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Introduction
Since Alzheimer’s disease (AD) prevalence is age-related and the 

aging population is progressively growing up, a dramatic increase of the 
disease is expected in the coming decades [1]. Research has indicated 
that 115.4 million people may be living with dementia by 2050. The 
pathogenesis of AD is a complex process involving both genetic and 
environmental factors [2]. Despite these complexities, extensive 
research has laid the foundation of current understanding of the 
etiology and pathogenesis of AD [3,4], and many hypotheses have been 
put forward for AD pathogenesis, including cholinergic hypothesis, tau 
hypothesis and amyloid cascade hypothesis [2]. Current therapies may 
ease symptoms by providing temporary improvement and reducing the 
rate of cognitive decline. More significant research efforts should be 
directed toward clarifying the etiology and pathogenesis of AD as well 
as more adequate therapies against AD. Research into the development 
of drugs aimed at the treatment of AD via various targets has great 
potential for success [5]. Aquaporins (AQPs) are water-channel proteins 
on the plasma membrane that play critical roles in the control of cellular 
water content. Aquaporin 4 (AQP4) is the predominant AQP isoform 
in the adult brain, which is previously demonstrated to be associated 
with demyelination and neuroinflammation in chronic and acute brain 
diseases [6-12]. The possible link between neuroinflammation and 
AQP4 was first suggested in Neuromyelitis Optica (NMO) [13]. And 
it has been suggested that the pathogenesis of many clinical diseases, 
such as NMO, Multiple Sclerosis (MS) and brain injuries, is related to 
the regulation of AQP4 expression [14]. Current evidence has indicated 
that brain AQP4 is involved in various astrocytic functions related 
to neurological diseases, including brain fluid and ion homeostasis 
[15-17], potassium uptake and release by astrocytes [18], astrocyte 
migration and glial scarring [19,20], neural signal transduction [21], 
pro-inflammatory factor secretion [22], astrocyte-to-astrocyte cell 
communication [23] and synaptic plasticity [24]. There is growing 
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evidence that glia play a role In Long-Term Potentiation (LTP) [25-29], 
which could subsequently be influenced by AQP4, for that AQP4, is 
specifically localized to astrocytes. Recent studies have examined LTP, 
Long-Term Depression (LTD), and the behavior in AQP4 knockout 
and wild-type mice to gain additional insights into its potential roles. 
Thus AQP4 could be the promising target for AD treatments [30]; 
however, far less is known regarding the precise molecular mechanisms. 
It’s known that the water balance and neurohormone release in 
the neurohypophysis are processes that are closely interconnected. 
Vasopressin is a nonapeptide and neurotransmitter or neuromodulator; 
it plays an important role in the regulation of central nervous functions, 
including learning and memory. Numerous studies have shown that 
vasopressin and its analogs can improve learning and memory-related 
performance in experimental animals [31]. Both AQP4 and vasopressin 
could play roles in preventing the impairment of cognitive function in 
AD patients. Recently various studies have shown functional interaction 
of AQP4 and vasopressin in astrocyte that might have a pivotal role 
in the regulation of distinct cellular responses directed to neuronal 
preservation and neuropretection against AD, thus a deeper research 
into the functional interaction of AQP4 and vasopressin could have 
promising significance for clearing AD pathogenesis and exploring 
potential target for AD treatments. Furthermore, AQP4 could be 
considered a molecular target for Aβ metabolism and clearance in 
AD [30]; more efforts directed toward clarifying their physiological 
relevance may help clear the promising neuroprotective effect of AQP4 
and vasopressin against AD, and clarify the closely interconnected 
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processes of water balance and neurohormone release in anti-AD 
neuroprotective mechanisms.

