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Abstract
Following the publication of the DNA nucleotide footprint plotter, the peptide visualizer was developed to 

study peptide sequences of coronaviruses. It provides a distinctive view to peptide characteristics across different 
coronavirus species. The visualizer is sensitive to subtle changes of peptide sequences and has the potential to 
improve the diagnosis, therapy, and prevention of coronavirus infections. The application of the tool is not limited to 
plotting coronavirus peptides. It has general applications in visualizing changes of peptide sequences, structures, 
and functions in prokaryote and eukaryote organisms. 
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Introduction
Peptides are short protein fragments consisting of various amino 

acids (Table 1). The amino acids contribute to different functions in 
proteins depending on whether they are polar or nonpolar and whether 
they carry positive or negative charges. By displaying the molecular 
weight, polarity, and changes of amino acids using color and geometric 
shapes, the peptide visualizer demonstrates protein characteristics in a 
novel and straightforward way [1].

Methods
The tool was written in Java, and the steps are shown in Figure 

1. The peptide visualizer uses different colors, segment lengths, and 
segment angles to represent different amino acids. The length of the 
segment is proportional to the molecular weight of the amino acid. The 
color follows the amino acid color RGB tradition. For positive charged 
amino acids, the segment angel turns clockwise by +th1. For negative 
charged amino acids, the segment angel turns counter clockwise by 
th1. Polar amino acids turn th2 according to the original orientation, 
and nonpolar amino acids turn by a smaller angle, th0. The users 
have options to adjust the above parameters according to the need of 
specific effects of different plotting. In the current study, we define the 
parameters as: th0=50°, th1=90°, th2=60°; k=1 for positive charge, and 
k=-1 for negative charge. All coronavirus sequences were retrieved 
from NCBI virus data hub [2]. Yeast protein sequences were retrieved 
from NCBI genome database NCBI genome database. Plasmid protein 
sequences were retrieved from NCBI GenBank

Results
We plotted coronavirus peptides using the peptide visualizer. The 

different characteristics of various proteins are demonstrated in Figure 
2.

Comparing with the DNA nucleotide footprint (Figure 3), the 
output of the peptide visualizer is more sensitive to demonstrating 
peptide sequence differences (Figure 4). While the DNA footprint 
plotter is useful to detect structural variations, minor differences in 
the sequences and protein features are more obvious in the peptide 
visualizer plots.

The S protein of coronaviruses, especially the receptor-binding 
domain (RBD), is a common target region for vaccine development [3-
6]. The peptide visualizer was further applied to compare various 

Figure 1: Flowchart of peptide visualizer.

Figure 2: Peptide visualizer plots of Scotophilus bat coronavirus 512 
nucleocapsid protein YP_1351688 BatCV_394 (A) and matrix protein 
YP_1351687 BatCV_227 (B).

.
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We also plotted plasmid and yeast proteins (Figures 6 and 7). 
Figure 6A is a plot of the plasmid protein IncHI1 transfer repressor 
of Escherichia coli strain 63743 plasmid pEQ2, GenBank accession 
number KF362122.2 (protein_id=”AHC56037.1”). Figure 6B is the 
plot of the plasmid protein repHI2 of Escherichia coli strain A74 
plasmid pA74T, GenBank accession number MG014720.1 (protein_
id=”AVR59929.1”). Figures 7A and 7B are Saccharomyces cerevisiae 
YJM1388 proteins Vac 17p (accession number AJQ32742.1) and Adh 
7p (accession number AJQ32734.1).

Discussion
Compared with the DNA nucleotide footprint plotter [1], the 

peptide plotter is more sensitive to demonstrating the impact of single 
nucleotide mutations, insertions, and deletions. The geometric shapes 
change more obviously than plotting at the DNA level.

