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Abstract

Objectives: Protein binding decreases antibacterial activities as the free fraction only crosses membranes thus
reaching intracellular targets. However, serum components may increase antibacterial activities. Therefore, the
effect of serum proteins on activities of ß-lactams and macrolides was examined.

Methods: Strains with defined resistance genotypes were selected; MRSA, ermB-, mefA-, gyrA Ser81-Phe-
mutants of S. pneumoniae, and TEM-1 or TEM-3 ß-lactamase producing E. coli were used. Ten antibiotics known to
penetrate into bacteria either well or poorly and/or known to be labile or stable to inactivation by ß-lactamases were
used. Strains were incubated in Brain Heart Infusion Broth (BHI), BHI +50% heat inactivated human serum or active
serum, or 45 g/L albumin. MICs were determined and Kill-kinetics was recorded following exposure to constant or
fluctuating drug concentrations. Kill constants and areas under the bacterial kill curves were calculated.

Results: Albumin and inactive serum increased MICs and reduced kill rates of the agents studied in conformity
with their protein binding. However, active serum increased the activities of such agents known to penetrate poorly
into strains with permeation barriers. In addition, active as well as inactive serum restored the activities of ß-lactams
against ß-lactamase producing strains due to enzyme inhibition.

Conclusions: Serum proteins permeabilized bacteria and inhibited ß-lactamase activity. The impact of serum
proteins on antibacterial activities against specific drug-bug associations is more than predicted by considering the
numerical value of protein binding alone.

Keywords: Permeabilization; ß-lactamase inhibition; Macrolides;
Penicillins; Cephalosporins

Introduction
Activities of antibacterials could be directly correlated with the

extent of their protein binding causing a proportionate increase of
MICs and a decrease of bactericidal activities [1-4]. However,
synergistic effects of human serum on antibacterial in vitro activities of
tetracyclines, β-lactams, aminoglycosides, macrolides, glycopeptides,
and fluoroquinolones have been described [5-20]. Likewise, rat- or
rabbit sera enhanced the activity of vancomycin against enterococci
and staphylococci [21,22]. It is important to note that these data were
generated in the absence of any cellular immunity and that the sera
used were either deprived from complement factors and/or that
serum-resistant indicator strains have been used. Thus, serum
antibiotic synergistic effects were independent from the immune
system. However, the mechanism(s) underlying the serum antibiotic
synergistic effects have never been assessed. These phenomena may be
due an increased uptake of the antibacterial agents studied as
Enterococci are intrinsically tolerant to the bactericidal action of ß-
lactams, aminoglycosides and glycopeptides due an inefficient uptake
which can be overcome by combinations of these agents with cell wall

active agents [5-7,23,24]. Likewise, macrolides are poorly taken up, if at
all, by Gram-negative bacteria [24-26]. Moreover, ß-lactams,
tetracyclines, and fluoroquinolones pass the outer membrane of
Enterobacteriaceae and non-fermentrs having been used as indicator
arganisms in the serum antibiotic synergism studies [14-16,20]
through porins [27] and are extruded by efflux pumps [28-30]. Any
decrease in the ability or rate of entry and an increased export,
respectively, of these compounds can lead to resistance [23,24]. In
theory, augmented intracellular accumulation [31,32] and/or efflux
pump inhibition could restore the susceptibility of bacteria to
antibiotics; however, efflux pump inhibitors have not yet progressed
into clinical use [33,34]. Furthermore, human serum interacted
synergistically with ß-lactams against ß-lactamase producing Gram-
negative bacteria only but not against ß-lactamase negative strains due
to ß-lactamase inhibition [11,12,35].

These data suggest that serum antibiotic synergisms were recorded
in particular under those experimental conditions under which either
the agents were taken up poorly or their activities were reduced
because of enzymic inactivation. Therefore, the aim of this study was
to expose Gram-positive and Gram-negative bacteria with geno-
and/or phenotypically well-defined resistance mechanisms or bacteria
known to be intrinsically macrolide-resistant to selected antibacterials;
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pairs of agents were studied known to cross bacterial membranes
either well or poorly and being good or poor substrates for ß-
lactamases, respectively.

Materials and Methods
The methods used in this study are identical to those described in

the companion manuscript [36]. Briefly, blood was sampled from
twelve healthy volunteers immediately prior to commencement of each
experimental series and pooled. Serum was split into two parts; one
part was used without any further processing (active serum) while the
other part was heated at 56°C for 30 minutes (inactive serum) and
used immediately thereafter. In general, serum was used fresh
immediately after preparation and was never stored.