AQP4 Is associated with alzheimer’s disease

LTP is a persistent strengthening of synapses based on recent 
patterns of activity. Impaired LTP have a role in AD. Skucas et al. [24] 
have investigated hippocampal synaptic plasticity and spatial memory 
function in mice with a deletion of the astrocyte-specific channel AQP4, 
and it was the first to demonstrate that LTP changed in AQP4 knockout 
mice using electrophysiology. The study of Scharfman et al. [32] was the 
first study to demonstrate the direct effect of AQP4 on specific forms of 
activity-dependent plasticity. Thereafter, studies that have investigated 
the effect of AQP4 on AD have gradually increased. AQP4 may mediate 
the clearance of amyloid beta peptides (Aβ) and exert neuroprotection 
against AD [33]. Low-density Lipoprotein Receptor-Related Protein-1 
(LRP1) is expressed in the perivascular end feet of astrocytes and brain 
microvascular endothelial cells; it mediates a continuous efflux of brain 
Aβ into the circulation [34]. MAPKs are a family of serine/threonine 
kinases that comprise 3 major subgroups: ERK, JNK and p38 MAPK. 
The ERK pathway plays a major role in the regulation of cell growth 
and differentiation, whereas the JNK and p38 MAPK cascades are 
most frequently associated with astrocyte activity [35]. Aβ has been 
demonstrated to activate G-protein-coupled transmembrane receptors, 
which induces a transient increase in the phosphorylation of ERK1/2 [36]. 
Moreover, the internalization of Aβ results in mitochondrial dysfunction, 
which induces the generation of reactive oxygen species and, in turn, 
causes a sustained upregulation of phospho-p38 MAPK and phospho-
JNK [37,38]. Intriguingly, several studies have demonstrated that the 
expression of AQP4 is regulated by MAPKs in response to changes in 
osmolality [39-41]. Hyperosmotic stress has also been reported to increase 
AQP4 through a p38 MAPK-dependent pathway in cultured rat astrocytes 
[40]. Nito et al. [42] examined the role of MAPK pathways in AQP4 
regulation in rat primary astrocytes using Oxygen-Glucose Deprivation 
(OGD) injury and the immunoreactivity of p38 MAPK and AQP4 in 
brain edema formation; the authors further hypothesized that MAPK 
pathways, particularly p38 MAPK, mediate AQP4 expression in cortical 
astrocytes after in vitro and in vivo ischemic brain injuries. Yang et al. [33] 
demonstrated that AQP4 deficiency decreases LRP1 upregulation and Aβ 
uptake, which thus attenuates changes in MAPK signaling pathways and 
ultimately reduces astrocyte activity. Therefore, AQP4 may be significantly 
important in the upregulation of LRP1 and the clearance of Aβ (Figure 1). 
Thus, AQP4 is a molecular target for AD, and it is significant to explore the 
novel roles of AQP4 in the pathogenesis of neurological disorders.

In addition, AQP4 may influence potassium (K+) and calcium 
(Ca2+) ion transport which plays decisive roles in the pathogenesis of 
AD [30,43]. AQP4 deficiency may impair learning and memory, in part, 
through glutamate transporter-1 (GLT-1) [44-46]. Furthermore, AQP4 
knockout is involved in neuroinflammation and interferes with AD 
[47-50]. Ample evidence has indicated that the regulation of astrocyte 
functions via AQP4 may offer a new therapeutic option for AD [51]. 

Relationship of vasopressin and alzheimer’s disease

Aβ is crucially involved in AD as the main component of the amyloid 
plaques found in the brains of Alzheimer patients. It is interesting that 
vasopressin and its receptors are present in the same brain regions as Aβ 
deposits. There are several studies that have demonstrated vasopressin 
and its analogues, in contrast to Aβ, may function as memory-facilitating 
peptides and can improve learning and memory-related performance in 
experimental animals [31]. For example, in the 1990s, [Arg8]-vasopressin 
(AVP) administered systemically or centrally was demonstrated to 

facilitate the consolidation and retrieval processes of active [52], 
working and reference memory in the radial maze [53]. With respect 
to the electrophysiological mechanism of AVP in the improvement 
of memory function, one of the most important research techniques 
focuses on central synaptic plasticity, such as hippocampal LTP. Although 
inconclusive, many experiments support a facilitatory action of AVP 
on LTP [54,55]. Jing et al. [56] indicated for the first time that AVP, as 
a memory-facilitating peptide, could effectively protect against Aβ-
induced impairment of LTP via the upregulation of synaptic plasticity in 
the hippocampal CA1 region. The authors suggested that pretreatment 
with various concentrations of AVP dose-dependently prevented the Aβ-
induced suppression of LTP and enhanced high frequency stimulation 
(HFS)-induced LTP in the hippocampal CA1 region instead of affecting 
baseline synaptic transmission. These results are supported by the study 
of Pan et al. [57] who demonstrated that centrally administered AVP 
protects against Aβ-induced memory decline in the Morris water maze 
test. Intriguingly, a recent study conducted by Varga et al. [58] identified 
increased levels of AD-related markers; memory deficits were only 
observable in vasopressin-deficient animals. Furthermore, the tissue 
samples were obtained from the parietal cortex, in which dysfunction is 
an important characteristic of early AD [59]. Thus, the study by Varga is 
a canonical paper in support of the beneficial effect of central AVP in the 
prevention and treatment of AD.

