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Abstract: 

 
Background: The level of Mono Sodium Urate (MSU) in the human should be ideally kept below 6.o mg/dl. Above 

6.8-7.2 mg/dl, crystallization may occur in tissues; resulting in the inflammatory response understood as acute gout 

attack. Alfred Baring Garrod and Alexander Ure felt that these concretions in the synovial tissues and kidneys of 

chronic gout could be dissolved. Garrod’s 1859 text “The Nature and Treatment of Gout and Rheumatic Gout” 

should be considered one of the most complete texts discussing the topic from antiquity, through the mid-19th 

century. The application of lithium carbonate directly to gouty tophi was one treatment Garrod advocated. He felt that 

the MSU concretion could be dissolved if the more-soluble lithium urate moiety was formed. Garrod demonstrated 

the solvent effects of lithium by dissolving the gouty tophus in a metacarpal bone dropped into solution. Thomas 

Edison in 1890 presented “An Account of Some Experiments of Electrical Endosmose to the Treatment of Gouty 

Concretion”. It became evident the dilute solutions of the lithium salts are not solvents for uric acid or urates and 

results such as Garrod’s metacarpal experiment worked only when in concentrated solution. Edison’s own lab 

showed that there were better solvents for urates; and by 1893 lost interest in the use of lithium for dissolution of 

gouty concretions. The use of Lithium for the treatment of gout persists today only as a historical reference; due in 

part to the often-cited Abramowitsch text “Treatment by Ion Transfer (Iontophoresis)”. This study was undertaken in 

an attempt to validate the beneficial effects of topical lithium on gout; as seen by the author in his anecdotal off-label 

use of 2% lithium carbonate in 25 patients. 

 
Methods: A proof-of-concept study was personally-commissioned by the author. Topical application of a 2% 

lithium carbonate solution was tested in an MSU Acute Gout Model induced via injection into the ankles of rats. 

Clinical observation of swelling and pain index was determined. Cytokines and chemokines were measured in the 

synovial fluid. Histopathology was performed after necropsy on the banked ankles. 

 
Results: The observed pain index and swelling due to MSU-induced gout attack was slightly decreased by the 

topical application of 2% lithium carbonate/10% DMSO solution to male Sprague Dawley rat ankles. Cytokines IL-1b, 

IL-6, and TNF-a were increased. Unexpected reduction in the chemokine KC-GRO (murine IL-8) was seen. The 

histopathology showed anticipated findings in the MSU control; edema, synovial hyperplasia, and large rafts of 

inflammatory cells/WBCs within the synovium of the rat ankle. DMSO vehicle alone reduced appearance of 

inflammation. The addition of 2% Lithium Carbonate produced a more significant reduction in the thickening of the 

synoviocytes and the appearance of inflammatory cells within the synovial fluid was also more markedly reduced by 

the addition of Lithium. 

 
Conclusion: Topical application of 2% lithium carbonate compounded with 10% DMSO reduces the pain, swelling 

and inflammation of a MSU-induced gout attack in the ankle of male Sprague Dawley rats. The reduction of the 

chemokine KC-GRO suggests that analogous reduction of IL-8 in the human may explain the beneficial effects seen 

in the author’s anecdotal success using topical 2% lithium carbonate in 25 patients. 
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Introduction 

The micropathophysiology of the gouty attack in the human joint is 

well-known; and the specifics of this cascade of events are very well 

documented [1-9]. It is assumed that the reader is well-versed in the 

basics; and the author refers the reader to those excellent references. 

Certainly, as one studies both the historical research of gouty 

inflammatory arthropathy, and is involved in the treatment of 

patients.The role of colchicine becomes clear. One of the best articles, 

in my opinion was written by Dalbeth, et al. [9]. In this excellent 

review, “Mechanism of Action of Colchicine in the Treatment of 

Gout” the three pathways associated with the initiation and 

amplification of the acute MSU-induced gout attack are described in 

great detail (Figure 1). 
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Figure 1: Mechanism of Action of Colchicine in the Treatment of 

Gout. 

This important review can be cross-referenced and data-mined for 

review of many analogous actions of Lithium. This was the starting 

point of my search for the potential mechanisms and actions of 

colchicine that may be analogous to those of Lithium. Of course, we 

know that colchicine disrupts the microtubules of the pseudopodia that 

are critical for the migration of the WBCs and macrophages from the 

endothelium into the synovium [9]. In my early research into 

Lithium’s actions: I came across an article describing its ability to 

affect the motility of sperm flagellae [10]. Understanding that this 

locomotion was also directed by microtubular activity; I began to look 

closer at the similarities and differences between colchicine and 

lithium. The main action of colchicine is to bind tubulin, and prevent 

further assembly and subsequent locomotion [11]. Lithium affects 

locomotion differently, and prevents assembly of microtubules by 

inhibiting GSK-3b. Many of Lithium’s actions are due to its ability to 

replace magnesium in the enzyme pocket of glycogen synthetase 

kinase 3-b [12]. As a very reactive alkali metal, Li+ ion readily 

substitutes for the slightly larger Mg++ ion. Because of its ability to 

block GSK-3b and other kinases, Lithium affects many pathways [13]. 