Strains, antibacterial agents, and media
The following American Type Culture Collection (ATCC) wild type

strains have been used throughout this study: S. aureus ATCC 29213,
S. pneumoniae ATCC 13597, and H. influenzae ATCC 33391. Strains
with defined resistance mechanisms were: S. aureus ATCC 33593
(mecA=methicillin resistance determinant encoding the low-affinity
penicillin-binding protein 2a), S. pneumoniae 6297 (clinical isolate
harboring ermB=erythromycin ribosomal methylase class B); S.
pneumoniae 13597 (clinical isolate harboring mefA=macrolide efflux
A); S. pneumoniae 19397 (gyrA Ser81-Phe=laboratory generated
gyrase A mutant with a serine to phenylalanine exchange in position
81); E. coli C165 (TEM 1 ß-lactamase producing clinical isolate
hydrolyzing penicillins and narrow spectrum cephalosporins, such as
cephalothin or cefazolin, but not cephalosporins with an oxyimino side
chain, such as cefotaxime, ceftazidime, ceftriaxone, or cefepime); E.
coli UL10 (TEM 3 ß-lactamase displaying the ESBL phenotype).
Strains have been adapted to growth in serum or body fluids in in vivo
infection models and were maintained on blood agar plates. E. coli
ATCC 11775 used as an external control for MIC testing and time-kill
experiments.

Brain Heart Infusion Broth (BHI; Becton Dickinson Diagnostics,
Heidelberg, Germany), BHI + 50% each of heat inactivated human
serum or active human serum, and 45g/L human albumin (Sigma
Aldrich Chemie GmbH, Taufkirchen, Germany) was used. The final
pH of the media was adjusted to 7.2. Agents studied are summarized in
Table 1. The antibacterials were obtained from commercial sources.
Antibacterial agents were dissolved and stock solutions were prepared
according to manufacturer’s instructions and stored in aliquots at
-20°C. The antibiotic solutions were thawed and diluted in the
appropriate media immediately prior to experiments.

MIC testing and time-kill experiments
In general, all the equipment used was siliconized to avoid

adsorption of ß-lactamases and/or of agents studied to surfaces of
glass- or plastic ware. MICs were determined according to CLSI
guidelines [37]; time-kill curves were generated by exposure to
multiples (1-,4-,8-,16-, and 32-times) of the MICs recorded in the
corresponding media to ensure that bioequivalent concentrations were
used. Sampling, processing of samples, quatitation of viable counts as
well as drug concentration-assays has been described in detail in the
companion manuscript [36]. In general, growth controls in the
corresponding drug free media, MIC determinations or time-kill
assays were run in parallel under the four experimental conditions
studied. Bacteriostatic and bactericidal activities were evaluated in
duplicate on separate occasions; if data varied, the higher values are
reported in the tables. Kill-rates (k [h], antibiotic exposed cultures)
were calculated in analogy to growth rates (µ [h], drug-free cultures)
for the log-linear phase of declining CFUs [38]; as the maximal
bactericidal activities of all the agents studied under any of the
experimental conditions was achieved at eight times the MICs, data
summarized in Table 1 represent the kill rates at this concentration.

Agent (PB)/strain Geno-/
phenotype

BHI BHI + i.a. serum BHI + a. serum BHI + albumin

Amoxicillin (30)  MIC k µ MIC k µ MIC k µ MIC k µ

S.a. ATCC 29213 wt 0.12 -3.25 2.42 0.12 -3.12 2.43 0.06 -3.56 2.42 0.25 -3.18 2.43

S.a. ATCC 33593 mecA 64 n.d 2.08 64 n.d 2.1 64 n.d 2.1 64 n.d 2.09

S.pn. ATCC 6303 wt 0.015 -1.48 0.85 0.015 -1.46 0.83 0.006 -2.68 0.85 0.015 -1.52 0.85

S.pn. 6297 ermB 2 -2.58 0.84 4 -2.25 0.84 2 -2.82 0.88 2 -2.63 0.85

S.pn. 13597 mefA 2 -1.25 0.84 2 -1.16 0.83 0.5 -2.14 0.86 2 -1.2 0.85

S.pn. 19397* gyrA Ser81-
Phe

2 -0.84 0.83 2 -0.12 0.84 2 -1.78 0.85 2 -0.16 0.84

E. coli ATCC
11775

wt 4 -3.82 3.66 4 -3.73 3.65 2 -4.09 3.66 4 -3.52 3.65

E. coli C165 TEM 1 >128 3.69 3.71 8 -3.45 3.7 4 -3.68 3.74 >128 3.38 3.72

E. coli UL10 TEM 3 >128 3.68 3.68 8 -3.32 3.69 8 -3.54 3.71 >128 3.28 3.69

H.i. ATCC 33391 wt 0.25 -3.44 0.66 0.25 -3.31 0.67 0.25 -3.64 0.67 0.5 -3.24 0.66

