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causative genes and some common polymorphisms, with an emphasis 
on their heterogeneity. 

Causative Genes
The existence of families in whom the disease is transmitted in a 

clear autosomal dominant pattern indicates that genetics plays a very 
important role in the etiology of AD. Based on epidemiological data and 
the published mutation data, autosomal dominant familial AD (FAD) 
may account for 0.5% of all AD cases [7]. Study of one large pedigree 
revealed a single point mutation in the gene for amyloid precursor 
protein (APP), found on chromosome 21. Further studies led to the 
discovery of other mutations in the same gene and mutations in two 
others genes; encoding presenilin-1 (PSEN-1) and presentlin-2 (PSEN-
2), found on chromosomes 14 and 1, respectively. To date, 51 AD-
related pathogenic mutations have been discovered in the APP gene, 219 
mutations in the PSEN-1 gene and 16 mutations in the PSEN-2 gene 
(AD&FTDMDB, http://www.molgen.vib-ua.be/ADMutations, accessed 
in August 2017). 

APP
APP (OMIM 104, 760, chromosome 21q21) encodes an integral 

Type I membrane glycoprotein that exists as different alternatively 
spliced isoforms including APP751, APP770 and APP695 [8]. The 
proteolytic processing of APP results in the production of different 
peptides including Aβ. There are two mutually exclusive proteolytic 
pathways: the amyloidogenic pathway (successive cleavages by the 
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Alzheimer’s disease (AD; MIM# 104300) is a progressive 
neurodegenerative disorder and the most frequent cause of dementia. 
It afflicts 5.4 million individuals in the United States. Total direct and 
indirect cost is US$ 183 billion per year [1]. In a previous systemic 
review about the prevalence and incidence of dementia in China, it 
reported that the number of patients with AD was 5.69 million in 2010 
and the incidence was 6.25 cases per 1000 person-years [2]. Besides, the 
prevalence of AD shows an age-dependent progression in the elderly. 
Thus, approximately 5% of all persons over age 70 have AD and this 
proportion rises to 25%-45% in the “oldest old” (>85 years) individuals 
[1]. It is characterized clinically by a progressive decline in memory 
and other cognitive domains. Behavioral and psychiatric symptoms 
such as agitation/aggression, mood disorders, and psychosis, may 
occur with disease progression [3]. Neuroimaging studies display 
atrophy in the cerebral cortex and the hippocampus of AD brain [4]. 
Pathologically, the disease is characterized by the formation of two 
distinct brain lesions: parenchymal amyloid plaques (senile plaques) 
consisting mainly of aggregated and deposited amyloid β (Aβ) peptides 
and intraneuronal neurofibrillary tangles composed of paired helical 
filaments of hyperphosphorylated microtubule-associated tau protein 
[5]. AD typically appears in older individuals, but may affect people as 
early as the second decade of life [6].

