogenase is a soluble dye, there is no step to lyse cells, and the
operation is simple, and abnormal values are not easily generated. In
addition, since the reaction is highly sensitive, the incubation time
between the detection reagent and cells is as short as 1 to 3 h. The
Alamar blue method can detect not only fluorescence but also
absorbance (OD: 560 nm), but in the case of absorbance detection, the
correlation with the cell viability calculated from the automatic cell
counter is low (data not shown). Authors recommend selecting
fluorescence detection when using the Alamar blue method. The ATP
assay is sensitive enough to be detected from several cells, and the
operation can be finished within 30 min. Although it is easy to operate,
since the cells are lysed at the time of detection, cells cannot be used
for other purposes. HCIA assay is a cytotoxicity test method using an
image analysis device developed by us. In this method, cells are fixed
with alcohol, and then the nucleus and cytoplasm are stained
simultaneously with two types of fluorescent dyes and automatically
detected by image analyzer. This test method is highly correlated with
the cell viability of the automatic cell counter, and the test procedure is
relatively simple.

HICA assay
We have shown that HICA assay is a very accurate method for

assessing cell viability because it can count the number of cells without
using biological indicator [22] Since HCIA assay uses image analysis

technology, it can quantify various biological phenomena. When we
conduct HCIA assay, in addition to counting the number of cells, we
usually obtain data on nuclear area, cell area, micronucleus appearance
rate, round cell appearance rate, and cell cycle at the same time [39].
As for the cell number and cell area, the results of the cytotoxicity test
of the 25 chemicals [22] show that the cell number and cell area
measured by HCIA are highly correlated with the cell number and cell
diameter measured by automatic cell counter [22,23]. From the above,
authors confirmed that the cell number and cell area measured by
HCIA assay are correct. Although the nuclear volume has not been
directly verified, it can still be measured correctly because the nuclei
area changes in the same way as the cell area [22].The micronucleus
appearance rate has been validated because authors have previously
reported that genotoxicity potential chemicals can be detected by
methods using an image analyzer [40].

Moreover, 6 chemicals (acetaminophen, catechol, 5-fluorouracil, p-
phenylenediamine, daunorubicin, doxorubicin, and rotenone), which
had a cell area of 1.5 times or more than that of the control in the
cytotoxicity test of 25 chemicals conducted this time, appeared with
obvious increase of micronuclei rate (data not shown). All these
chemicals have been reported to be mutagenic [41-43]. When the cell
area increased, nuclear enlargement was always observed, but the cell
area increase was more obvious than the nuclear area increase (data
not shown). Westmoreland et al. reported that carcinogen induced
nuclear enlargement in HaLa S3 cell, and Takeshita et al. have reported
that chemicals with inducing nuclei swelling cause structural
aberration in chromosomal aberration tests, which is consistent with
our report [44,45]. It is expected that chemicals which specifically
arrest the cell cycle in S phase or G2/M phase and enlarge the cells will
induce chromosomal aberration because they affect DNA synthesis
and cell division. In most cases of inducing chromosomal aberration,
since the cell diameter is 1.15 times or more than that of control, it
may be used as a biomarker for chromosomal structural aberration
test. In addition, the phenomenon that the cell morphology becomes
round occurs when the cytotoxicity becomes strong, and it is an
important parameter in evaluating the strength of the cytotoxicity. As a
result of carrying out the cytotoxicity test of 25 chemicals [22], it was
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confirmed that the result actually judged under the microscope and
that of HCIA assay coincided (data not shown), but all rounded cells
cannot be evaluated because most of them are detached during the
washing process. As for the cell cycle, in order to verify whether HCIA
assay can evaluate the cell cycle correctly, cells treated with cell cycle
G1 phase inhibitor, rapamycin [46-48]; cell cycle S phase inhibitor,
aphidicolin [49]; and G2/M inhibitor, Cytochalasin B [50] were co-

stained with Hoechst 33342 and CellMask (Table 2). Rapamycin was
confirmed to increase the ratio of G1 phase to 80% at almost all doses,
whereas the G1 phase ratio of the control was 70%. Aphidicolin
increased the population of G1 phase and S phase, consistent with the
report of Costa et al. [51]. Cytochalasin B had a significantly higher
population of S phase and G2/M phase, similar to the report by Gu et
al.

