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Introduction
AD is the leading cause for dementia in the world, and affects an 

estimated 5.4 million Americans currently. This figure includes 5.2 
million individuals aged ≥ 65 years and ~200,000 individuals under 
the age of 65 [1]. AD is characterized by an imbalance between the 
production and clearance of amyloid β (Aβ) and tau proteins, which 
ultimately leads to the abnormal accumulation of these proteins in the 
form of senile plaques and neurofibrillary tangles, where aggregated 
forms of Aβ and tau deposit, respectively [2]. Soluble oligomeric forms 
of Aβ and tau are felt to be the most toxic species linked to the neuronal 
dysfunction/death in AD [3]. There are two forms of AD, the early-
onset (EOAD) form, which is related to mutations in presenilin 1, 
presenilin 2 (PS1 and PS2) or the amyloid precursor protein (APP), 
when associated with autosomal dominant inheritance [4-6]. EOAD 
affects a minority of AD patients. Epidemiological data suggests that 
apparent autosomal dominant transmission is found in only ~10% of all 
EOAD cases, leaving the genetic association of the majority of EOAD 
unexplained [4,7]. The other form is the sporadic late-onset form 
(LOAD), which afflicts >95% of patients with AD [4-6,8,9]. Some of the 
known environmental risk factors for LOAD include diabetes mellitus, 
level of physical activity, educational status, hypertension and head 
injury [10]. The strongest identified genetic risk factor for LOAD is the 
inheritance of the apolipoprotein (apo) E4 allele [11]. Recently, rare 
variants of the gene encoding triggering receptor expressed on myeloid 
cells 2 (TREM2; located on 6p21.1) have been reported as a significant 
risk factor for LOAD, with an odds ratio similar to apoE4 [12]. In 
this review we will review the general functions and characteristics of 
TREM2 and related genes, mainly focusing on their association as a risk 
factor for AD, as well as other central nervous system (CNS) diseases. 

TREM2 Overview
TREM2 is an innate immune receptor expressed on the cell surface 

of microglia, macrophages, osteoclasts and immature dendritic cells 
[12-14]. TREM2 has also been found on bronchial epithelial cells, 
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fibroblasts, and lung adenocarcinoma cells. The TREM2 gene encodes 
5 exons that code for a 693 pb DNA, located on chromosome 6p21.1, 
which is translated into 230 amino-acids [15-17]. The receptor is a 
variably glycosylated, single-pass type I membrane glycoprotein made 
up of an extracellular immunoglobulin-like domain, a transmembrane 
domain and a cytoplasmic tail, which associates with tyrosine 
kinase-binding protein (TYROBP, also known as DAP12), forming 
a receptor-signaling complex[18,19] (Figure 1). TREM2 is one of the 
highest expressed cell surface receptors on microglia and is >300 fold 
enriched in microglia versus astrocytes [20]. Microglia plays a key role 
in the immune response in the central nervous system (CNS) and is 
the resident innate immune cells responsible for the early control of 
infections. In the human brain, TREM2 is found at high concentrations 
in white matter, the hippocampus and the neocortex, but at very low 
concentrations in the cerebellum. These regions are consistent with 
the distribution of pathology in AD [14,18,21]. TREM2 was initially 
identified as a phagocytic receptor of bacteria [22]. TREM2 recognizes 
anionic lipopolysaccharide (LPS) in the cell wall of bacteria. When the 
bacteria bind to TREM2 on macrophages, activation of the signaling 
pathway triggers the phagocytic uptake of the bacteria and the release 
of reactive oxygen species [23]. Heat shock protein 60 (Hsp60) is a 
mitochondrial chaperone that has also been shown to be a TREM2 
agonist when expressed on the surface of neuroblastoma cells or 
astrocytes [24]. The formation of amyloid plaques in an AD model 
has been shown to induce expression of TREM2, in particular among 
microglia in the outer zone of plaques, correlating with partial amyloid 
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phagocytosis [25]. TREM2 expression also correlated positively with 
microglia being able to stimulate CD4+ T-cell proliferation, tumor 
necrosis factor, but not interferon γ; hence, potentially promoting 
neuroprotective “wound repair responses” [25]. TREM2 has also been 
shown to be involved in phagocytosis of apoptotic neurons, since 
down regulation of TREM2 or DAP12 in microglia reduces such 
phagocytosis, while over expression of TREM2 has the opposite effect 
[26]. Other pattern recognition receptors which have been shown to 
play an important part in macrophage/microglial function and have a 
role in AD related pathology are the Toll-like receptors (TLRs) [12,27-
29]. TLRs interact with the TREM2/DAP12 on multiple levels; these 
interactions appear to be tissue and receptor specific [30,31]. 