Cefuroxime (40)
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S.a. ATCC 29213 wt 2 -2.62 2.42 2 -2.31 2.43 2 -2.68 2.42 4 -2.18 2.43

S.a. ATCC 33593 mecA 32 n.d 2.08 64 n.d 2.1 64 n.d 2.1 64 n.d 2.09

S.pn. ATCC 6303 wt 0.03 -1.34 0.85 0.03 -1.3 0.83 0.015 -2.42 0.85 0.03 -1.28 0.85

S.pn. 6297 ermB 4 -1.77 0.84 4 -1.56 0.84 4 -2.71 0.88 4 -1.68 0.85

S.pn. 13597 mefA 8 -0.78 0.84 8 -0.44 0.83 8 -0.76 0.86 16 -0.31 0.85

S.pn. 19397* gyrA Ser81-
Phe

8 1.33 0.83 8 1.45 0.84 8 1.42 0.85 8 1.25 0.84

E. coli ATCC
11775

wt 4 -2.44 3.66 8 -2.18 3.65 2 -2.68 3.66 4 -2.22 3.65

E. coli C165 TEM 1 8 -2.22 3.71 8 -2.24 3.7 8 -2.62 3.74 8 -2.19 3.72

E. coli UL10 TEM 3 >128 3.65 3.68 16 -1.98 3.69 8 -2.43 3.71 >128 3.67 3.69

H.i. ATCC 33391 wt 1 -2.83 0.66 1 -2.78 0.67 0.5 -2.95 0.67 1 -2.69 0.66

Cefotaxime (40)

S.a. ATCC 29213 wt 1 -0.28 2.42 1 -0.26 2.43 1 -0.3 2.42 1 -0.29 2.43

S.a. ATCC 33593 mecA >64 n.d 2.08 >64 n.d 2.1 >64 n.d 2.1 >64 n.d 2.09

S.pn. ATCC 6303 wt 0.03 -1.92 0.85 0.03 -1.88 0.83 0.03 -1.98 0.85 0.03 -1.86 0.85

S.pn. 6297 ermB 0.12 -1.52 0.84 0.25 -1.5 0.84 0.12 -1.59 0.88 0.5 -1.5 0.85

S.pn. 13597 mefA 0.12 -0.88 0.84 0.12 -1.26 0.83 0.12 -1.32 0.86 0.12 -1.3 0.85

S.pn. 19397* gyrA Ser81-
Phe

0.06 -2.44 0.83 0.12 -0.86 0.84 0.06 -0.9 0.85 0.12 -0.88 0.84

E. coli ATCC
11775

wt 0.06 -2.44 3.66 0.12 -2.39 3.65 0.06 -2.47 3.66 0.06 -2.45 3.65

E. coli C165 TEM 1 0.12 -2.48 3.71 0.12 -2.51 3.7 0.12 -2.52 3.74 0.12 -2.46 3.72

E. coli UL10 TEM 3 32 -2.32 3.68 8 -2.4 3.69 0.5 -2.43 3.71 32 -2.31 3.69

H.i. ATCC 33391 wt <0.06 -2.88 0.66 <0.06 -2.9 0.67 <0.06 -2.92 0.67 <0.06 -2.9 0.66

Ceftriaxone (60-95)

S.a. ATCC 29213 wt 2 -0.2 2.42 16 -0.06 2.43 8 -0.23 2.42 16 -0.08 2.43

S.a. ATCC 33593 mecA 32 n.d 2.08 >64 n.d 2.1 >64 n.d 2.1 >64 n.d 2.09

S.pn. ATCC 6303 wt <0.06 -1.22 0.85 >64 n.d 0.83 0.5 -0.18 0.85 >64 n.d 0.85

S.pn. 6297 ermB 0.25 -1.14 0.84 1 -0.24 0.84 1 -0.89 0.88 1 -0.16 0.85

S.pn. 13597 mefA 2 -0.98 0.84 8 -0.32 0.83 4 -0.87 0.86 8 -0.24 0.85

S.pn. 19397* gyrA Ser81-
Phe

1 -0.76 0.83 >64 n.d. 0.84 32 -0.74 0.85 >64 n.d. 0.84

E. coli ATCC
11775

wt <0.06 -2.32 3.66 0.25 -1.08 3.65 0.12 -2.39 3.66 0.25 -0.93 3.65

E. coli C165 TEM 1 0.12 -2.28 3.71 1 -1.86 3.7 0.12 -2.29 3.74 1 -1.78 3.72

E. coli UL10 TEM 3 16 -2.26 3.68 64 -1.94 3.69 0.25 -2.28 3.71 16 -2.07 3.69

H.i. ATCC 33391 wt <0.06 -2.49 0.66 0.25 -1.66 0.67 0.12 -2.57 0.67 0.25 -1.34 0.66