The genetics of AD is complex and heterogeneous. Most cases are 
“sporadic” with no apparent familial recurrence of the disease. However, 
a small percentage of AD cases (1-2% of all cases) have an early onset 
(early onset AD, EOAD), with symptoms appearing before 65 years of 
age. In these patients, the disease commonly aggregates within families 
and typically presents an autosomal dominant pattern of inheritance. 
Early studies revealed that a number of genes play an important role in 
the development of AD. Variation in these genes, including both rare 
mutations and common polymorphisms, appears to confer increased 
risk for the development of this disorder. However, the apparent 
increased risk may be largely explained by the effects that genetic 
variation has on the age at which the disease presents. More recently it 
has been proposed that genetic variation may also explain some of the 
other features of clinical phenotype, such as disease duration, cognitive 
decline, behavioral and psychiatric symptoms and so on. Here, we 
reviewed the clinical phenotypes of reported mutations within the three 
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β- and γ-secretase, fundamentally considered as the pathogenic 
pathway) and the non-amyloidogenic pathway (successive cleavages 
by the α- and γ-secretase). Mutations in the APP gene were the first 
to be identified to cause autosomal dominant EOAD [9]. To date, 51 
different pathogenic mutations and 16 variants nonpathogenic or with 
unclear pathogenicity (AD&FTDMDB, http://www.molgen.vib-ua.be/
ADMutations, accessed in August 2017) have been identified in APP. 
The mutation range encompasses mainly missense mutations as well 
as a few duplications. The missense mutations are located close to the 
major APP processing sites, either adjacent to the Aβ domain (the 
β and γ-secretase cleavage sites) or within the Aβ domain itself (the 
α-secretase cleavage site). The pathophysiologic mechanisms of these 
mutations vary. First of all, most of the mutations have been shown 
to functionally change the proteolytic processing of the APP protein. 
For example, the majority of the FAD-associated mutations in APP lie 
close to its γ-secretase site, such as the French (p.V715M) [10], German 
(p.V715A) [11], Florida(p.I716V) [12], London (p.V717I) [9] and 
Indiana (p.V717F) [13] mutations, which result in a relative increase 
in the production and deposition of the more fibrillogenic form of 
Aβ, Aβ42 [5]. Although the French (p.V715M) mutation results in 
a reduction of Aβ40 without affecting Aβ42 production, suggesting 
that it is the increase in the ratio of Aβ42 to Aβ40 that is important 
rather than the absolute amount of Aβ42. The only known mutation 
at the β secretase cleavage site is the Swedish (p.KM670/671NL) 
double mutation. This mutation results in increased total Aβ, by 
increasing both Aβ40 and Aβ42, although in brain parenchyma Aβ42 
is predominantly deposited [14]. Mutations within the Aβ sequence, 
including the Flemish (p.A692G) [15], Dutch (p.E693Q) [16], Italian 
(p.E693K), Arctic (p.E693G) [17] and Iowa p.(D694N) [18] mutations, 
result in increased production of total Aβ [19] or enhanced propensity 
of Aβ to aggregate [20] and in increased resistance of Aβ to proteolytic 
degradation [21]. 

In addition to proteolysis, it was shown in different studies that 
gene dosage effects could also be causative. For instance, it has long 
been recognized that patients with Down syndrome lead to Aβ amyloid 
plaques and clinical and pathological AD from early adulthood, which 
is thought to be a gene dosage effect on the basis of the triplication 
of APP through the extra chromosome 21 [22]. More recently, five 
unrelated French families [23] with EOAD were first reported to harbor 
small chromosomal duplications including the APP locus, subsequent 
screens revealed additional APP duplications in nine French family 
[24-26], two Dutch families [27], one Finnish family [28], one Sweden 
family [29], five British families [30], and two Asian (Japanese) families 
[31,32], suggesting that increased expression of APP can lead to AD 
pathology in the absence of a full trisomy 21. 

Mutations of the APP gene usually cause the disease of AD in 
an autosomal dominant pattern. However, two recessive mutations, 
A673V and E693Delta, causing disease in the homozygous state have 
also been reported [33,34]. Besides, the APP A713T mutation was 
identified to cause AD both in the homozygous and heterozygous state 
in one large pedigree [35]. In the affected persons, homozygosis for the 
APP A713T mutation does not aggravate the clinical phenotype of the 
disease, which is consistent with the classic definition of dominance.

Recently, a rare variant A673T was reported to play a protecting 
role against late-onset AD [36]. This variant was enriched in Icelandic 
elderly controls compared with AD cases from the same population. 
The frequency was 0.13% in AD cases and 0.45% to 0.79% in controls. 
However, Wang et al. [37] studied the frequency of this variant in AD 
cases and cognitively normal controls in the United States, and found 

the A673T variant was extremely rare in US cohorts (1 in 8943 AD 
cases and 2 in 10 480 controls) and might not play a substantial role 
in risk for AD in this population. Besides, the fact that this A673T 
allele was absent in a large Chinese sample (n=8721) suggests that this 
variant may be primarily restricted only in Scandinavian and Icelandic 
populations [38]. 