There are many essential tools to compare protein sequences such 
as Blast [7-27] and Clustal [28,29]. These tools can clearly display 
the matching and mismatching of protein sequences. But they do 
not demonstrate protein characteristics. Let’s look at 2 mismatching 
situations. In the first situation, there is an amino acid difference 
between two protein sequences, but the mismatching amino acids have 
similar charge and polarity. In the second situation, the 2 mismatching 
amino acids have very different polarity and charges. Blast and Clustal 
display the mismatching of the 2 situations similarly (a letter difference). 
However, using peptide plotter, if the mismatching amino acids have 
similar polarity and charge, the plot will look similar even if the amino 
acids are different. If the mismatching amino acids have different 
polarity or charges, the plot will look very different. Peptide visualizer 
is an add on to the existing tools. It is very easy to run and is very fast. It 
helps to display peptide features in a novel and convenient way.

The peptide plots directly indicate the regions with similar or 
different characteristics across peptide sequences. Specific geometric 
shapes of coronavirus proteins distinguish the coronavirus infection 
from other viruses. The colorful geometric shapes can identify the 
mutations in corona viruses with or without functional impact. In 
addition, the tool can tell similar peptide regions across coronavirus 

coronavirus strains such as OC43, HKU1, MERS-CoV (Middle East 
Respiratory Syndrome), and SARS-CoV. S protein amino acids 300-
600 covering the RBD region were plotted in Figure 5 (DNA footprint 
of the corresponding species see Figure 5 of reference 1). The bigger 
differences between coronavirus strains and the subtle differences 
between coronavirus sub-strains are clearly displayed.

Amino Acid Symbol IUPAC code Molecular weight Polarity and charge θ RGB
Alanine Ala A 15 nonpolar th0 200,200,200
Arginine Arg R 101 positive charge th1 20,90,255

Asparagine Asn N 58 negative charge th1 0,220,220
Aspartic acid Asp D 58 polar th2 230,230,10

Cysteine Cys C 47 polar th2 230,230,0
Glutamic acid Glu E 72 polar th2 230,230,10

Glutamine Gln Q 72 negative charge th1 0,220,220
Glycine Gly G 1 polar th2 235,235,235
Histidine His H 82 positive charge th1 130,130,210

Isoleucine Ile I 57 nonpolar th0 15,130,15
Leucine Leu L 57 nonpolar th0 15,130,15
Lysine Lys K 93 positive charge th1 20,90,255

Methionine Met M 74 nonpolar th0 230,230,0
Methionine Phe F 91 nonpolar th0 50,50,170

Proline Pro P 114 nonpolar th0 220,150,130
Serine Ser S 31 polar th2 250,150,0

Threonine Thr T 44 polar th2 250,150,0
Tryptophan Trp W 130 nonpolar th0 180,90,180

Tyrosine Tyr Y 107 polar th2 50,50,170
Valine Val V 45 nonpolar th0 15,130,15

Table 1: Amino acids and their features.

Figure 3: DNA nucleotide footprint of severe acute respiratory syndrome 
coronavirus 2 isolate SARS-CoV-2/human/USA/UT-05812/2020 MW181438 
(A) and SARS-CoV-2/human/USA/UT-UPHL-200716494/2020 MW181439 
(B).

Figure 4: Peptide visualizer plots of severe acute respiratory syndrome 
coronavirus 2 isolate SARS-CoV-2/human/USA/UT-05812/2020 QOS45414 
orf1a amino acid 0-500 (leader protein of polyprotein) (A) and SARS-CoV-2/
human/USA/UT-UPHL-200716494/2020 QOS45427 orf1a amino acid 0-500 
(B).
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species. This facilitates vaccine development and makes it possible for 
one vaccine to fight different coronavirus sub-species by targeting the 
similar regions across mutating strains.

Conclusion
Based on the large amount of peptide sequence data, we can code 

according to the shape of peptide sequences. This will facilitate peptide 
recognition and clustering using machine learning approaches such as 
neural networks. It will be the emphasis of my future study.
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