Imipenem (20)
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S.a. ATCC 29213 wt 0.015 -2.23 2.42 0.015 -2.28 2.43 <0.015 -2.21 2.42 0.015 -2.22 2.43

S.a. ATCC 33593 mecA 32 n.d 2.08 32 n.d 2.1 32 n.d 2.1 32 n.d 2.09

S.pn. ATCC 6303 wt 0.06 -1.67 0.85 0.06 -1.67 0.83 0.06 -1.72 0.85 0.06 -1.65 0.85

S.pn. 6297 ermB 0.25 -1.23 0.84 0.25 -1.2 0.84 0.25 -1.22 0.88 0.25 -1.2 0.85

S.pn. 13597 mefA 0.5 -1.14 0.84 0.5 -1.09 0.83 0.5 -1.16 0.86 0.5 -1.1 0.85

S.pn. 19397* gyrA Ser81-
Phe

0.5 -0.43 0.83 0.5 -0.4 0.84 0.25 -0.41 0.85 1 -0.39 0.84

E. coli ATCC
11775

wt 0.06 -2.56 3.66 0.06 -2.51 3.65 0.06 -2.53 3.66 0.12 -2.55 3.65

E. coli C165 TEM 1 0.5 -2.48 3.71 0.5 -2.5 3.7 0.5 -2.51 3.74 0.5 -2.49 3.72

E. coli UL10 TEM 3 0.5 -2.46 3.68 0.5 -2.46 3.69 0.5 -2.49 3.71 0.5 -2.47 3.69

H.i. ATCC 33391 wt 0.5 -3.44 0.66 0.5 -3.36 0.67 0.5 -3.42 0.67 0.5 -3.41 0.66

Faropenem (95)

S.a. ATCC 29213 wt 0.12 -2.73 2.42 0.5 -2.56 2.43 0.06 -3.42 2.41 0.5 -2.24 2.43

S.a. ATCC 33593 mecA 64 n.d 2.08 >128 n.d 2.1 128 n.d 2.11 >128 n.d 2.09

S.pn. ATCC 6303 wt <0.06 -1.66 0.85 0.25 -1.42 0.83 0.12 -2.42 0.82 0.5 -1.58 0.85

S.pn. 6297 ermB 2 -2.83 0.84 16 -2.12 0.84 8 -2.72 0.82 16 -2.08 0.85

S.pn. 13597 mefA 0.5 -1.75 0.84 4 -1.27 0.83 4 -2.62 0.83 8 -1.07 0.85

S.pn. 19397* gyrA Ser81-
Phe

0.5 -2.73 0.83 4 -2.23 0.84 4 -2.75 0.83 8 -2.1 0.84

E. coli ATCC
11775

wt 0.12 -2.99 3.66 0.5 -2.18 3.65 0.06 -3.27 3.64 0.5 -2.28 3.65

E. coli C165 TEM 1 0.5 -2.68 3.71 1 -2.65 3.7 0.5 -3.32 3.74 2 -2.22 3.72

E. coli UL10 TEM 3 0.5 -2.69 3.68 1 -2.68 3.69 0.5 -3.4 3.71 2 -2.24 3.69

H.i. ATCC 33391 wt 0.25 -1.68 0.66 1 -1.34 0.67 0.06 -2.23 0.67 2 -1.13 0.66

Erythromycin (75)

S.a. ATCC 29213 wt 0.5 0.98 2.38 1 0.92 2.41 0.12 0.99 2.41 1 0.93 2.42

S.a. ATCC 33593 mecA 1 0.63 2.17 2 0.6 2.11 1 0.65 2.1 2 0.6 2.1

S.pn. ATCC 6303 wt 0.06 0.12 0.95 0.12 0.03 0.82 0.06 0.1 0.83 0.25 0.03 0.84

S.pn. 6297 ermB >64 n.d 0.92 >64 n.d 0.82 64 n.d 0.82 >64 n.d 0.83

S.pn. 13597 mefA 8 0.03 0.9 64 n.d 0.83 4 0.08 0.84 8 n.d 0.83

S.pn. 19397* gyrA Ser81-
Phe

>128 n.d 0.91 >128 n.d 0.83 16 0.02 0.84 >128 n.d 0.83

E. coli ATCC
11775

wt 128 n.d 3.62 >128 n.d 3.64 16 1.98 3.66 >128 n.d 3.63

H.i. ATCC 33391 wt 16 0.18 0.65 32 n.d 0.66 8 0.75 0.67 32 n.d 0.64

Roxithromycin (85)