Lithium is known to be neuroprotective and to increase survival of 

neural and glial cells [14-17]. The action and effects of Lithium far 

exceed those of colchicine. My observations are tabulated (Table 1). 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1: Observations comparing the actions of colchicine and 

lithium. 

The table shown above begins with the relative similarities between 

colchicine and lithium; and one clearly sees the numerous effects of 

lithium within the CNS and spine. 

 

Methods 

The myriad actions of lithium within the CNS may have 

implications for pain management in the future; and may be also have 

both scientific and clinical application to the neural cells and pain 

pathways within peripheral nervous system. It stands to reason, that 

topical application of lithium may produce a local response; with only 

a fraction of the applied dose reaching the serum. In 3 patients tested 

who were applying 2% Lithium Carbonate in witch hazel to the foot; 

no detectable concentration was seen in the 8-1.2m Eq/L lab range 

expected to be therapeutic. Taken together, I feel that the reduction of 

nerve pain and gouty inflammation seen in patients treated off-label; 

and reduction in pain, swelling, and KC-GRO (IL-8) seen in the MSU 

rat model, may be attributed to the 2% Lithium Carbonate applied 

topically and delivered to the desired target tissues as Li+ ion after 

passage through the epidermis, without any measurable uptake in 

serum. The study of Lithium Carbonate topical Pharmaco Kinetics 

(PK) was beyond the designated scope of this proof-of-concept study 

(Figures 2-7). 
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Figure 2: (Normal Joint) there are no inflammatory cells in joint 

(blue arrow) Normal synovial lining (green arrow). 
 

 

Figure 3: @20x note a single layer of synovial fibroblasts (green 

arrow) and collapsed vessel (blue arrow) which indicates lack of 

inflammation in the normal physiologic state of the Sprague Dawley 

Rat. 
 

 

Figure 4: (MSU Gout Attack) Notice the edema within the joint; 

and take note of the raft of inflammatory cells that have infiltrated and 

occupy the joint (green arrow) and hyperplasia of the synovium (blue 

arrow). 

 

 
Figure 5: @20X Neutrophils and fibrin are free within the joint 

cavity (blue arrow). The synoviocytes are proliferative (green arrows) 

and the capillary endothelium is hypertrophied (black arrows). 
 

 

Figure 6: (DMSO Treated) the synovium is focally thickened (blue 

arrow), but there is less acute inflammation within the joint cavity 

(green arrow). Presumptive Mono Sodium Urate (MSU) (black arrow) 

is present. 
 

Figue 7: (Lithium Formulation-Treated) The synovium is less 

thickened (green arrow) when compared to the Acute MSU attack, and 
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also is less thickened than the DMSO treated ankle. There is also less 

acute inflammation and WBCs within the left ankle joint cavity (blue 

arrow) when compared to DMSO treatment alone. 

 

Results and Discussion 

The IL-8 seen in the human is not expressed in the murine model. 

The murine homologue is called KC-GRO [18-20]. The cytokine 

CXCL1 that binds the human IL-8, and its receptor CXCL-2 are 

essential for the development of the acute gouty neutrophilic response 

to urate crystals in the murine gout subcutaneous air pouch model. In a 

resting state, neutrophils are rare in synovial fluid. The CXC 

chemokine IL-8 in one study accounted for more than 90% of the 

neutrophil chemotactic activity seen [21]. IL-8 is considered an 

important marker for gout. The IL-8 acts on CXCL1/CXCL2 to recruit 

neutrophils out of the endothelium [22]. This excellent article by 

Girbl, et al. illustrates the effects of chemokine signaling on neutrophil 

recruitment from the endothelium. The 3-d illustrations and animated 

real-time imaging is remarkable (Figure 8). 
 

Figure 8: 3-d illustrations and animated real-time imaging is 

remarkable. 

In the author’s current study of MSU-induced gout, several 

cytokines IL-1b, IL-6, KC/GRO, and TNF-a were seen in synovial 

fluid analysis. The elevation of these cytokines would be expected as a 

normal baseline inflammatory response to MSU injected into the rat 

ankle. However, the application of topical lithium carbonate caused an 

increase in the cytokines IL-1b, IL-6, and TNF-a in synovial fluid. The 

increase in these cytokines, although somewhat unexpected; may be 

seen as an indication that Lithium Ions actually affected the joint. 

Lithium is known to have both anti-inflammatory and neuroprotective 

effects [14-17, 23]. Lithium acts to modulate TNF and IL-1 induction 

early in the signaling pathway [24]. The inhibition of GSK3b by LiCl 

increases the TNF-a protein synthesis by greater than a 3-fold margin 

in neutrophils [25]. Lithium led to a consistent increase of IL-1b, IL-6 

and TNF-a in the serum of 30 subjects tested [26]. There is a large 

body of data which indicates that under certain experimental 

conditions lithium also exhibits pro-inflammatory properties e.g., 

induction of IL-4, IL-6 and other pro-inflammatory cytokines’ 

synthesis [27]. It may be reasonable to attribute the “priming” of the 

inflammatory response, and induction of cytokines IL-1b, IL-6, and 

TNF-a in the BRT model to the topical Lithium Carbonate applied. 

