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Pyrimidine base catabolism usually involves either a reductive 
pathway or an oxidative pathway with the former more prevalent in 
humans as well as in plants, unicellular eukaryotes and bacteria [1-
4]. The reductive pathway involves three enzymes which include 
dihydropyrimidine dehydrogenase (EC 1.3.1.2), dihydropyrimidinase 
(EC 2.5.2.2) and β-ureidopropionase (EC 3.5.1.6) [2-4]. The importance 
of the catabolism of pyrimidine bases in humans is directly related 
to the use of 5-fluorouracil as a chemotherapeutic agent during the 
treatment of cancer [5,6]. Genetic deficiencies for any of the reductive 
pathway enzyme activities also appear to result in problems for 
those individuals affected [7,8]. The pyrimidine catabolic pathway is 
thought to be also involved in the degradation of pyrimidine-based 
antimicrobials. The initial enzyme dihydropyrimidine dehydrogenase 
is important to the effectiveness of 5-fluorouracil as a chemotherapeutic 
agent [9]. If the activity of the dehydrogenase is reduced, the 
toxicity of 5-fluorouracil can increase [5,9]. If 5-fluorouracil is 
rapidly degraded by the dehydrogenase, less of the analogue will be 
available to halt cancerous cell growth. Genetic deficiencies of the 
dehydrogenase have been reported and result in the urinary excretion 
of uracil, dihydrouracil, thymine and dihydrothymine. Individuals with 
dihydropyrimidine dehydrogenase deficiency exhibit symptoms that 
include mental retardation and seizures [7,8]. Genetic deficiency of 
the second reductive pathway enzyme dihydropyrimidinase in humans 
results in the accumulation of dihydropyrimidine bases in the blood, 
cerebrospinal fluid and urine plus can lead to 5-fluorouracil toxicity 
[10,11]. This autosomal recessive disease results in mental retardation, 
gastrointestinal problems and seizures [10]. Beyond the importance of 
pyrimidine catabolism to cancer treatment, the second pathway enzyme 
dihydropyrimidinase has been shown to degrade antiepileptic agents 
[12].  This enzyme usually also has the ability to hydrolyze hydantoins 
and this could prove vital in the development of large-scale bioreactor 
systems for the inexpensive production of β-amino acids and D-amino 
acids [4]. Genetic deficiency for the third reductive pathway enzyme 
β-ureidopropionase has been reported in humans [13]. High levels of 
N-carbamyl-β-alanine and N-carbamyl-β-aminoisobutyric acid have
been detected in urine and plasma of those affected individuals [13].
The individuals afflicted with this enzyme deficiency exhibit a number
of neurological problems including intellectual disabilities, seizures and 
microcephaly [13]. The severity of the neurological symptoms appears
to be greater in human β-ureidopropionase deficiency than in human
dihydropyrimidine dehydrogenase or dihydropyrimidinase deficiency
[13]. Patients with β-ureidopropionase deficiency did not exhibit
the gastrointestinal problems observed in the dihydropyrimidinase
deficient patients [10,13].

 Although the literature exploring pyrimidine base catabolism 
has made significant strides relative to better understanding the rate 
of pyrimidine base catabolism as it relates to cancer treatment using 
5-fluorouracil, further research is needed to better characterize
the reductive pathway and its regulation in other organisms. The
opportunity exists to compare how the reductive pathway of pyrimidine 
catabolism is regulated in diverse organisms. This should provide new
insights into how the pathway is regulated at the level of transcription
and the level of enzyme activity. By taking advantage of this opportunity 

to understand pyrimidine base catabolism better, new approaches in 
using 5-fluorouracil as a chemotherapeutic agent more effectively may 
be developed and new industrial applications to produce β-amino acids 
and D-amino acids may result.
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