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Abstract
Cell-derived extracellular vesicles (EVs) are heterogeneous population of phospholipid-based endogenously 

produced particles. EVs are detected in several biological fluids and tissues as biomarkers of diseases and target 
of medicines. The conventional approach for measuring the MPs is based on commonly used flow cytometry, 
fluorescent methods, and nano-particle tracking analysis that recognized as a gold standard, as well as Western 
blot analysis, dynamic light scattering, resistive pulse sensing, mass spectrometry-based proteomic methods and 
electron microscopy. However the definition of MPs using these techniques is yet under discussion. The aim of 
the review: to summarize the knowledge regarding detection and measurement of the EVs and define the balance 
between advantages and limitations of each contemporary analytical methods of EV assay. 
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Introduction
Cell-derived extracellular vesicles (EVs) have been identified in 

several biological fluids and tissues [1-3]. EVs are recently recognized 
key regulators of cell function, cell-to-cell cooperation, inflammation, 
proliferation and tissue repair [4,5]. Despite the exact molecular 
mechanisms regarding the autocrine and paracrine actions of EVs 
affecting several physiological and pathological processes are yet not 
completely clear [6], there is the progress in understanding the role 
of circulating EVs and their molecular contents (DNA, RNAs, active 
molecules, and proteins) taken directly from peripheral blood as 
biomarker of diseases and targeting in the treatment [7-9]. There is 
reason for optimizing of EV assay to increase utilization of single and 
serial measurements of number EV in routine clinical practice. By now, 
there is large body of evidences regarding perspectives to use of EVs 
as diagnostic tool with promising predictive value in several diseases, 
i.e. cancer, leukemia, cardiovascular and rheumatic disease, diabetes,
autoimmune and renal diseases, thrombosis, infections, inflammation
[10-16]. The aim of the review: To summarize the knowledge regarding 
detection and measurement of the EVs and define the balance between
advantages and limitations of each contemporary analytical methods
of EV assay.

Definition and Classification of Extracellular Vesicles
Extracellular vesicles are defined as heterogeneous population of 

particles with variable sizes ranging from 30 to 1000 nm in diameter, 
which are produced by broad spectrum of cells (Table 1). By now, EVs 
are classified to several subsets depending origin, sizes, and specifically 
presented on their surfaces biochemical marker. There are follow EV 
subsets: exosomes (30–100 nm in diameter), the microvesicles (50–
1000 nm in diameter), ectosomes (100–350 nm in diameter), and 
microparticles (100-1000 nm). So called the “small-size MPs” (<50 
nm in diameter) and various apoptotic bodies (1-5 µm in diameter) 
are graduated by some investigators additionally to the main groups 
of EVs [17]. The exosomes are derivate of the endosomal membrane 
of predominantly immune and tumor cells, whereas the ectosomes 
are released from the plasma membrane of broad spectrum of the 
cells including antigen-presenting cells [18]. Microparticles (MPs) 
and microvesicles are resulting in cellular membrane vesiculation due 
to an impact of several triggers (i.e., shear stress, inflammation, cell 
activation through growth factor and hormones, direct mechanical 
injury, coagulation on the surface of endothelium) affecting rebuilding 
of cell skeleton [19,20].

Biological Function and Regulation of Extracellular 
Vesicles

Recently some investigations have deemed that EVs are transport 
form for different molecules (tissue coagulation factors, autoantigens, 
cytokines, mRNA, miRNA, hormones, and surface receptors), which 
could be paracrine regulators of target cell metabolism and function 
[21-23]. The opinion was maintained a large body of evidence regarding 
the role of biological molecules incorporated into EVs in the various 
processes, such as inflammation, infections, growth and differentiation 
of tissue, reparation, vasculogenesis, and malignancy. Within last 
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decade it has been became to know that the EVs are not only cargo 
form for biological molecules, but they might produce direct impact 
on target cells through presented on their surface mother cell-specific 
receptors and active substances. Additionally, the changing in number 
and worsening in immune pattern of MPs originated from different 
cells (endothelial cells, mononuclears, dendritic cells, platelets) have 
been found in several settings including CV and metabolic diseases 
[24-26].