S.a. ATCC 29213 wt 1 1.07 2.38 4 0.26 2.41 2 0.88 2.41 2 0.17 2.42

S.a. ATCC 33593 mecA 2 1.89 2.17 16 2.33 2.11 8 2.54 2.1 8 2.38 2.1
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S.pn. ATCC 6303 wt 0.12 1.46 0.95 1 0.03 0.82 0.5 0.84 0.83 1 0.22 0.84

S.pn. 6297 ermB >128 n.d 0.92 >128 n.d 0.82 128 n.d. 0.82 >128 n.d 0.83

S.pn. 13597 mefA 32 1.33 0.9 >128 n.d 0.83 16 1.29 0.84 >128 n.d 0.83

S.pn. 19397* gyrA Ser81-
Phe

>128 n.d 0.91 >128 n.d 0.83 64 n.d 0.84 >128 n.d 0.83

E. coli ATCC
11775

wt >128 n.d 3.62 >128 n.d 3.64 64 n.d 3.66 >128 n.d 3.63

H.i. ATCC 33391 wt 8 1.47 0.65 32 n.d 0.66 8 0.26 0.67 16 n.d 0.64

Clarithromycin (40)

S.a. ATCC 29213 wt 0.12 1.28 2.38 0.5 1.2 2.41 0.25 1.58 2.41 0.5 1.2 2.42

S.a. ATCC 33593 mecA 0.25 1.8 2.17 1 2.4 2.11 1 2.2 2.1 1 2.5 2.1

S.pn. ATCC 6303 wt 0.03 0.5 0.95 0.12 0.42 0.82 0.12 2.05 0.83 0.12 0.56 0.84

S.pn. 6297 ermB 16 2.83 0.92 128 n.d 0.82 64 n.d 0.82 32 n.d 0.83

S.pn. 13597 mefA 0.5 0.53 0.9 2 0.48 0.83 1 3.04 0.84 1 0.62 0.83

S.pn. 19397* gyrA Ser81-
Phe

64 n.d 0.91 >128 n.d 0.83 64 n.d 0.84 >128 n.d 0.83

E. coli ATCC
11775

wt 8 0.18 3.62 16 0.03 3.64 0.5 0.25** 3.66 16 0.02 3.63

H.i. ATCC 33391 wt 16 0.12 0.65 8 0.05 0.66 4 0.67** 0.67 16 0.1 0.64

Azithromycin (12-50)

S.a. ATCC 29213 wt 1 0.32 2.38 1 0.3 2.41 0.12 1.34 2.41 1 0.3 2.42

S.a. ATCC 33593 mecA 0.5 0.22 2.17 1 0.18 2.11 0.12 0.2 2.1 1 0.16 2.1

S.pn. ATCC 6303 wt 0.12 1.63 0.95 0.25 1.59 0.82 <0.06 3.62 0.83 0.25 1.67 0.84

S.pn. 6297 ermB 128 n.d 0.92 >128 n.d 0.82 64 n.d 0.82 >128 n.d 0.83

S.pn. 13597 mefA 8 0.45 0.9 64 2.19 0.83 1 0.98 0.84 32 2.3 0.83

S.pn. 19397* gyrA Ser81-
Phe

128 n.d 0.91 >128 n.d 0.83 64 n.d 0.84 >128 n.d 0.83

E. coli ATCC
11775

wt 8 2.19 3.62 32 2.28 3.64 0.5 2.66** 3.66 16 2.37 3.63

H.i. ATCC 33391 wt 1 0.31 0.65 1 0.3 0.66 0.25 1.36** 0.67 1 0.29 0.64

*: penicillin- and macrolide resistant phenotype; S.a: S. aureus; S.pn: S. pneumoniae; H.i: H. influenzae; wt: Wild Type; n.d: Not Done; **: transiently bactericidal for 2 h
to 3 h followed by regrowth in parallel to drug-free controls

Table 1: Antibacterial activities, expressed as minimal inhibitory concentrations (MIC, mg/L), kill constants (k, h, negative figures indicate
reduction of viable counts, positive figures indicate growth, recorded in drug-exposed cultures) and growth rates (µ, h, recorded in drug-free
controls) of the agents studied (values in parenthesis indicate protein binding) against Gram-positive and Gram-negative indicator strains with
defined resistance-genotypes incubated in Brain-Heart Infusion Broth (BHI), BHI + inactive (i.a.) serum, BHI + active (a.) serum or BHI +
albumin.

Beta-latamase assay
β-lactamase activity was determined by the chromogenic

cephalosporin nitrocefin- (Oxoid, Basingstoke, UK) method using a
known β-lactamase positive strain as control. Samples were
centrifuged at 15,000 g for 15 minutes. The lower limit of detectability
was 0.1 units per mg protein. β-lactamase activity was determined in
the supernatant as well as in the sonic extracts of the pellet. ß-

lactamase activity is expressed relative to control assay, i.e. growth in
the corresponding medium in the absence of sera.