PSEN-1 and PSEN-2
PSEN-1 (OMIM 104,311, chromosome 14q24.3) and PSEN-2 

(OMIM 600,759, chromosome 1q31-q42) genes have a very similar 
genetic structure and encode two proteins ubiquitously expressed 
in a multiplicity of tissues including the brain [39]. These are highly 
homologous, sharing an overall amino acid sequence identity of 67%. 
PSENs are integral membrane proteins that form the catalytic core 
of the γ-secretase complex [40]. The first disease causing mutations 
in PSEN-1 and PSEN-2 were identified in 1995 [39,41]. Today, 219 
pathogenic mutations and 11 variants non-pathogenic or with unclear 
pathogenicity have been identified in PSEN-1. PSEN-2 harbors fewer 
mutations: 16 pathogenic mutations and 23 variants non-pathogenic or 
with unclear pathogenicity (AD&FTDMDB, http://www.molgen.ua.ac.
be/ADMutations, accessed in August 2017).

PSEN-1 mutations are the most common identified genetic cause 
of AD. The PSEN-1 mutation range encompasses mainly missense 
mutations as well as some small deletions and insertions. The underlying 
pathogenic mechanism of most PSEN-1 mutations seems to be related 
to altered γ-secretase function. For instance, when stably transfected 
into cell lines, most PSEN-1 mutations cause increased production of 
Aβ42 which has a greater tendency to aggregate [42] and pathologic 
examination of brains with PSEN-1 mutations show increased Aβ42 
deposition when compared to sporadic AD [43]. Deletions of PSEN-1 
exon 9 (Δ9) may result either from mutations at a splice acceptor site 
(g.58304G>A/ g.58304G>T) [44] or from deletions of several kilobases 
of genomic DNA (g.56305_62162del/ g.56681_61235del) [6,44,45]. 
Biochemical studies suggest that it is the point mutation rather than 
the deletion itself that is critical for the pathological increase in Aβ42 
production. 

Mutations in PSEN-2 were first described in 1995 and only 16 
pathogenic mutations have subsequently been reported, making 
this the least common genetic cause of AD. All the known PSEN-2 
mutations are missense mutations. Moreover, most of the mutations 
were only found in a single family, with the exception of p.T122P 
(2 families) [46,47], p.N141I (10 families) [39,46,48], p.M174V (4 
families) [49] and p.M239V (6 families) [25,50]. PSEN-2 is part of the 
γ-secretase complex and there is evidence that mutations in this protein 
decrease the production of Aβ40 relative to Aβ42 and result in a greater 
proportion of the more toxic Aβ42 [40]. 

Knowledge of the multiple causative mutations leading to familial 
EOAD is of great value for several reasons. In a clinical setting, 
knowledge of the pathological mutations and genotype-phenotype 
correlations might assist in making an accurate diagnostic decision 
prior to treatment. In a research setting, knowledge of the pathological 
mutations might reveal valuable indications towards the pathological 
mechanisms leading to this disease.

Genes as Risk Factors
APOE

The apolipoprotein E gene (APOE, OMIM 107,741, chromosome 
19q13.2) encodes a glycoprotein that is highly expressed in the brain 
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and plays a major role in central nervous system cholesterol homeostasis 
during neuronal growth and in nerve regeneration [51]. There are three 
major APOE isoforms: ApoE2, ApoE3 and ApoE4. These isoforms 
differ from each other only by a Cys to Arg amino acid substitution 
at positions 112 or 158 (ε2: Cys112/Cys158; ε3: Cys112/Arg158; ε4 
Arg112/Arg158) [52]. ApoE3 accounts for approximately 64% of alleles 
[53] and is considered the ‘‘neutral’’ ApoE genotype. In 1993, Saunders 
et al. [54] demonstrated an association between the ε4 allele and LOAD, 
which was well confirmed in most populations thereafter. This allele 
represents an increased risk of 3-fold for heterozygous carriers and up 
to 15-fold for ε4 homozygotes [55]. In contrast, ApoE2 is believed to 
be protective against LOAD [56]. The disparities associated with each 
genotype are due to the distinct binding properties of the different 
APOE isoforms to the Aβ peptide [57] and tau protein [58]. The ApoE4 
isoform binds to the Aβ peptide more rapidly than the ApoE3 isoform 
to form novel monofibrillar structures [59]. The fact that ApoE4 does 
not bind to tau protein in vitro suggested that this interaction between 
ApoE3 and tau serves as a protection against tau phosphorylation and 
consequent neurofibrillary tangle formation [58]. In a recent meta-
analysis, Ward et al. [60] studied the prevalence of ApoE4 genotype 
among patients with AD in different regions. The pooled estimates for 
APOE ε4 carrier prevalence is 48.7% and ε4/4 prevalence 9.6%. They 
also observed a variation from different geographic location, with the 
lowest regional estimates for the prevalence (41.9%) of ε4 carriers and 
the prevalence (7.7%) of ε4/4 in Asia or 40.5% and 4.6% in Southern 
Europe/Mediterranean. The highest were in Northern Europe, 61.3% of 
ε4 carriers and 14.1% of ε4/4.

