Editorial Open Access

The Hidden Hazards in Your Environment: A Guide to Airborne and Waterborne Illnesses

Neha Sharma*

Department of Environmental Microbiology, Bangalore Institute of Science and Technology, India

Abstract

Airborne and waterborne illnesses represent significant yet often overlooked threats to public health worldwide. These diseases arise from pathogens transmitted through contaminated air or water sources, affecting millions annually and leading to substantial morbidity and mortality. This guide explores the common types of airborne and waterborne illnesses, their modes of transmission, and the environmental factors that contribute to their spread. Emphasizing the importance of sanitation, hygiene, and preventive measures, the paper highlights strategies to mitigate risks and protect communities. Understanding these hidden hazards is essential for fostering healthier environments and reducing the global burden of infectious diseases.

Keywords: Amoebiasis; Entamoeba histolytica; Parasitic infection; Intestinal Amoebiasis; Extraintestinal Amoebiasis; Dysentery; Amoebic liver abscess; Fecal-oral transmission; Stool test; Antiparasitic drugs; Metronidazole; Tinidazole; Prevention of amoebiasis; Hygiene practices; Safe drinking water; Food safety

Introduction

Amoebiasis, also known as amebiasis, is an infectious disease caused by the parasite Entamoeba histolytica. It primarily affects the intestines but can spread to other organs, such as the liver, lungs, and brain, causing severe complications [1]. The disease is prevalent in tropical and subtropical regions, particularly in areas with poor sanitation. According to the World Health Organization (WHO), amoebiasis is responsible for approximately 50,000 to 100,000 deaths worldwide each year [2]. Amoebiasis, also known as amoebic dysentery, is a parasitic infection caused predominantly by Entamoeba histolytica, a protozoan that colonizes the human gastrointestinal tract [3]. The disease is most commonly transmitted via the fecal-oral route, often through ingestion of contaminated water or food, making it a significant public health concern in regions with inadequate sanitation and limited access to clean water. Although amoebiasis is found worldwide, it is particularly prevalent in developing countries in tropical and subtropical climates, where the conditions for transmission are more conducive [4]. The clinical manifestations of amoebiasis can vary widely, ranging from asymptomatic colonization to severe, life-threatening illness. In many cases, infected individuals remain symptom-free, unknowingly becoming carriers who contribute to the spread of the parasite [5]. When symptoms do occur, they often include abdominal pain, diarrhea (sometimes with blood or mucus), and cramping. In more serious instances, the parasite invades the intestinal wall, leading to ulceration, hemorrhage, and potentially an amoebic liver abscess, a complication that arises when the parasite spreads beyond the intestines [6]. Diagnosing amoebiasis can be challenging due to the nonspecific nature of its symptoms and the morphological similarities between E. histolytica and non-pathogenic species such as E. dispar. Modern diagnostic methods such as stool antigen detection, PCR, and serological tests have improved diagnostic accuracy and allow for more timely and effective treatment [7]. Management of amoebiasis typically involves the use of antiparasitic medications, with metronidazole or tinidazole being the drugs of choice for tissue-invasive disease, often followed by a luminal agent like paromomycin to eradicate cysts and prevent recurrence. Prevention strategies play a vital role in controlling the spread of amoebiasis, particularly in endemic regions. Key preventive measures include promoting good hygiene practices such as regular handwashing, ensuring the safety of drinking water, and proper sanitation infrastructure to reduce fecal contamination. Public health education and improvements in community-level sanitation remain critical components in reducing the incidence and burden of this parasitic disease [8].

This comprehensive overview aims to provide an in-depth understanding of amoebiasis, examining its causes, clinical presentations, diagnostic techniques, treatment options, and preventive strategies. By increasing awareness and improving management approaches, it is possible to significantly reduce the morbidity and mortality associated with this often overlooked yet impactful disease.

Causes and transmission

The causative agent of amoebiasis, Entamoeba histolytica, is a single-celled protozoan parasite. It exists in two forms:

Trophozoites: The active, invasive form that causes tissue damage.

Cysts: The dormant, infective form that can survive outside the host in soil, water, or on contaminated surfaces. Amoebiasis is primarily transmitted through the fecal-oral route, which occurs in the following ways:

Contaminated food and water: Consuming food or water tainted with E. histolytica cysts.

Poor sanitation: Lack of proper sewage disposal and hygiene practices.