Vasopressin might be one factor in the explanation of the 
neuroprotective mechanisms of AQP4 against alzheimer’s 
disease

Although the main function of AVP is antidiuresis in the kidney, it 

Figure 1: The involvement of AQP4 and LRP1 in Aβ clearance from the 
brain to the circulation. Aβ could activate G-protein-coupled transmembrane 
receptors, which thus increases ERK1/2 phosphorylation. AQP4 may increase 
LRP1 and mediate the internalization of Aβ, which, in turn, causes sustained 
upregulation of phospho-p38 MAPK and phospho-JNK. Furthermore, p38 
MAPK may mediate AQP4 expression in cortical astrocytes, which has been 
demonstrated in in vitro models and in vivo ischemic brain injuries. The 
increase in ERK1/2 phosphorylation plays a major role in the regulation of cell 
growth and differentiation, whereas the upregulation of phospho-p38 MAPK 
and phospho-JNK induces astrocyte activity.
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plays a key role in stress-related psychiatric diseases, such as depression 
[60], which is a marked symptom in preclinical AD as previously 
discussed. A study conducted by Mesbah-Benmessaoud et al. [61] was 
the first study to describe the distribution of AQP4 throughout the 
neural lobe of the adult mouse hypophysis, and they demonstrated 
that AQP4 is abundant in the mouse hypophysis, mainly in the neural 
lobe, which was recently described in the rat pituitary gland [62,63]. 
AQP4 was discontinuously distributed along plasma membranes of 
pituicyte, which is one kind of astrocyte. Some parts of the pituicyte 
membranes were in close contact with nerve terminals and fibers. After 
salt loading, the staining was more intense. This finding implicates 
AQP4 water channels in neurohypophyseal neuroglial interactions that 
affect water homeostasis during pathologies, such as brain edema, as 
well as physiological conditions [61]. Furthermore, pituicytes appear 
to be key elements in the osmoregulation process [64]; these cells 
are sensitive to osmolar changes and have been recently described as 
osmotic sensors [65]. In addition, they could modulate neurohormone 
output [65] that may be locally controlled by the amino acid taurine, 
which is produced by pituicytes [66]. Taurine is a naturally occurring 
β-amino acid in the brain, which has been demonstrated to have 
neuroprotective properties. Pretreatment with taurine significantly 
attenuated Aβ-induced neuronal death [67]; similarly, taurine reversed 
mitochondrial function in the presence of Aβ. Moreover, taurine 
attenuated the intracellular Ca2+ and ROS generation induced by 
Aβ. And the effective maintenance of intracellular Ca2+ homeostasis 
and ROS generation during exposure to neurotoxic insults are 
considered to be mechanistic components of neuroprotection against 
AD [68,69]. As a ubiquitous osmolyte involved in the regulation of 
cell volume, taurine is also a regulator of vasopressin release in the 
hypothalamo-neurohypophyseal system [70]. Thus, water balance and 
neurohormone release in the neurohypophysis are processes that are 
closely interconnected. Vasopressin exerts its effects via a family of G 
protein-coupled receptors. The most prominently expressed are the V1a 
and the V2 type (V1aR and V2R) [71]. The V1aR is found in a number 
of tissues including brain; it has been detected in neurons, glial cells, 
and endothelial cells of the blood-brain barrier [72], while The V2R has 
a more restricted distribution, and is predominantly expressed in the 
kidney [73]. Interestingly, the most recent published data demonstrated 
that V1aR and V2R respond directly to vasopressin exposure, but they 
do not have an ability to act as osmo- or volume sensors when exposed 
to an osmotic gradient in the absence or presence of vasopressin [74], 
although regrettably this study was exerted in Xenopus oocytes or in 
mammalian cells. Therefore, AQP4 in pituicyte plasma membranes 
may be involved in this sensor effect during osmoregulation instead 
[61] and may also be closely connected to the regulation of vasopressin 
secretion. This research indicates that the movement of water regulated 
by AQP4 may lie at the heart of the mechanism of osmoreception and 
AVP secretion (Figure 2). However, because the absence or presence of 
AVP did not influence the levels of AD-related markers, the clearance 
of Aβ or other aggregated agents of AD might not be a factor in the 
explanation of the neuroprotective mechanisms of AQP4 via AVP. 