Other risk variants

Besides the well-known APOE gene, large-scale genome-wide 
association studies (GWAS) of late-onset AD (LOAD) have identified 
and replicated at least ten loci that are associated with susceptibility of 
AD, including PICALM, CLU, CR1, BIN1, CD2AP, EPHA1, MS4A6A, 
MS4A4A, CD33 and ABCA7. The latest meta-analysis [61] to date 
further expands the list to some additional variants, including HLA-
DRB5, PTK2B, SORL1, SLC24A4, DSG2, INPP5D, MEF2C, NME8, 
ZCWPW1, CELF1, FERMT2 and CASS4. In addition, a rare variant 
R47H in TREM2 was reported to be associated with AD [62,63]. 
However, these identified genetic loci have very modest effects in 
LOAD and in total can explain only about 33% of the heritability [64], 
which has been estimated to be 60% to 80% [65].

Genotype-phenotype correlations

Although many familial AD mutations have been reported 
during the past two decades, relatively few efforts were put on the 
detailed description of the corresponding clinical phenotypes, making 
genotype-phenotype correlations difficult. Generally the phenotype in 
familial AD is indistinguishable from that in sporadic AD. The age at 
onset (AAO) is usually earlier and the disease course shorter in familial 
AD. Moreover, some studies have also shown that patients with EOAD 
present more frequently with atypical clinical manifestations such as 
executive, behavioral, or language impairment compared with LOAD 
[66]. Although some early reports suggested that, apart from variation 
in AAO, there was little phenotypic heterogeneity in familial AD cases 
[67]. It has become increasingly apparent that there are differences 
in familial AD cases with different mutations at many aspects. More 
and more researches have noted intrafamilial homogeneity and 
interfamilial heterogeneity with respect to AAO, disease duration, 
and clinical and neuropathological features. The specific genotype-
phenotype correlation in APP, PSEN-1 and PSEN-2 are summarized in 

(Supplemental Tables 1-3), respectively. The follows will highlight the 
correlations of these genotypes with different AD phenotypes including 
AAO, penetrance, disease duration and clinical manifestations.

AAO and penetrance

Variation in AAO is the most significant character of the clinical 
heterogeneity of AD, which was noted even before mutations were 
identified. Families carrying APP mutations have AAO largely within 
the range 40-65 years. However, the range can be very broad with 
the earliest AAO of 30 in a family with the p.T714I (Austrian APP) 
mutation [68,69]. The latest recorded AAO in APP were 82 years in a 
family with the p.A713T mutation [70,71]. Another two families with 
very late AAO of 75 years were families with the p.E682K (Leuven APP) 
mutation [72] and p.E693G (Arctic APP) mutation [17,73]. 