Chemicals
Dose

Cell viability
(%)
calculated
from counting
cell number

Area of nuclei
(% of cont.)

Area of cell
(% of cont.)

Micronucleus
appearance
(ratio of cont.)

% of round
cell

Cell cycle (%)

G1 S G2/M

µM Mean Mean Mean Mean Mean Mean Mean Mean

Control 0.00 100.0 100.0 100.0 1.0 3.5 70.0 21.4 7.8

Rapamycin

0.08 58.8 114.3 139.3 0.8 0.8 83.1 13.8 2.4

0.16 71.4 112.5 136.6 0.8 1.2 84.8 12.7 1.9

0.31 67.0 113.7 141.0 1.0 1.1 81.8 15.1 2.6

0.63 61.2 118.6 144.9 0.9 1.1 83.4 13.5 2.6

1.25 57.8 116.3 144.0 0.9 1.1 80.3 16.0 3.2

2.50 58.4 114.9 143.2 1.0 1.3 76.6 18.4 4.4

5.00 55.0 112.9 133.5 0.7 2.1 72.7 20.4 6.4

10.00 35.9 92.4 91.1 2.1 10.5 61.4 21.1 16.2

Aphidicolin

0.08 57.3 115.0 142.4 1.4 1.8 76.8 18.5 3.9

0.16 56.4 123.4 160.5 1.7 1.2 76.1 20.1 3.2

0.31 47.1 140.2 190.4 3.0 1.2 70.3 25.3 3.5

0.63 36.1 163.9 237.3 4.5 0.9 67.3 28.4 3.5

1.25 31.8 194.9 293.9 3.4 0.5 76.1 20.6 2.3

2.50 30.9 189.5 281.8 1.8 0.4 75.9 20.4 2.7

5.00 29.4 185.6 280.7 1.6 0.7 80.0 16.8 2.1

10.00 31.7 178.6 253.9 1.6 1.1 81.7 14.5 2.3

Cytochalasin B

0.08 70.6 100.0 110.4 1.4 1.3 75.7 19.1 4.4

0.16 87.9 96.3 100.8 1.1 1.6 75.6 19.1 4.6

0.31 66.8 93.1 92.2 1.5 1.6 77.5 17.0 4.8

0.63 60.1 109.1 106.5 1.7 2.9 56.6 24.8 17.5

1.25 36.2 139.1 148.1 2.1 1.5 34.2 30.9 33.1

2.50 33.8 136.6 160.7 1.9 0.2 29.8 33.8 33.8

5.00 32.8 124.1 167.2 2.8 0.3 33.8 37.1 27.9

10.00 31.7 122.8 158.6 2.1 0.4 33.7 39.6 25.7

Table 2: Measurement of biological parameters using HCIA assay in CHL cell treated by representative.

Conclusion
In this study, we showed that cytotoxicity assays, such as NRU,

MTT, WST-8, Alamar blue, and ATP, are highly accurate cytotoxicity

tests, and the results generated correlate well with those of automatic
cell counter when chemicals do not induce cell hypertrophy. However,
we also showed that these cytotoxicity assays underestimate
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cytotoxicity when chemicals induce cell hypertrophy and suggested
that this is caused by an increase in intracellular ATP and NADH
content accompanied by an increase in cell and mitochondrial area.
These cytotoxicity assays utilizing biological indicators, such NRU
uptake and NADH and ATP content, are therefore not suitable for
assessing cytotoxicity when chemicals possessing cell hypertrophy-
inducing potential-like mutagens and carcinogens are measured for
cytotoxicity. Therefore, we showed that the HCIA assay can directly
count the number of cells by image analysis and evaluate cytotoxicity
with high accuracy without being influenced by intracellular ATP or
NADH content. Furthermore, since this assay can not only measure
the area of cells and nuclei as well as count cell number but also
evaluate cell circularity, micronucleus appearance ratio, and cell cycle
phase, we can gain further insight from the cytotoxicity results.
Moreover, when using a stacker system that can automatically take
microplates in and out of an image analyzer, HCIA assay can
automatically measure many microplates at once and is thus applicable
for high throughput screening (HTS). As described above, the HCIA
assay can identify not only the number of cells but also the information
related to many other toxicity parameters from image information
based on a principle different from those of NRU, WST-8, Alamar blue,
and ATP assays, so it can be considered an extremely effective system
for comprehensively evaluating toxicity.
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