The neuroprotective effects of vasopressin against alzheimer’s 
disease could be partly through regulating AQP4 expression 
via binding to v1ar

The effects of AVP regulation on AQP4 have also been investigated 
by Moeller et al. [75]. First, they demonstrated the co-expression 
of AQP4 and the vasopressin receptor V1aR. Furthermore, they 
demonstrated that the regulatory interaction between AQP4 and V1aR 
involves protein kinase C (PKC) activation. A PKC-dependent reduction 

of the water permeability of AQP4 has previously been identified in 
oocytes [76] and mammalian cells [77]; however, the mechanism must 
be elucidated. Furthermore, Ser180 (numbering from the M1 isoform) 
is a strong PKC consensus site in AQP4 [78] and is involved in the 
PKC-dependent down regulation of AQP4, as previously reported [77], 
via direct phosphorylation or an unknown regulatory protein. The 
binding of AVP to V1aR leads to the increased generation of inositol 
trisphosphate (IP3), the activation of phospholipase C (PLC) and the 
release of Ca2+ and PKC [78,79], which could play important roles in 
the regulation of AQP4 expression. Furthermore, V1aR antagonism led 
to the upregulation of AQP4 and attenuated water content, injury, and 
cerebral edema [80]. Therefore, it can be hypothesized that the down 
regulation of AVP may upregulate AQP4 via the upregulation of PKC 
activation. Importantly, the future manipulation of AQP4 expression 
through AVP receptor antagonism may serve as an important 
therapeutic target for neurotoxicity and ischemia-evoked cytotoxic 
cerebral edema. It has been previously demonstrated that the V1aR-
mediated down regulation of AQP4 membrane expression levels and 
proposed that this down regulation might be beneficial during periods 
of dehydration in an attempt to limit the loss of water from the brain 
[75]. Vasopressin-dependent short-term down regulation of AQP4 may 
play a role in normal and pathophysiological conditions that induce AD 
or other neurological disorders. Future studies on mammalian cells and 
whole brains will identify the extent of this functional interaction and 
its physiological relevance.

Conclusion and Perspectives
Recent findings have evidenced the presence the interaction 

of AQP4 with vasopressin involved in neuronal maintenance and 
neuropretection against AD. There is a general agreement that 

Figure 2: The important effects of AQP4 are at the heart of the mechanism 
of osmoreception and vasopressin secretion. AQP4 was discontinuously 
distributed along pituicyte plasma membranes, and several parts of the 
membranes in pituicytes were in close contact with nerve terminals and 
fibers. AQP4 in pituicyte plasma membranes may be involved in the sensor 
effect during osmoregulation and may be closely connected to the regulation 
of vasopressin secretion, which is also regulated by the amino acid taurine. 
Vasopressin could also regulate AQP4 expression through the vasopressin 
receptor V1aR, and the regulatory interaction between AQP4 and V1aR 
involves PKC activation. 
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AQP4 at the plasma membrane, can induce preservation against 
Aβ toxicity and, furthermore, this water channel has been shown to 
influence vasopressin function. And the neuroprotective effects of 
AQP4 regulation against AD could also be regulated by vasopressin. 
Besides pituicyte, more efforts should be directed toward clarifying this 
phenomenon in other kinds of astocytes in certain cognitive-related 
functional brain regions. It is clinically important to further explore 
the pivotal role of the physiological relevance between AQP4 and 
vasopressin in the regulation of distinct cellular responses directed to 
neuropretection against AD, and further the precise mechanisms of the 
neuroprotection effect of AQP4 and vasopressin against AD.
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