Some controversies in recognizing of molecular mechanisms 
regarding regulation of EVs’ forming and secretion were recently 
found. There are at least two distinguished mechanisms of vesiculation, 
i.e., spontaneous and trigger-induced. Up to date, the mentioned 
above mechanisms of EV release are mandatory of physiological and 
pathological conditions. Whether both mechanisms are similar in 
cellular changing aspects is not fully clear, although shear stress on 
endothelium, coagulation/platelet aggregation on the surface of the 
endothelial cells, microbial toxins-related endothelium injury, and 
activated/apoptotic cells may stimulate EV forming and secretion [27-
31]. However, the EVs originated from activated and apoptotic cells may 
distinguish in their structure, antigen and tissue factor presentation, 
ability to transfer of biological substance including miRNAs, and 
consequently they might trigger variable biological responses. Indeed, 
EVs produced by activated cells may involve in the reparation of the 
tissue, angiogenesis, and cell-to-cell cooperation, whereas EVs secreted 
by apoptotic cells are able to mediate direct tissue injury via promoting 
oxidative stress, inflammation, platelet aggregation and thrombus 
formation [30,31].

The Methodology of Detection of Extracellular Vesicles
The most published data regarding immune biology, structure, 

and proteomics of free-cells EVs have been presented conflicting 
results [32,33]. Basically the analytical obstacles and methodological 
limitations to recognize and distinguish several types of EVs are the 
main source of unsatisfactory knowledge about biological role of EVs 
[34]. Up to date, the methods of isolation of EVs are crucial for accuracy 
of measurement and clinical utility of nano-particles. Indeed, there are 
several criticisms regarding impact of centrifugation-based methods 
including co-isolation of non-EV materials on further measurement of 
EVs. It might relate to damage of the EV's membrane structure and 

non-standardized parameters leading to qualitative and quantitative 
variability [35]. The commonly used methods for purifying EVs for 
post-isolation analyses may impact on quality and accuracy of EV 
measurement [36]. 

In routine laboratory practice fluorescent methods (i.e. flow 
cytometry) for EV detection and distinguish are predominantly used 
[37]. However, small sizes, low concentration and lack of consensus 
regarding standardization remain the main challenging to measure 
EVs in samples [37]. Therefore, the other methods of EV detection 
(i.e. nano-particle tracking analysis, Western blot analysis, dynamic 
light scattering, resistive pulse sensing and electron microscopy, mass 
spectrometry-based proteomic methods, etc.) are costly, require 
more time for performing [38,39], and exhibit several technical 
limitations regarding their sensitivity and accuracy [40,41]. To date, 
the accurate measurement of EVs by these methods depends on EV 
size heterogeneity, refractive index, and the dynamic measurement 
range that could require a complementary use for most of the available 
technologies [42].

Flow Cytometry
Flow cytometry is considered a well-standardized and optionally 

accepted analytical method for cell identification, phenotype detection 
and measurement, although the standard tool requires special attention 
when measuring EVs in diameter less 200 nm and especially less 50 nm 
[43]. Indeed, due to the small size of EVs, it is needed to prevent the 
frequently occurred signal noise for detection of fluorescently labeled 
EVs. Currently there are a number of solutions that might help to 
improve accuracy and merge reproducibility of the method. The first 
is careful titration of the probe before EV labeling [36]. The second is 
removal of unbound probe by washing using size-exclusion filter and/
or high-speed centrifugation. To note, the carefully use of higher speed 
centrifugation is crucial step for detection of EVs even when probes 
are prepared correctly. The centrifugation may mechanically injure the 
cells and attenuate the occurring the cell fragments or debris in probe 
that activates aggregation and mediates artefactual release of EV in the 
samples [44]. However, there is serious limitation regarding ability to 
recognized small-size particles like MPs in diameter, i.e., low-density 
lipoproteins, using flow cytometry technique. The calibration in flow 
cytometry is essential to overcome the limitations regarding nano-

Populations of 
vesicles Diameter Origin Main contained components Best characterized 

cellular sources Markers Detection

EV 30-1000 nm Cell 
membranes

Regulatory proteins (i.e., heat-shock proteins, 
tetraspanin), lipids, active molecules, nucleic acids 
(mrna, mirna), cytokines, growth factors, hormones, 

VCAM, ICAM, procoagulant phosphatidylserine, 
likely complement

All cell types
Annexin V 

binding, tissue 
factor and cell-

specific markers

Flow cytometry 
western blotting, mass 
spectrometry, electron 
microscopic technique, 
SPRi microscopy, NTA