In addition to its role as part of the innate immune systems 
response to pathogens, TREM2 is known to have anti-inflammatory 
properties; it suppresses inflammatory responses by repression of 
cytokine production and secretion [32]. TREM2 reduces macrophage 
activation and inhibits cytokine production in response to both TLR2 
and TLR4 ligands zymosan and LPS [33,34]. Conversely reduction of 
TREM2 expression by either RNA interference or by targeted gene 
deletion amplified inflammatory cytokine responses by macrophages 
following stimulation of multiple different TLRs including TLR2, 4 
and 9 [35]. Modulation of innate immunity via TLR2,4 and 9 signaling 
pathways has previously been shown to be critical in modulating Aβ 
deposition. TLR4 deficient mice displayed increases of diffuse Aβ and 
fibrillar Aβ deposits compared with control mice [36], suggesting that 
TLR4 signaling is involved in Aβ clearance [37]. Microglia deficient 
in TLR2, TLR4, or the co-receptor CD14 are not activated by Aβ 
and do not show a phagocytic response [38]. Transgenic AD mice 
lacking TLR4 have markedly elevated levels of diffuse and fibrillar 
Aβ. Furthermore, stimulation of microglial cells with TLR2-, TLR4-, 
or TLR9- specific agonists accelerates Aβ clearance both in vitro and 
in vivo [39]. We have shown that the administration of the TLR9 
agonist CpG oligonucleotides (ODN) containing unmethylated CpG 
sequences to AD model Tg2576 mice induced a reduction of cortical 
and vascular Aβ levels without apparent toxicity and improve cognitive 
function [40]. In addition, TLRs can affect tau related pathology; 

TLR4 ligand (LPS)-induced MAPT hyperphosphorylation and 
exacerbation of tau pathology has been well documented [41-44]. 
Hence it can be speculated that TREM2 has a protective role in AD 
pathogenesis. Its anti-inflammatory properties could reduce innocent 
bystander neuronal damage, as well as, having a role in modulating 
TLR related signaling pathways that affect both Aβ and tau deposition 
[12,16,17,23,25]. TREM2 is also known to effect phagocytosis of 
damaged cells. TREM2 interacts with endogenous ligands on neurons, 
leading to the direct removal of damaged cells [45]. In several models of 
multiple sclerosis increased microglial expression of TREM2 has been 
shown to enhance phagocytosis and promotes a M2-like activation state 
of microglia, which is thought to have protective effects [46-48]. The 
removal of damaged or apoptotic neurons mediated via TREM2 could 
promote tissue repair in response to AD related pathology. This TREM2 
mediated phagocytic activity also has been linked to an enhanced 
ability of microglia to clear Aβ and amyloid plaques in vitro and in AD 
model APP23 Tg mice [25]. The importance of TREM2 is not confined 
to the innate immune response to Aβ pathology. A recent large GWAS 
study has shown that the TREM2 R47H variant has a strong association 
with both elevated CSF tau and hyperphosphorylated tau protein (ptau) 
levels [49]. This is important as numerous studies have shown that 
increases of ptau in CSF correlates with neuronal loss and is predictive 
of cognitive decline in AD [50-52]. Furthermore, neurofibrillary tangle 
deposition correlates better with the degree of dementia, compared 
to the amyloid plaque burden [2]. Microglia are well known to have 
the potential to acquire a broad array of cytotoxic and cytoprotective 
functional states [41,48,53]. TREM2 appears to be an important factor 
regulating this balance in response to AD associated pathology. 

