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The first and most firmly established genetic risk factor for 
sporadic late onset Alzheimer’s disease (LOAD) is the e4 allele of 
the apolipoprotein E (APOE) gene [1]. Carrying the APOEe4 variant 
significantly increases the lifetime risk for LOAD, with the number 
of copies present indicative of level of risk [1,2] and is associated with 
lower age of clinical disease onset [1,3-6]. Furthermore, genome-
wide association studies (GWAS) for sporadic LOAD confirmed 
that APOE is the major susceptibility genomic region for the disease 
and reported significant associations with markers within the APOE 
linkage disequilibrium (LD) locus (contains APOE, TOMM40 and 
APOC1 genes). The strongest association signal (by wide margin) in 
these studies was found at the APOE LD region and no other LOAD-
association in the human genome remotely approached the same level 
of significance [7-10]. However, the molecular mechanism underlying 
the reported genetic LOAD-associations with APOE LD region in 
general and APOEe4 haplotype in particular has yet to be discovered.

It has been suggested that alteration of the expression levels of 
specific genes may be an important mechanism in the etiology of 
neurodegenerative disorders including LOAD [11]. Previously, using 
temporal and occipital tissues obtained from APOEe3/3 donors we 
showed that APOE-mRNA levels are significantly increased in LOAD-
affected brains compared to controls [12]. In preliminary studies, we 
performed expression analysis in cortical neurons from the temporal 
cortex of 3 LOAD patients and 3 normal controls isolated by laser 
capture microdissection (LCM) technique. We analyzed the APOE-
mRNA counts relative to geometric mean of two housekeeping genes 
using the nCounter single cell gene expression technology and the 
nSolver program (NanoString). The results showed increased APOE-
mRNA in LOAD compared to normal (our unpublished data) and 
validated our published findings obtained using homogenates of brain 
tissue for the expression analysis [12]. Our observation was consistent 
with other reports of elevated levels of APOE-mRNA in LOAD brains. 
For example, Zarow et al. report increased APOE-mRNA levels in 
the hippocampus of AD cases compared to controls [13] and Matsui 
et al. report increased APOE-mRNA levels in temporal cortex of AD 
donors compared to controls [14]. Furthermore, Akram et al. have 
demonstrated that APOE-mRNA and protein levels in the inferior 
temporal gyrus and the hippocampus are strongly, positively correlated 
with the progression of cognitive dysfunction [15].

A recent study showed that endoplasmic reticulum (ER)-
mitochondrial communication and mitochondria associated ER 
membranes (MAM) function-as measured by the synthesis of 
phospholipids and of cholesteryl esters, respectively-are increased 
significantly in cells treated with APOEe4-containing astrocyte-
conditioned media (ACM) as compared to those treated with APOEe3-
containing ACM [16]. Upregulated MAM function was implicated in 
the pathogenesis of AD [17,18]. The new findings that APOEe4 protein 
upregulates the activity of MAM may explain, in part, the contribution 
of APOEe4 as a risk factor in the disease. Enhanced activity of APOEe4 
protein in correlation to AD-related cellular phenotypes has also been 
described previously. In human AD brain samples, amyloid deposits 
correlate with gene dosage of APOEe4 [19], and APOEe4 protein 
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more actively forms fibrils with Aβ protein than APOEe3 in vitro [20]; 
moreover, APOEe4 aggregates are themselves neurotoxic [21]. APOEe4 
is susceptible to cleavage of the C-terminus by cellular proteases, 
and the C-terminal fragments are cytotoxic, in part by eliciting 
intracellular neurofibrillary tangle formation and in part via disruption 
of mitochondrial and cytoskeletal functions [22-24]. APOEe4 and 
APOEe3 have different lipid-binding characteristics [25], contributing 
to greater Aβ-elicited lysosomal leakage and apoptosis in APOEe4-
producing cells [26], and affecting the respective abilities of APOEe3 
and APOEe4 to support neuronal maintenance and repair.