The experiments were performed in six parts, i.e. 1st MIC-testing,
2nd and 3rd time-kill experiments with ß-lactams and macrolides,
respectively, as well as 4th to 6th repetitions of each of these
experiments on three separate occasions, so that always the same
group of volunteers donated blood on six occasions. Biochemical and
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hematological analysis of the eight pooled serum samples revealed that
all parameters were within the normal range on every occasion.

Results

Controls
All the strains tested grew well throughout the entire incubation

period under any of the experimental conditions studied. Growth rates
were highly comparable under the different conditions studied (Table
1). The activity of ciprofloxacin against E. coli ATCC 11775 used as an
external control in the course of MIC- and time-kill assays was always
within the limits of reproducibility as were the drug concentrations
quantitated through the experiments. Drug concentrations quantitated
prior to commencement and at the end of the time kill experiments
corresponded to >95% to the weighed amount of substance – except ß-
lactam concentrations in the presence of TEM-1 or TEM-3 ß-
lactamase producing strains.

Impact of serum proteins on bacteriostatic and bactericidal
activities
The rationale for the selection of the drug/bug-associations studied

was, that first, the general effects of serum on bacteriostatic and
bactericidal activities of the agents against the indicator strains tested
was studied. Second, the hypothesis that serum factors may affect the
fluidity of bacterial membranes thus increasing antibiotic uptake or
decreasing efflux of antibiotics was addressed by studying the activities
of macrolides penetrating poorly into Gram-negative bacteria or
against Gram-positive bacteria harboring the membrane spanning
MefA efflux pump as compared to the activities of macrolides against
the ribosomal target mutant ErmB or the gyrase mutant both of which
should remain unaffected. Furthermore, pairs of either effectively of
poorly penetrating ß-lactams were included into the comparison:
cefotaxime and ceftriaxone both penentrating effectively, whereas
faropenem is taken up poorly in contrast to imipenem. Third, the
hypothesis that serum antibodies may inhibit enzymic activities of ß-
lactamases was examined by studying the activities of ß-lactams with
differing ß-lactamase stabilities against E. coli strains producing either
TEM-1 or TEM-3 ß-lactamases with different substrate profiles.

Ad 1: Impact of different serum preparations on MICs and
kill rates

Albumin and inactive serum increased MICs and reduced kill rates
of highly protein bound agents studied in conformity with their
protein binding whereas moderately or minimally bound agents
remained almost unaffected (Table 1). It is apparent that serum
proteins had a differential effect on minimally to moderately bound
cefotaxime as well as imipenem on the one hand, and highly bound
ceftriaxone and faropenem on the other hand. The four agents were
highly active in the absence of serum, but inactive serum, albumin, and
a bit variably active serum, too, reduced the activities of ceftriaxone
and faropenem against all the Gram-positive and Gram-negative wild-
type strains, leaving cefotaxime and imipenem almost unaffected.
There was a trend that albumin reduced the activities of macrolides less
markedly than inactive serum. This effect becomes obvious by
comparing the impact of albumin on the activities of faropenem and
roxithromycin, respectively. Both agents are highly protein bound, but
albumin reduces the activity of faropenem more markedly than the
activity of roxithromycin.

Ad 2: Impact of different serum preparations on the activities
of poorly penetrating agents
The activities of macrolides were increased in the mefA- but not the

ermB- S. pneumoniae mutant. Furthermore, MICs of clarithromycin
and azithromycin being poorly active or inactive against Gram-
negatives were significantly reduced in the presence of active serum
and their kill rates increased correspondingly. Cefotaxone, ceftriaxone,
respectively, as well as imipenem were in conformity with their
different protein binding rates equally active under the experimental
conditions studied, whereas faropenem penetrating poorly into H.
influenzae gained activity in the presence of active serum as compared
to inactive serum or albumin (MICs for faropenem 0.06 mg/L versus 1
and 2 mg/L, respectively).

Ad 3: Impact of different serum preparations on ß-lactamase
activities

Active serum restored the activities of all the ß-lactams tested in
accordance with their ß-lactamase stability against the two TEM-type
ß-lactamase producing E. coli strains. This phenomenon becomes
obvious by comparing the restorative effect of active serum on the
activity of amoxicillin being instable against TEM-1 and TEM-3 ß-
lactamases against both strains producing these ß-lactamases. The
activities of the other ß-lactams being stable against TEM-1 ß-
lactamase were not affected by serum proteins; however, their activities
against the TEM-3 producer were restored by active serum. Inactive
serum had a similar but weaker effect as active serum on the activities
of the ß-lactams against the TEM-1 and TEM-3 producers.
Quantitation of ß-lactamase activities in those assays containing active
and inactive serum, respectively, as compared to growth in BHI
without any supplementations revealed that ß-lactamase activities were
below the limit of detectability in the presence of active serum and
ranged from 12% to 23% in the presence of inactive serum (data not
shown).