Families carrying PSEN-1 mutations have the earliest AAO, which 
fall largely within the range 35-55 years. The earliest reported AAO was 
20 years in a family with p.P436Q mutation [6]. There are also some 
family members with the mutation p.P117A [74,75], p.P117L [76-78] 
and p.L173W [79] have recently been recorded with onset at 24 years. 
Very early onset of cognitive decline, before age 30 years, has been 
noted with the following PSEN-1 mutations: p.L85P [80], p.T116N 
[81-84], p.P117S [77], p.I143T [82,83,85-87], InsFI [82,88], p.L166H 
[89], p.S169L [90,91], p.S170F [92-94], p.G209V [95], p.M233V [96], 
p.M233I [97], p.L235Pr [98], p.Y256S [99], p.A260V [39,100], p.V272A 
[84,101], p.L381V [102], p.G384A [85], p.L424R [103], and p.A434C 
[82]. PSEN-1 mutations show almost complete penetrance by the age 
of 60 years. However, there are some recorded exceptions such as the 
p.A79V (78 years) [47,82,104,105], p.H163R (68 years) [101,106-108] 
and p.L271V mutations (68 years) [109]. The factors that contribute to 
reduced penetrance are not at present known.

Families carrying PSEN-2 mutations have the latest ages of onset, 
with a wide range 40-87 years and thus show some overlap with LOAD. 
The earliest reported AAO was 40 years in a family with the p.N141I 
mutation [39,46,48]. The latest reported AAO was 87 years in a family 
with p.A237V mutation [110]. Penetrance is high but may not be 100%. 
There are at least two reported cases of non-penetrance over the age 
of 80 years in the families with the p.N141I mutation [39,46,48] and 
p.Q228L mutation [111].

Generally speaking, apart from the variation of AAO between 
different gene mutations, the AAO of family members with the same 
mutation, especially the AAO of family members from one pedigree 
usually fall in a comparatively narrow range. However, this is not always 
the case. There are some reported pedigrees with range of AAO more 
than 30 years, for example, the p.A713T mutation within the APP gene 
(AAO range: 49-82) [70,71] and the p.N141I mutation within the PSEN-
2 gene (AAO range: 40-82) [39,46,48]. The causes of this variability in 
AAO are not clear. There may be a long prodromal phase with subtle 
deficits of general intelligence and memory that may be easily neglected 
by the patient him/herself as well as the attending physicians. However, 
more and more studies indicated that potential genetic modifiers 
might delay or accelerate AAO of familial AD. For example, by using a 
subset of Caribbean Hispanic families that carry the PSEN1 p.G206A 
mutation, Lee et.al identified that SNX25, PDLIM3, and SORBS2 may 
serve as genetic modifiers of AAO in both EOAD and LOAD [112-115].

The familial influence on AAO in LOAD may be substantial. 
Corder et al. [116] found that the APOE ε4 allele shifted the disease 
onset to younger age following a dose effect pattern. In their study, 
the mean onset age was 84.3 years in subjects who did not have ε4, 
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75.5 years in subjects with one ε4, and 68.4 years in subjects with two 
ε4 alleles. In other word, in LOAD the onset age is approximately 20 
years earlier in individuals who carry two copies of the APOE4 allele 
compared with non-carriers. This led to the hypothesis that the APOE4 
allele is a risk factor for LOAD mainly because in old age AD and death 
are competing risks. Any factor leading to an earlier onset age of AD 
in the elderly will be associated with AD. Thus, it appears clear that the 
APOE4 allele has its predominant effect by determining when, but not 
if, an individual develops LOAD.

Disease duration

The mean duration of illness in families with PSEN-1 mutations 
is significantly shorter (range 5.8-6.8 years) than in families with 
both APP (range 9.0-16 years) and PSEN-2 (range 4.4-10.8 years) 
mutations, reflecting the severity of PSEN-1 associated AD. Studies of 
LOAD suggest that the duration of illness tends to be longer in people 
who have a positive family history or in carriers of the APOE4 allele. 
However, it has since been shown that this relationship no longer holds 
true once the confounding effects of AAO have been taken into account 
[117]. Thus, in LOAD, increased survival is more directly related to an 
earlier AAO, which is influenced by a number of factors that are not 
exclusively genetic. 