Interestingly, we showed that SNP rs429358, that defines the 
APOEe4 haplotype, has a significant effect on APOE-mRNAs levels 
in temporal cortex obtain from LOAD cases. We demonstrated that 
the level of APOE mRNA was significantly higher in the APOEe3/3 
genotype group compared to APOEe3/4-genotype (Figure 1). In 
unpublished work, we measured APOE- mRNA levels in whole brains 
from humanized –APOEe3 and –APOEe4 homozygous mouse models 
generated by targeted replacement [27,28]. We found that human APOE-
mRNA levels are>35% higher in brains of APOEe3 homozygous mice 
compared to mice homozygotes to APOEe4 (Figure 2). The analysis of 
humanized- APOE mice support the findings in LOAD-human brains, 
suggesting that while the effect of e4 variant is putatively on increased 
activity of the APOE protein, the effect of the e3 background is possibly 
executed via regulation of APOE gene expression that determines the 
steady state amount of the protein.

Different factors may regulate APOE gene expression including, 
but not limited to, genetic [12,29-31] and epigenetic [32] mechanisms. 
Cis-genetic variably on the background of the e3 haplotype contributes 
to differential APOE gene expression. We reported data showing that 
523- polyT genotype, located upstream of APOE within the adjutant
TOMM40 locus, affects expression of genes in APOE LD region [12]. We 
demonstrated that the LOAD risk allele, very long (‘VL’), is associated
with increased levels of APOE transcripts in normal and LOAD-
affected human brain tissues and with higher luciferase expression in a
cell-based reporter system, compared to the short (‘S’) allele [12]. These 
observations provide a possible explanation for the genetic association
of the 523-polyT locus with age of LOAD onset [33,34] and other
disease related phenotypes [35-38]. Our observations were recently
reproduced by Payton, et al. They showed that the shorter length poly-T 
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variants act as a repressor of luciferase gene expression in reporter gene 
constructs, whereas expression was reduced to approximately half of 
that observed for the ‘VL’ variant [39].

Collectively the studies reviewed here suggest that up-regulated 
function of APOE due to either enhanced protein activity or increased 
APOE expression levels may contribute, in part, to the etiology of LOAD. 
Figure 3 summarizes our proposed model. While this model suggests the 
triggering event, the biochemical and cell biological pathways that mediate 
the consequences of this event are still being determined. Our perception 
of increased APOEe3 protein levels as a LOAD-pathogenic mechanism 
agrees with the concept that changes in expression levels of ‘normal’ protein 
in the brain can lead to neurodegenerative diseases. In conclusion, genetic 
heterogeneity across the APOE-LD region may lead, through different 
molecular mechanisms, to elevated (‘pathogenic’) ApoE function and 
possibly explains the extremely strong genetic association of the APOE-LD 
region with increased LOAD-risk and related phenotypes.
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Figure 1: The effect of APOE haplotypes on APOE-mRNAs expression 
levels in human brain tissues from LOAD donors. The study cohort 
consisted of brain (temporal and occipital cortex) tissues from Caucasian 
donors with LOAD. Subjects were genotyped for rs429358 and rs7412 SNPs 
to determine APOE status. Fold levels of human APOE mRNA were assayed 
in (A) temporal and (B) occipital tissues by real-time RT-PCR using TaqMan 
technology and calculated relative the geometric mean of GAPDH- and PPIA- 
mRNAs reference control using the 2-ΔΔCt method. The expression levels 
between e3/4 (rs429358-TC) and e3/3 (rs429358-TT) were compared. The 
values presented here are means levels ± SE adjusted for age, sex, PMI, and 
Braak and Braak stage.
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Figure 2: The effect of APOE haplotypes on human-APOE mRNAs 
expression levels in humanized mice brain tissues. RNA was extracted 
from whole brain of three mice homozygotes for the human APOEe3 and three 
mice APOEe4 homozygous generated by targeted replacement28. Fold levels 
of human APOE mRNA were assayed in whole brain tissues by real-time RT-
PCR using TaqMan technology and calculated relative the geometric mean of 
the mouse housekeeping genes, Gapdh- and Ppia- mRNAs reference control 
using the 2-ΔΔCt method. The expression levels between e4/4 and e3/3 were 
compared and the values presented here are means levels ± SE.
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Figure 3: A schematic model describing factors leading to upregulation of ApoE function and the impact on LOAD pathogenesis.
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