TREM2 and the Risk for AD
Jonsson et al. performed whole genome sequencing on 2261 

Icelandic individuals and found that a rare mutation (rs75932628-T, 
frequency of 0.63%), predicted to result in a TREM2 R47H substitution, 
was associated with an increased risk of AD (odds ratio 2.92). 
Subsequently this association was replicated in cohorts from the USA, 
Germany, the Netherlands and Norway [18]. Concurrently, Guerreiro 
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Figure 1: Normal and disease associated pathways of TREM2 activation. 
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et al. confirmed the link between LOAD and the R47H variant by 
meta-analysis of three imputed data sets of genome-wide association 
studies (EADI, GERAD and ANM) [19]. They also found six additional 
variants (Q33X, Y38C, T66M, D87D, R98W and H157Y) that were 
present in affected cases and not in controls, which could be related 
to AD pathology. Three of these variants (Q33X, Y38C and T66M) 
had been previously reported in the homozygous state to be associated 
with a frontotemporal dementia like syndrome [54]. A replication 
study conducted in a Spanish population confirmed the variant to be 
associated with a higher risk for LOAD, as well as, EOAD, with R47H 
found exclusively in 1.4% of AD cases. 

T66M, Y38C, and Q33X homozygous variants have also previously 
been observed in Nasu-Hakola Disease (NHD) and are strongly 
suspected to result in TREM2 loss-of- function [19]. 

The R47H variant has a minor allele frequency (MAF) of 0.63% 
in Icelanders, 0.26% in European Americans, and 0.2% in African 
Americans[18]. Another research group in France confirmed the 
association between AD with the TREM2 R47H substitution variant 
(rs75932628-T), located within the extracellular immunoglobulin-like 
domain-mutation [55]. This study’s sample included 726 EOAD and 783 
controls. The effect size was similar to the reports discussed above for 
TREM2 in LOAD, suggesting that the role of TREM2 on AD pathology 
is not critically dependent on aging. Molecular dynamics simulations 
have suggested that the R27H substitution could have significant effects 
on ligand binding affinity, as well as the structural configuration of 
TREM2 [56]. Assuming that the TREM2 risk variant impairs TREM2 
function, it is strongly believed that it does so by decreasing affinity of 
TREM2 to its natural ligands. This will in turn decrease its downstream 
effect. This suggests that reduced function of TREM-2 causes reduced 
phagocytic clearance of amyloid proteins or cellular debris. This then 
impairs the protective mechanism in the brain, ultimately leading to the 
abnormal accumulation of tau and beta-amyloid, the hallmark of AD. 

A recent study has also shown that TREM2 undergoes sequential 
proteolytic processing by ectodomain shedding and intramembrane 
proteolysis [57]. The latter cleavage is by γ-secretase, which is the 
enzyme that also cleaves the amyloid precursor protein to release Aβ 
[58]. Inhibition of γ-secretase produces an accumulation of TREM2 
carboxyl terminal fragments at the cell surface, trapping its adaptor 
DAP12, and resulting in impairment of TREM2 signaling [57]. The 
γ-secretase complex contains either PS1 or PS2 as the catalytically 
active component, with mutations in PS1/2 being the most common 
cause of EOAD [6, 59]. These findings provide another link between 
TREM2 and pathways involved in AD pathology. 