Cognitive decline

To our knowledge, no study to date has looked at rates of decline in 
possession of APP, PSEN-1 and PSEN-2 mutations. And the majority of 
studies have also failed to show any relationships between carriers of the 
APOE4 allele and increase rates of decline [116]. This lack of association 
is interesting since it suggested that genetic factors might determine only 
when the disease starts, but not the rate of degeneration. However, a study 
by Craft et al. [118] found that there is an increased rate of cognitive decline 
in APOE4 carriers, which may be detectable by using a long follow up 
period. Clearly, caution is required when interpreting a negative finding. 
Associations will always be difficult to establish because there are many 
confounding factors that may influence cognitive deterioration as well as 
difficulties in calculating the rate of decline. 

Myoclonus and seizures

Myoclonus is a common feature in sporadic AD. A cross-sectional 
study identified myoclonus in 5-10% of patients, particularly those 
with early onset and the prevalence increasing with time [119]. 
Although seizures are not very common in sporadic AD, they do occur 
more frequently than in the general population [120], particularly 
with increased duration of disease. Amatniek et al. [121] also found 
that seizure incidence is increased in patients starting with mild to 
moderate AD. In their study, they found that the cumulative incidence 
of unprovoked seizures at 7 years was nearly 8% and seizures in early 
onset familial AD occur several times more than in sporadic AD.

Patients carrying PSEN-1 mutations have the most frequency to 
develop these features. The reported families that developed myoclonus 
carrying the PSEN-1 mutations including p.L113Q, p.Y115H [46], 
p.P117R, p.H163R [101], p.S169P [122,123], p.S169L [90,91], p.S170F 
[94], p.L235P, p.R269H [98], p.L250V [124], and p.R269G [125]. The 
epilepsy/seizure-associated PSEN-1 mutations are spread throughout 
the PSEN-1. Larner [126] noted that epileptic seizures have been 
reported as part of the phenotype of 37 different PSEN-1 mutations. 
Myoclonus and seizures in patients with APP mutations are less 
common but not absent, for instance, the p.T714A (Iranian APP) 
mutation [68,127]. However, no patient with PSEN-2 mutations was 
reported to have such neurological features. 

The pathological mechanism underlying this feature in patients 
with AD was unknown. However, there was some evidence indicating 
possible common neural mechanisms underlying these two conditions. 
For example, the first description of amyloid plaques in the human 
brain came from the neuropathologic examination of epilepsy patients 
in 1892, fifteen years before the first case report of AD in 1907 [128]. 
From then on, there were several studies that reported on the presence 
of senile plaques in patients with epilepsy [129]. Along with amyloid 
deposition, the other neuropathologic signature of dementia, tau, 
has also been reported in human epilepsy patients and in animal 
models of epilepsy [130]. Besides, atrophy of the mesial and lateral 
temporal regions on MRI and hypometabolism in the basal temporal 
region demonstrated by positron emission tomography studies were 
characteristic finding in both conditions [131,132]. 

Extrapyramidal sign and Parkinsonism

Extrapyramidal signs (EPS) such as bradykinesia and rigidity are 
very common in AD patients. In a community based study, Funkenstein 
et al. [133] discovered a strong association between EPS and AD. In 
some studies, AD patients with EPS showed accelerated cognitive 
decline and shorter survival time [134,135]. Many studies concur 
with this view. However, the reporting EPS frequency in AD varied 
from 6% to over 50% [119]. Clinicopathological correlation studies 
demonstrated that AD patients with concomitant Lewy bodies were 
more likely to manifest Parkinsonism than those without them [136].

EPS and Parkinsonism are also very common in familial EOAD. 
It was autopsy proved in patients with the dupAPP mutation [24], 
p.V272A mutation [84,101], ΔT440 mutation [137] in the PSEN-1 gene 
and p.A85V mutation [138] in the PSEN-2 gene. 