MPs 100-1000 nm Plasma 
membranes

Platelets, RBC and 
endothelial cells

MV 50–1000 nm Plasma 
membranes

Platelets, RBC and 
endothelial cells

Small-size MPs <50 nm Plasma 
membranes Endothelial cells CD133+, CD63-

Exosomes 30–100 nm Endosomal 
membranes

Immune cells and 
tumors

CD63, CD61, 
CD63, CD81, 
CD9, LAMP1, 

TSG101

Ectosomes 100–350 nm Plasma 
membranes

Platelets, RBC, 
activated neutrophils, 
and endothelial cells

TyA, C1q

Late endosomes 50–1000 nm Endosomal 
membranes Close-packed lumenal vesicles

Immune cells, 
dendritic cells and 

tumors
Annexin V 

binding, DNA 
content

Apoptotic bodies 0.5-3.0 µm Plasma 
membranes Pro-apoptotic molecules, oncogenic receptors Cell lines Flow cytometry

Table 1: Classification and key features of extracellular vesicles.
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particles’ identification using gating 1µm. Polystyrene microspheres 
(PMs) are often used in commercial flow cytometers to distinguish 
EV from cells by setting a 1 μm EV gate in a side-scatter (SSC) versus 
forward-scatter (FSC) dot plot because of PMs usually exhibit higher 
FSC and SSC than EVs of equal size. However, the flow cytometer 
provides the possibility to measure MPs directly in plasma samples 
and to analyze MP-subsets [45]. Probably, advanced cytofluorimetric 
method based on BD Horizon Violet Proliferation dye could be used 
optionally to detect small-sizes MPs [46].

Atomic Force Microscopy
Because of atomic force microscopy (AFM) is reliable method for 

analysis of samples containing very few target molecules; it is permitted 
the characterization of membrane vesicles as small as 30 nm in 
hydrodynamic diameter [47]. AFM lets to detect morphology, surface 
properties and surface antigen presentation in the target samples. 
Furthermore, AFM might use to determine the morphology structure 
of the membranes and subsurface layers more carefully than it could 
be characterized by scanning electron microscope (SEM) and Fourier 
Transform Infrared (FTIR) spectroscopy. It might have an important 
value, because of changes in cellular mechanical properties closely 
correlate with the functionality of the cells and their response to the 
several stimuli. Moreover, membrane-bound proteins are involved in 
the cell-to-cell cooperation in vivo and directly mediate passive bead 
rheology and mechanical ability of the cells and sub-cell structures. 
Thus, AFM may present information with respect to both nanostructure 
of the cells/cell-derived EVs and their functionality.

Although AFM may exhibits a well agreement with transmission 
electron microscopy and X-ray diffraction in measurement of both the 
EV size and size-related parameters of the different EV fractions, it is 
noted that an accurate of results depends on pre-analytical preparation 
of samples (i.g. separation and isolation), methods of standardization 
using particles with appropriate sizes and the counting statistics [48]. 
However, the distinguishes in concentrations between the detected EVs 
are discussed a primarily cause in differences between the minimum 
detectable particle sizes [49]. In this context, the AFM could be 
promised method in identification of the size and concentration of EV, 
when dynamic light scattering is failed due to lower EV concentration 
[50]. Nevertheless, there are no reliable markers that might distinguish 
subsets of various EVs, i.e., exosomes and ectosomes. In this context, 
AFM is considered as a component prior nano-particle tracking 
analysis and global proteogenomics analysis [51]. Overall, AFM 
appears to be non-destructive and quantitative way to characterize the 
structure of atomically thin, layered materials, essential properties of 
EV membrane, i.e., EV shape and size, which allows to compare the 
features with control. Additionally, AFM is capable to use of screening 
for changes in mechanical phenotype of EVs.

Nano-particle Tracking Analysis
Nanoparticle tracking analysis (NTA) is a non-invasive light-

scattering technique that is useful for the rapid sizing and enumeration 
of EVs in real time [52]. NTA is based on the Brownian motion of 
individual particles in solution (monodisperse and polydisperse 
samples) with further tracking identification using light scattering. The 
data analysis requires commercial NTA software, which calculates the 
size and total concentration of the vesicles in solution. The minimum 
detectable EV sizes for NTA are 70-90 nm [50] and the analytical 
variation is generally below 10%. It is needed to take into consideration 
the NTA is measured NTA the hydrodynamic diameter of the particles 
only. Overall, the use of fluorescent-labeled antibodies against specific 

markers with NTA allows the determination of the "phenotype" of the 
cell-derived vesicles.