The TREM Family and a Missense Variant Protective 
against Alzheimer’s Disease

TREM2 belongs to a family of structural related genes clustered on 
human chromosome 6p21.1 and mouse chromosome 17C. These include 
TREM1, TREM2, and TREM3, as well as ‘TREM-like” genes: TREML1 
and TREML2 [60-62]. The first to be discovered was TREM1 which has 
been established as an amplifier of systemic inflammatory responses 
[15,62]. This contrasts with the role of TREM2 which has emerged 
as a negative regulator of autoimmunity [61,62]. An AD association 
GWAS had identified an inter-genic SNP [rs9381040] located 5.5 Kb 
downstream from TREML2 and 24 Kb upstream from TREM2 [63]. 
A recent exome-sequencing study of 16,254 cases and 20,052 controls 
suggest a TREML2 coding missense variant p.S144G as the driver of 
the latter GWAS signal, which is independent of the TREM2 R47H loci 
[64]. This variant is associated with a reduced risk for AD [OR=0.91; 

CI=0.86-0.97] [64]. TREM2 and TREML2 appear to have opposing 
roles in their modulation of innate immunity. Treatment of microglia 
with IL-1β represses expression of TREM2, while increasing expressing 
of TREML2 [64]. Unlike TREM2, TREML2 signal is not coupled to 
DAP12 and it appears to play a pro-inflammatory role [61,64]. Hence 
different missense variants in the TREM family can either enhance AD 
pathology or inhibit it; highlighting the importance of innate immunity 
modulation in the pathogenesis of AD. 

TREM 2 and Other CNS Diseases
Nasu-Hakola Disease: Polycystic lipomembranous 
osteodysplasia with sclerosing leukoencephalopathy 

Homozygous TREM-2 mutations that cause a near-complete 
functional loss of the TREM-2 gene (e.g. p.Q33X) or TYROBP/DAP12 
have been known to be linked to an autosomal recessive disorder 
called polycystic lipomembranous osteodysplasia with sclerosing 
leukoencephalopathy (PLOSL), also known as Nasu-Hakola Disease 
[65-67]. Over 200 cases have been reported worldwide in the literature, 
the majority of them being in the Japanese and Finnish population. The 
prevalence in Finland is estimated between 1/500,000 and 1/1,000,000.
This fatal disease is characterized by manifestations affecting both 
bones and brain suggesting that the function of TREM-2 is similar 
in both systems. Patients with (PLOSL) have progressive presenile 
inflammatory neurodegeneration that leads to dementia and formation 
of multifocal bone cysts predisposing to pathological fracture. In 
addition, these patients often have psychiatric symptoms in the second 
decade of life, followed by severe frontotemporal dementia with 
premature death in the fourth or fifth decade of life. PLOSL patients 
have not been reported to have AD amyloid plaques, indicating that 
dysfunctional neuroinflammation can be an amyloid independent 
pathway leading to dementia [23]. Patients with heterozygous loss-
of-function mutations carry a higher risk for age associated cognitive 
loss and/or LOAD [19,54,66,68]. Three TREM2 variants previously 
linked in the homozygous state to either PLOSL or FTD (e.g. p.T66M, 
p.Y38C, and p.Q33X) have been shown to be associated with LOAD. 
Conversely, the R47H mutation has also been reported in patients 
with PLOSL suggesting similar neuro-inflammatory mechanisms may 
mediate neuronal dysfunction/death in AD and PLOSL, in association 
with amyloid deposition or in its absence, respectively [19].