Both, the impact of serum proteins on ß-lactamase producing
bacteria as well as on mefA mutants were independent from protein
binding.

Discussion
Data generated in this study confirm that only the free fraction of

antibacterial agents was active against the Gram-positive and Gram-
negative strains tested. They also demonstrate that other phenomena
independent from protein binding add to the activities of ß-lactams
and macrolides; this serum-antibiotic synergy was independent from
any impact of the immune system as all strains grew well in the
presence of active or inactive serum; furthermore, components of the
cellular immune system were absent, so that the differences in
bactericidal activities observed in active serum and inactive serum or
albumin, respectively. As compared to unsupplemented medium were
not due to different growth rates or the impact of complement. The
two essential observations of this study were first, that active serum
increased the activities of such agents known to penetrate poorly into
strains with permeation barriers. Second, active as well as inactivated
serum restored the activities of ß-lactams against ß-lactamase
producing strains and active serum restored the activities of macrolides
against mefA but not ermB mutants.
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Association between structure dependent penetration of
antibacterials and serum antibiotic synergism

Cefotaxime and ceftriaxone are zwitterions which facilitates
penetration through outer membranes of Gram-negative bacteria.
Both compounds are characterized by very similar microbiological and
pharmacodynamic properties [39-41] but different protein binding.
Therefore, serum proteins affected the activity of the highly protein
bound ceftriaxone only, and active serum did not restore its activity as
ceftriaxone penetrates well into bacteria. Although carbapenems are
considered to penetrate into bacteria efficiently [42], imipenem and
faropenem differ from each other in their C-2 side chain [43]. The
uncharged substituent at the C-2 position of faropenem as compared
to a charged substituent of imipenem reduces penetration of
faropenem into Gram-negatives resulting in a retarded bactericidal
activity in particular against H. influenzae despite its high affinity to
penicillin binding proteins in Gram-negatives [44]. Proteins of the
inactivated serum preparation and human serum albumin reduced the
activity of highly protein bound faropenem but not the activity of
minimally bound imipenem; active serum restored the bactericidal
activity of faropenem against H. influenzae and E. coli.

Likewise, Gram-negative bacteria are inherently resistant to
hydrophobic antibiotics such as macrolides which can neither diffuse
effectively through hydrophobic pathways across the outer membrane
nor interact electrostically with the LPS despite their mono- or
dicationic structure [25,45,46]. Active serum decreased MICs of
clarithromycin and azithromycin. These results are well in agreement
with previously published data which were generated by using active
sera, too [8,9]. Furthermore, active serum restored the activities of
macrolides against mefA mutants. Others described that cell culture
media and biological fluids acted synergistically with clarithromycin
and azithromycin increasing their activities against P. aeruginosa [47].
This synergism was due to an alteration of outer membrane fluidity
followed by an increased accumulation and a reduced efflux of the
agents [47]. In analogy, active serum may hypothetically have affected
the activity of MefA consecutive to a modification of membrane
fluidity, thus contributing to an explanation of the data generated in
this study why active serum increased the activities of macrolides
against membrane spanning MefA- pump mechanism but not against
the ErmB- methylase target mutant.

Supportive evidence for serum protein mediated membrane-
permeabilization
The hypothesis that components present in active serum may have

augmented activities of poorly penetrating antibacterials due to
membrane-permeabilization is supported by previous studies having
applied physicochemical, biochemical, and microbiological methods to
investigate the impact of serum proteins on the integrity and/or
fluidity of bacterial membranes. It has been demonstrated that IgG
increased the uptake of poorly penetrating ß-lactams into Gram-
negatives [48] which is consistent with the finding of this study that
poorly penetrating agents gained activity in the presence of active
serum. IgG was found to disintegrate the outer membrane of Gram-
negative bacteria releasing high amounts of periplasmic markers into
the medium. Marker release was achieved with IgG in the absence of
humoral or cellular immune response thus indicating that membrane
permeabilzation was not a consequence of immune reactions. By using
the Langmuir-Schaeffer technique as a measure for biophysical
interactions of agents with phopholipids it was demonstrated that the
film area normalized per phospholipid molecule versus the resultant