Behavioral and psychiatric symptoms (BPS)

In the more advanced stages of AD, cognitive decline are usually 
accompanied by mood disorders, anxiety, apathy, dysphoria, psychotic 
symptoms (delusions, hallucinations), aggression or agitation. 
These symptoms, alongside other behavioral disturbances including 
wandering and inappropriate sexual behaviours, are often clustered 
together as behavioral and psychological symptoms (BPS). In the 
course of the illness BPS can be present in as many as 60-98% of 
demented individuals, with an average of around 80% in subjects with 
AD [139]. There have been some studies over the past several years 
looking at the genetic basis of psychosis in AD. Sweet et al. [140,141] 
found compelling evidence that BPS in AD is familial. Evidence of 
familial aggregation of psychosis in AD suggests that genetic play an 
important role in the development of this phenotype. However, despite 
the evidence of the heritability of psychosis in AD, the results of genetic 
studies to date were not definitive [142-145]. 

BPS sufficient to be reported as suggestive of the phenotype 
of frontotemporal dementia (FTD) has been noted in the patients 
carrying PSEN-1 mutations including p.L113P [146], p.M139V [111], 
p.L226F [101,147], p.M233L [148], p.V412I [71] and PSEN-2 mutations 
including p.T122R and p.Y231C [149]. In one case carrying p.G183V 
within PSEN-1, the neuropathological appearances were of Pick’s 
disease without AD amyloid plaques [150]. In patients with p.M146L 
within PSEN-1, the neuropathology fulfilled the criteria of both the AD 
and Pick’s disease. 

Spastic paraparesis/variant AD

Spastic paraparesis, also called “variant AD”, was first noted by 
Kwok et al. [45] in patients with the p.R278T and Δ9 splice acceptor site 
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mutations within PSEN-1. The clinical phenotype was characterized 
by memory impairment associated with spastic paraparesis. The 
pathological basis of this distinctive phenotype is Aβ positive “cotton 
wool” plaques without a congophilic core [151].

Although this phenotype can occur in mutations throughout the 
whole PSEN1 gene, the most common causes are the exon 9 genomic 
deletions. Most patients with the exon 9 genomic deletion (Δ9) in the 
PSEN-1 gene shared this phenotype, however, there is an exception, the 
Δ9 (g.58304G>T) mutation [6,44,45]. Other PSEN-1 mutations with 
dementia and spastic paraparesis have subsequently been described: 
ΔI83/M84 [6,152], p.L85P [80], p.N135S [46,153], p.Y154N [154], InsFI 
[82,88], p.Q223R [155], p.F237I [156], p.V261L [157], p.V261P [82], 
p.P264L [158], p.G266S [159], p.R278K [160], p.R278S [161], p.E280G 
[83], p.P284S [162], p.L381V [102], and p.P436Q [6]. No family with 
mutations in either the APP gene or PSEN-2 gene was reported to have 
spastic paraparesis. 

Conclusion
It is well known by now that, in most cases, the clinical picture 

correlates with the underlying genotype changes. However, in a recent 
study, Balasa et al. [163] observed a frequent misdiagnose among 
patients with atypical presentations. As a result, the clinical and genetic 
heterogeneity of autosomal dominant inherited dementia must be 
taken into account in the genetic counselling and testing of families 
with autosomal dominantly inherited dementia. In the future, when 
there are more potent therapies for AD, it might be desirable to use 
AD biomarkers for the clinical diagnosis, such as cerebral spinal fluid 
biomarkers or in vivo amyloid neuroimaging techniques, in routine 
clinical practice. Moreover, many researches have noted intrafamilial 
homogeneity and interfamilial heterogeneity with respect to clinical 
phenotypes such as age at onset, disease duration, and clinical and 
neuropathological features. These findings of pedigrees but not mutation 
specificity argue strongly for the involvement of other genetic and/or 
epigenetic factors modulating the phenotype of AD. Hence, finding a 
causative/risk gene may be no more than a first step in understanding 
the phenotype of this disease. However, the unique phenotypic features 
of individual mutation still enable us to study molecular mechanisms, 
potentially explaining phenotypic differences and providing useful 
knowledge for the development of new therapeutic agents.
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