Hereditary Diffuse Leukoencephalopathy with 
Spheroids 

The colony-stimulating factor 1 receptor (CSF1R) is located 
on microglia. It binds CSF1 and like TREM2 co-signals through 
DAP12. Patients with a partial loss-of-function of this gene 
develop a neurodegenerative disease called hereditary diffuse 
leukoencephalopathy with spheroids (HDLS) [69]. This autosomal 
dominant disease is characterized by the degeneration of white 
matter predominantly in the frontal lobes and corpus callosum, with 
subsequent cortical atrophy [70,71]. The clinical manifestations 
are variable and can include behavioral changes, dementia, 
depression, parkinsonism, ataxia, pyramidal signs, and seizures 
[70,71]. Neuropathologically there is widespread myelin and axonal 
destruction, in association with axonal swellings called spheroids, as 
well as characteristic pigmented macrophages [70,71]. The swelling in 
the axons resemble, to some extent, those produced by shear stress in 
closed head injuries with damaged axons. A number of different loss of 
function mutations in CSF1R have been reported, with in vitro studies 
suggesting that patients with ≤50% of the normal protein will manifest 
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the disease [72]. It has been speculated that impaired CSF1R mediated 
microglial repair of axonal degeneration is the mechanism underlying 
HDLS [71,72]. Hence dysfunction of the innate immune complex 
consisting of TREM2, CSF1R and the signaling molecule DAP12 in 
microglia can lead to chronic neurodegeneration, with variable clinical 
and pathological phenotypes. 

Parkinson’s disease, Frontotemporal Dementia and 
Amyotrophic Lateral Sclerosis

Parkinson’s disease (PD), frontotemporal dementia (FTD) and 
amyotrophic lateral sclerosis (ALS), similar to AD, all belong to 
the category of conformational neurodegenerative disorders where 
normal self-proteins aggregate forming toxic β-sheet rich intracellular 
inclusions or extracellular amyloid deposits [3,74]. The most toxic 
species of the different aggregates are felt to be oligomers, which in 
some cases can spread using a prion like mechanism [3, 75]. In PD 
α-synuclein aggregates forming oligomers and Lewy bodies, while in 
different forms of FTD tau, TAR-DNA-binding protein-43 (TDP-43) 
or fused in sarcoma (FUS) can aggregate[73,76]. In different forms of 
ALS, SOD1, TDP-43 or FUS form toxic aggregates [77]. Microgliosis 
is a critical part of each of these disorders and the activation state of 
microglia can result in either pathology enhancement or amelioration 
[53]. TREM2 variants have recently been associated with each of 
these disorders. In PD the R47H TREM2 variant was first found to be 
associated when patient populations were screened in the USA and 
Spain [78]. A subsequent study has confirmed the association of the 
R47H variant to PD with an odd ratio of 2.67 [79]. TREM2 variants 
are also associated with a FTD phenotype. Besides the association of 
TREM2 variants with PLOSL, a homozygous deletion of the consensus 
donor splice site in intron 1 of TREM2 was reported in a Lebanese 
family with typical behavioral FTD with no bone involvement [80]. A 
typical autosomal recessive FTD phenotype has also been associated 
with a p.Y198X TREM2 mutation in a Columbian family [81]. 
Additional studies have reported an association with a FTD phenotype 
and the R47H TREM2 variant, with the frequency of the variant being 
~ three fold over represented among FTD patients, with an odds ratio 
of 5.06 [79,82]. A recent study has also shown a link between the R47H 
TREM2 variant and ALS [83]. 

Conclusions
Studies conducted over 20 years ago had suggested the potential 

critical role of microglia for both the formation and clearance of amyloid 
lesions in AD(84-86). Interest in the importance of innate immunity 
modulating neurodegeneration has been greatly increased by recent 
GWAS studies that have linked genes such as CR1, CD33 and MS4A4A/
MS4A6A that are associated with microglial function to AD [87,88]. 
Numerous studies on the relationship of TLRs to AD have shown that 
modification of these signaling pathways can have profound effects 
on AD related pathology, through modification of the inflammatory 
state of microglia/macrophages. Our own studies have shown that 
appropriate stimulation of innate immunity via TLR9 can ameliorate 
both Aβ and tau related pathology [12,40,89]. Recent studies, outlined 
above, have linked TREM2 variants to most of the different types of 
conformational neurodegenerative disorders. These studies indicate 
that modification of microglial function in neurodegeneration is a 
critical therapeutic target.
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