Attenuation of cytokine KC/GRO was seen in synovial fluid with 

application of a topical Lithium Carbonate as the test ingredient in the 

BRT rat MSU model. This was a surprising and also an unexpected 

finding in light of the increase in the other cytokines that were tested. 

An NIH-funded study in 1994 established the fact that KC is the 

murine homologue of human GRO-a; and the KC receptor is also an 

IL-8 receptor homologue capable of binding both KC and the 

macrophage inflammatory protein-2 with high affinity [18]. The 

interaction of KC/GRO (as it binds the IL-8 receptor) triggers 

neutrophil activity. IL-8 is abundant in the synovial fluid in both acute 

gout and pseudogout [28,29]. Rapid release of IL-8 and binding to 

CXCL2 stimulate the adhesion and diapedesis of neutrophils out of the 

endothelium into the synovium. The CXCL1/CXCL2 interaction is 

also known to regulate and activate the NLRP3 inflammasome in 

macrophages [30]. The neuronal inflammatory cytokines CXCL1/ 

CXCL2 are regulated by GSK3 signaling [31] (Table-2). Lithium is 

well-known to block GSK3; and its effect on synovial tissues by 

reducing KC/GRO may be used to treat and prevent gout/pseudogout 

via IL-8 (Figure 9). 
 

Animal Ankle 

Joint 

Group Treatm 

ent 

IL-1ß 

(pg/mL 

) 

IL-6 

(pg/mL 

) 

KC/GR 

O 

(pg/mL 

) 

TNF-a 

(pg/mL 

) 

6 Right 

Ankle 

1 Untreat 

ed 

51 48.5 10.9 4.55 

7 Right 

Ankle 

1 Untreat 

ed 

51 48.5 32.4 4.55 

8 Right 

Ankle 

1 Untreat 

ed 

51 48.5 10.9 4.55 

9 Right 

Ankle 

1 Untreat 

ed 

51 48.5 10.9 4.55 

10 Right 

Ankle 

1 Untreat 

ed 

51 48.5 10.9 4.55 

11 Right 

Ankle 

2 Untreat 

ed 

527 644 266 25.8 

12 Right 

Ankle 

2 Untreat 

ed 

838 2690 443 29.7 

13 Right 

Ankle 

2 Untreat 

ed 

466 674 101 9.61 

14 Right 

Ankle 

2 Untreat 

ed 

893 5242 128 19.2 

15 Right 

Ankle 

2 Untreat 

ed 

739 1502 72.8 23.3 

16 Right 

Ankle 

3 Untreat 

ed 

223 3370 61.1 4.22 

17 Right 

Ankle 

3 Untreat 

ed 

744 1330 111 9.99 

18 Right 

Ankle 

3 Untreat 

ed 

265 314 36.6 4.22 

19 Right 

Ankle 

3 Untreat 

ed 

431 2296 54.9 4.22 
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Figure 9: KC-GRO (murine IL-8) seen in MSU Gout Model IL-8 

in Synovium is unexpectedly reduced by topical lithium carbonate. 

 

Conclusion 

This study demonstrates for the first time, the ability of topically- 

applied 2% Lithium Carbonate to decrease pain, swelling and 

inflammation of MSU-induced gout in the ankles of male Sprague 

Dawley rats. 

This study also measured for the first time, the reduction of KC- 

GRO (murine IL-8) in the synovial fluid of gouty ankles of male 

Sprague Dawley rats induced by the topical application of 2% Lithium 

Carbonate. 

The histopathology of this study validates the ability of topical 2% 

Lithium Carbonate to favorably affect the MSU-induced gouty ankles 

of male Sprague Dawley rats. The topical application of 2% Lithium 

Carbonate reduced KC/GRO (IL-8) in the rat synovial fluid; but the 

histopathology confirmed that topically-applied Lithium reduced 

inflammation, synovial hyperplasia and cellular infiltration of WBC’s 

into the joint . This has implications far beyond gout, and also 

pseudogout in my opinion. It is my opinion, that our study validates 

the ability of topical Lithium Carbonate to reduce the amount of KC- 

GRO in the synovium; and may prove effective as blocking the critical 

amplification of the CXCL1/CXCL2 cascade seen in the crystalline 

inflammatory arthropathies of gout and pseudogout. The recent 

literature and our research, have demonstrated the importance of KC- 

GRO and CXCL1/CXCL2 in gout, pseudogout, OA, and RA. The 

indications for the use of Topical Lithium Carbonate might be 

extended to the inclusion of other forms of chronic neuroinflammatory 

pain, and the chronic pain associated with degenerative arthritis. This 

attenuation of inflammation may be achievable by blocking a complex 

cascade of events in the tissues around/within the synovium. 
 

 

 

 

 
Table 2: High Levels of IL-6, TNF-a, and IL-1b seen in MSU gout 

model amplified by topical lithium carbonate. 

Disclaimer 
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