There are a lot of numbers of investigations regarding comparison 
between NTA and other methods enable measurement of EVs in 
blood plasma. Mork et al. [53] reported that NTA and tunable resistive 
pulse sensing (TRPS) enabled acceptably precise concentration and 
size measurement of submicron particles in fresh, fasting samples of 
plasma. It is suggested that NTA is able to have better sensitivity for 
EVs with diameter less 100 nm [54], whereas fluorescence technique 
exhibits better results in measurement of EV size ranged >100 nm [55].

There are as least two limitations of NTA that should be taken into 
consideration for the analysis of EVs. The first limitation of NTA is 
lack of optionally calibration method of regarding EV measurements. 
However, there are several attempts to standardize this method using 
polydisperse nanosized particles [56]. Although most calibration 
of NTA measurement has been performed using polystyrene 
microspheres, silica microspheres may be better in estimation of 
MV diameter [57,58]. The next serious barrier created surmountable 
problems for NTA is sizing of small MPs (<50-100 nm). In addition, 
problems with concentration limits of NTA measurements might 
restrict the use of this method for clinical samples [59]. In this context, 
EV-enriched fractions in the sample and high concentrations of 
particles in the size-range of exosomes are essential for NTA. To the 
best of our knowledge, isolation of EVs is necessary to use before NTA 
that is considered a crucial step in this analytical technique. However, 
the complete isolation of EVs from similarly sized particles with full EV 
recovery is currently not possible due to limitations in existing isolation 
techniques. Finally, NTA is defined as easy to use, fast, robust, accurate 
and cost effective methods to measurement of EVs.

Dynamic Light Scattering (DLS)
Dynamic light scattering (DLS) recently known as photon 

correlation spectroscopy (PCS) and quasi-elastic light scattering is 
well-developed methods regarding measurements of intensity size 
distribution and on counting the number of different EV sizes les 1 nm 
[60]. There is a possibility to measure the full particle characteristic 
distribution including size, weigh, shape, and charge [61]. DLS can use 
to distinguish nano-particles depending on their size through detection 
of Brownian motion intensity, while the monogenity of sample and 
higher concentration of the EVs are critical requirement to perform this 
method. Optionally, the results of EV measurement by DLS comprise 
either a simple z-average particle size or polydispersity or a very limited-
resolution particle size distribution profile. Contamination of the 
samples with other particles, i.e., low-density lipoproteins or aggregated 
microparticles/cell debris, may dramatically worse the data quality [62]. 
Additionally, DLS cannot measure fluorescently-labeled EVs.

Resistive Pulse Sensing
The technology of resistive pulse sensing uses the qNano system 

and implements to determine the concentration and size of EVs based 
on the Coulter principle [63]. Resistive pulse sensing (RPS) is used a 
membrane with pores of size with a diameter less than 100 nm [64]. 
Thus, resistive pulse sensing may detect small-size EVs. It appears to 
be promising, because of widely used techniques are very sensitive to 
concentration and sizes of detecting particles. In this context, RPS could 
be allowed to measure EVs below detection limits that are suitable for 
fluorescent methods. However, the sensitivity and specificity of RPS 
in detection of EVs in samples receive from humans require more 
investigation and comparison to other methods.
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Western Blot Analysis
The conventionally methods regarding preparation and isolation of 

EVs based on higher-speed centrifugation associate with contamination 
of the samples with lipoproteins, cell debris and protein complexes 
[65]. Western blot analysis is well-developed methods of the study of 
target molecule characteristics that allows to optionally recognizing 
MPs depending on determination of different markers, represents a 
useful tool for examining particles. Methodologically, Western blot 
analysis consists of five steps including electrophoretic separation of 
the proteins; transfer to a nitrocellulose or polyvinylidene difluoride 
membrane; labeling using a primary antibody specific to the protein 
of interest; incubation with a secondary antibody directed against the 
primary antibody; and visualization. However, Western blot analysis 
requires subsequent technical efforts, needs to complementary methods, 
i.e., NTA, electron microscopy that optionally appears to be much 
expensive technology. Indeed, nuclei and cell debris should be removed 
by centrifugation prior Western blot analysis to avoid to false positive 
results. The leading advantages of the methods are determination of the 
presence or absence of the proteins of interest, and also detection of 
the level of expression of a selected protein. To directly measure the 
expression of the proteins in the sample the quantitative fluorescent 
western blotting analysis might use. The method is also validated for 
measurement of component of EVs, such as miRNAs, tissue factors, 
and several membrane antigens. However, Western blot analysis could 
be a part of consequently performing combined EVs’ analysis based on 
fluorescent technique (flow cytometry, NTA) and electron microscopy.