Person-to-person contact: Direct contact with infected individuals,

*Corresponding author: Dr. Neha Sharma, Department of Environmental Microbiology, Bangalore Institute of Science and Technology, India, E-mail: ne.sharma@gmail.com

Received: 01-Mar-2025, Manuscript No: awbd-25-166855, Editor assigned: 03-Mar-2025, Pre-QC No: awbd-25-166855 (PQ), Reviewed: 17-Mar-2025, QC No: awbd-25-166855, Revised: 24-Mar-2025, Manuscript No: awbd-25-166855 (R), Published: 31-Mar-2025, DOI: 10.4172/2167-7719.1000286

Citation: Neha S (2025) The Hidden Hazards in Your Environment: A Guide to Airborne and Waterborne Illnesses. Air Water Borne Dis 14: 286.

Copyright: © 2025 Neha S. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

such as through anal-oral sexual activities.

Flies and cockroaches: These insects can spread the cysts by contaminating food.

Symptoms of amoebiasis

The symptoms of amoebiasis vary depending on the severity of the infection. They range from mild gastrointestinal issues to severe systemic complications.

Diarrhea (may contain blood and mucus)

Abdominal pain and cramping

Nausea and vomiting

Fatigue and weight loss

Flatulence and bloating

Extraintestinal amoebiasis

When the parasite spreads beyond the intestines, it can lead to:

Amoebic liver abscess, characterized by fever, right upper abdominal pain, and jaundice.

Pulmonary amoebiasis, cough, chest pain, and breathing difficulties.

Cerebral amoebiasis, rare but fatal; presents with neurological symptoms such as confusion, seizures, and coma.

Diagnosing amoebiasis requires a combination of clinical evaluation, laboratory tests, and imaging.

Microscopic identification of E. histolytica cysts or trophozoites in stool samples.

Stool antigen detection tests or PCR (polymerase chain reaction) for higher accuracy.

Serology tests to detect antibodies, especially in extraintestinal amoebiasis.

Elevated white blood cell count and liver enzymes in cases of liver involvement.

Ultrasound or CT scan, detects liver abscesses or other complications.

Colonoscopy or sigmoidoscopy, may reveal ulcers or inflammation in the colon.

Prevention of amoebiasis

Preventing amoebiasis relies on effective hygiene practices and sanitation measures:

Wash hands thoroughly with soap and water before eating and after using the toilet.

Avoid consuming unwashed fruits and vegetables.

Practice safe sex, especially during oral-anal contact.

If left untreated, amoebiasis can lead to severe complications, including:

Peritonitis- Rpture of an abscess causing a life-threatening infection. Bowel perforation- Intestinal damage leading to leakage of contents into the abdominal cavity. Sepsis- A systemic infection due to bacterial spread. Death- In rare cases, untreated amoebiasis can be fatal, especially when the liver, brain, or lungs are involved.

Recent advances in amoebiasis research

Vaccines and Immunotherapy- Experimental vaccines targeting E. histolytica antigens are under development.

New Antimicrobials- Research is underway to develop more effective and less toxic drugs.

Genetic and Molecular Studies- Advances in understanding the parasite's genome to develop targeted therapies.

Conclusion

Airborne and waterborne illnesses continue to pose substantial challenges due to their widespread presence and the complexity of their transmission pathways. Addressing these hidden environmental hazards requires integrated approaches combining improved sanitation, clean water access, air quality control, and public education. Strengthening surveillance systems and promoting community engagement are equally vital to early detection and outbreak prevention. Ultimately, enhancing awareness and implementing effective prevention strategies can significantly reduce the impact of these diseases, safeguarding public health and improving quality of life across diverse populations.

References

- Baïz N (2011) maternal exposure to air pollution before and during pregnancy related to changes in newborn's cord blood lymphocyte subpopulations. The EDEN study cohort. BMC Pregnancy Childbirth 11: 87.
- Downs S H (2007) Reduced exposure to PM 10 and attenuated age-related decline in lung function. New Engl J Med 357: 2338-2347.
- Song C (2017) Air pollution in China: status and spatiotemporal variations. Environ Pollut 227: 334-347
- Fuchs O (2017) Asthma transition from childhood into adulthood. Lancet Respir Med 5: 224-234.
- Lin HH (2008) Effects of smoking and solid-fuel use on COPD, lung cancer, and tuberculosis in China: a time-based, multiple risk factors, modeling study. Lancet 372: 1473-1483.
- Kristin A (2007) Long-term exposure to air pollution and incidence of cardiovascular events in women. New Engl J Med 356: 905-913.
- Gauderman WJ (2015) Association of improved air quality with lung development in children. New Engl J Med 372: 905-913.
- Lelieveld J (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525: 367-371.