compressional force for the phopholipids was significantly modified in
the presence of IgG thus indicating that IgG inserted into lipid acyl
chains. An interaction of IgG with liposomal membranes has been
proven, too [48-51]. As electrostatic and hydrophobic forces drive the
antigen-antibody binding it is important to note that the hinge region
of IgG is rich in positively charged amino acids which are exposed to
the binding sites by a “clicked open” process. The shape of IgG is
altered to provide more flexibility to the hinge region; the angle
between the two Fab regions of an IgG molecule may extend up to
180°, so that the positively charged amino acids in the hinge region
interact freely with negatively charged lipids [51-53]. Poorly
penetrating agents diffuse into bacteria with greater ease as a
consequence of these physicochemical interactions [48]. Although
model membranes being representative for Gram-negative bacteria
have been examined, analogous phenotypical findings have been
generated for Gram-positive bacteria, too [17,48]. As complement
inactivation at 56°C should leave the immunefunction of the IgG
molecule intact it could be expected that not only active serum, but
also heat inactivated serum should reduce MICs of poorly penetrating
agents which, however, has not been observed under the experimental
conditions applied in this study. This phenomenon may likely be due to
the fact that immunogobulins are thermally unstable and change their
secondary structure upon heating, so that the structure of the
membrane interacting hinge region is affected at 56°C more strongly
than the Fab fragment which is denaturated at 61°C [54,55].
Permeabilization and sensitization of a variety of Gram-negative and
Gram-positive wild-type strains could not only be proven under in
vitro conditions but in experimental animals as well [11,12]. This latter
finding may likely be clinically relevant in as far as strains growing in
vivo under hostile conditions are much more impermeable than their
counterparts growing in vitro in a cosy environment.

Serum protein mediated ß-lactamase inactivation
The second finding of this study was that active as well as

inactivated serum restored the activities of ß-lactams against ß-
lactamase producing strains which was paralleled by an inhibition of
the enzymic ß-lactamase activity. It has been described previously that
commercially available IgG preparations contained antibodies against
ß-lactamases inactivating the enzymic activities of various ß-
lactamases produced by in vitro as well as in vivo grown bacteria [35].
It has also been demonstrated that sera collected either from age-
matched healthy volunteers, or from patients suffering from acute
urinary tract infections, or from cystic fibrosis patients suffering from
chronic infections, respectively, contained either low, or medium and
high titers of antibodies against ß-lactamases [56]; this finding has
been confirmed recently in CF-patients [57,58] and in healthy
volunteers [59]. As ß-lactamase production could be de-repressed with
a variety of naturally occuring structural analoguous to the ß-lactam
core [60-62], antibodies are produced by the healthy, non infected host,
too. Irrespective of whether sera may originate from healthy or
infected individuals, antibodies against ß-lactamases may likely be
omnipresent, so that the findings generated in previous as well as in
this actual study may translate into the clinical arena.

The serum antibiotic synergistic effects being likely due to
membrane permeabilization-, inhibition of efflux pumps, and ß-
lactamase-inhibition against specific drug/bug-associations could not
have been predicted based on conventional susceptibility testing or
PK/PD studies. Thus, the impact of serum proteins on antibacterial
activities against specific drug-bug associations is more than predicted
by considering the numerical value of protein binding alone.
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Limitations
Serum-antibiotic synergistic effects observed in this study may

likely be due to membrane permeabilizing activities of IgG and/or
other serum proteins. This hypothesis is in agreement with the findings
that serum-antibiotic synergisms were found in those studies in which
unprocessed serum has been used without any storage [8-11,13,17].
However, others [8,15,19,20] used serum-ultrafiltrate being devoid of
peptides. Serum-antibiotic synergisms were obtained with sera
prepared by either method, so that not only serum proteins, but also
low molecular weight unknown factors may have contributed to the
synergistic effects. The open question which serum protein/-s either
independently or in cooperation may have caused the synergistic
effects should be addressed by using physicochemical, biochemical and
microbiological methods. Furthermore, the hypothesis has been raised
that such permeabilizing effects may have caused an increased influx
of otherwise poorly penetrating antibacterials. An augmented uptake
of poorly penetrating agents and/or a decreased pump-mediated efflux
has been demonstrated by others [47,48], however, intracellular drug
concentrations in the absence or presence of serum proteins have not
been analyzed in the course of this study. Therefore, it may be likely,
but it remains unproven at the current point in time, that serum-
antibiotic synergisms are due to serum protein mediated modulations
of bacterial membrane fluidities followed by an increased uptake of the
agents studied.

Conclusions
Serum proteins permeabilized bacteria thus increasing the activities

of poorly penetrating antibacterial agents and inhibited ß-lactamase
activity. The impact of serum proteins on antibacterial activities against
specific drug-bug associations is more than predicted by considering
the numerical value of protein binding alone.
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