Electron Microscopy
There are at least two types of electron microscopes named 

transmission electron microscopy and scanning electron microscopy. 
Transmission electron microscopy is the most commonly used in the 
real diagnostic practice and has the higher resolution when compared 
to scanning electron microscopy. Both electron microscope techniques 
require preparing biomaterials via fixation and dehydration that may 
reduce EV size and size related features of EV morphology. However, 
the electron microscopy applies to visualize EVs in size ranged from 20 
nm to 100 nm. Therefore, complimentary to microscopy immuno-gold 
labeling attenuates to receive biochemical information regarding EVs’ 
surface [66].

There is cryo-electron microscopy that is applied at temperatures 
below −100°C to analyze form and structure of EVs [67]. This method 
does not require staining and fixing of sample prior to the analyzation. 
Currently digital technologies allow to create the 2D and 3D- models 
that might improve recognizing of the EV structure. However, the 
useful of 2D and 3D- cryo-electron microscopy in EV identification is 
required more investigations.

Field emission scanning electron microscopy (FESEM) analysis 
revealed marked disintegration and vesiculation of the plasma 
membrane, i.e. pseudopodia formation and cytoskeleton modification. 
These changes indicate loss of plasma membrane integrity rather than 
activation. The main advantages of the FESEM are ability to identify 
the presence of EVs without previously fixation and dehydration 
that preserve the structure of the particles and minimize the risk 
to hyperdignose the changes of inner structure of the EVs [68]. In 
contrast, the high concentration of EVs in the probe is essential to 
obtain the size distribution [68]. Thus, electron microscopy is a useful 
research tool for studying EVs, but at the expense of capital running 
costs, extensive sample preparation, slow throughput time and sample 
integrity following sample preparation.

Nano Particles Surface Plasmon Resonance Based 
Imaging Microscopy

Nano-particles- surface plasmon resonance - based imaging 
microscopy (SPRi microscopy) has currently found an alternate free-
labeled optical method for quantified measured of sizes and size-
related characteristics of sub-micron and nano-particles [69-73]. The 
essential principle of the SPRi microscopy is based on recently known 
phenomenon so called “surface plasmon resonance”, which is defined 
as interaction of polarized light with thin film of metal [69-73]. The 
essential advantages of SPR are free label real time detection, higher 
sensitivity and reproducibility, simple method of detection even small-
sized particles and low cost [73,74]. There are some attempts to combine 
SPR with high-sensitive fluorescent microscopy to merge sensitivity and 
selectivity of final detection of EVs [72-75]. However, the routine use of 
SPR technology in small-sized EV biosensing requires standardization 
and more investigations in field of quality of measurements.

Highly Sensitive Fluorescent Microscopy
A highly sensitive fluorescent (HSF) microscopy is based on 

objective-type internal reflection regarding wavelength-modulation 
and it may sufficiently improve nano-particle scattering. Unless SPRi 
microscopy and other fluorescent techniques, light dose is a limiting 
factor for the method that is considered a serious limitation for data 
interpretation [76,77]. At the same time, fluorescence performance of 
HSF may allow to visualize wide spectrum of sub-micro and nano-
particles with higher accuracy and measurement limit of 40 nm. In 
this setting, highly sensitive fluorescent approach to capture and detect 
smaller EVs appears to be promised.

Novel Methods of EV Detection and Measurement
Not all currently available analytic methods of EV detection exhibit 

commercial affordability in routine laboratory practice due to its 
sophisticated methodology and respectively higher cost. In this context, 
there are several techniques, i.e., surface-assisted laser desorption/
ionization mass spectrometry, Raman micro-spectroscopy, micro 
nuclear magnetic resonance technique, small-angle X-ray scattering, 
that could be considered a promising methods to evaluate widely ranged 
size particles irrespective their concentration in the samples [78].

Surface-assisted laser desorption/ionization mass 
spectrometry

Surface-assisted laser desorption/ionization mass spectrometry 
(SALDI-MS) is a high throughput analytical technique capable of 
detecting low molecular weight analysis, including EVs [79]. The 
essential principle of EV detection in SALDI-MS is similar mass 
spectrometry. However, unless traditionally mass spectrometry, in the 
SALDI-MS the organic matrix is used to prevent the interference with 
matrix molecules after laser pulses and thereby the combination of soft 
and hard ionized substrate compounds creates a large surface area for 
nano-particle detection with limit of 10-30 nm. Importantly, there is no 
necessary to isolate EVs from fluids to further use SALDI-MS technique. 
Moreover, size and size-related features of EVs might investigate also. 
Currently available direct measurement of nano-particles on real time 
by SALDI-MS appears to be promised for determination EVs.

Raman micro-spectroscopy

Raman micro-spectroscopy is a spectroscopic method, based 
on inelastic scattering of monochromatic light using directly labeled 
fluorescent probes or of indirect labeling with mono- and polyclonal 
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antibodies [80,81]. The principle of the method based on interaction of 
photons with molecular vibrations that leads to shift of their energy. This 
signal strength presents important information about the vibrational 
transitions proportional to composition of the target molecules [81]. 
The main advantage of vibrational laser-based Raman spectroscopy 
in comparison to conventional biological assays is an ability rapid and 
non-invasive biochemical analysis of EVs beyond fixation or labeling 
[82]. Importantly, Raman micro-spectroscopy might complement NTA, 
transmission and scanning electron microscopies, DLS to improve data 
regarding size and morphology of EVs.

Micro-nuclear magnetic resonance technique

Highly sensitive detection of MP antigens by micro-nuclear 
magnetic resonance are currently introduced onto a microfluidic 
chip and labeled with target-specific magnetic nanoparticles [83]. 
Compared with current methods, this integrated system has a much 
higher detection sensitivity and can differentiate MPs derived from 
tumor cells from non-tumor host cell-derived MPs [84].

Small-angle X-ray scattering

Small-angle X-ray scattering (SAXS) is a promising method that 
has implemented for determination of solid particles in suspension 
through traceable size detection [65]. The size (1–200 nm size range) 
and size-related features of EVs are capable to recognize by SAXS and are 
presented as traceable size distributions from the on-line measurements 
[85]. The method is based on the elastic scattering of X-ray photons 
on the electrons of the sample at low angles. As other methods based 
on analyzing of traceable size distributions, the highly concentrated 
EV fractions are needed to perform the measurement carefully. In this 
concerning, the monodispersity of the sample is essential to receive 
higher reliable results of the EV measurement. The heterogeneous 
sample meets several obstacles for interpretation of the scattering 
curve. In this context, the centrifugation as a method of preparing and 
isolation of EVs is not complementary to SAXS technique. The next 
main disadvantage of SAXS is the presence of plasma proteins in the 
sample analyzed that may not associate with the EVs.

Future Perspectives
Although several commercial platforms offer various possibilities to 

perform multiple label-free detection of EVs with aim to minimize the 
expenditures per single sample analysis [86], the analytical limitations 
that are suitable for conventional assay used in these combined 
techniques remain to be challenged. In the future, the novel methods 
regarding improvement of isolation, purification and detection of EVs 
are required to sufficiently low the cost of the analysis and increase the 
affordability of the technologies for routine laboratory practice. 

Conclusion 
A standardization of the methods of EVs’ determination, isolation 

and characterization are extremely required, because are yet largely 
lacking. Conventional flow cytometry is the most prevalent technique, 
whereas NTA, DLS, and resistive pulse sensing have also been used 
to detect EVs. The accurate measurement of EVs is challenged by 
size heterogeneity, low refractive index, and the lack of dynamic 
measurement range for most of the available technologies. Consequently, 
combined methods, i.e., flow cytometry combining with NTA, Western 
blot analysis, and electron microscopy, remain to be optionally used 
methods regarding EV detection, whereas conveying to measure small-
size EVs on real-time require principally novel techniques based on 
advanced technologies, i.e., SPR or SAXS.
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