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Introduction 
 Prenatal cytomegalovirus (CMV) infection, one of many maternal 

infectious diseases, is seen in 0.2 to 2.0% of all pregnancies [1]. 
CMV infection in approximately 10% of infants infected prenatally 
becomes severe, and 35% of infected infants present with neurologic 
sequelae, such as hearing loss and developmental disabilities after 
birth and are often refractory to treatment [2]. Moreover, even 10 to 
15% of the asymptomatic infants progressively experience hearing 
loss and developmental disorders [3-5]. Li shows that undifferentiated 
neurocytes in the ventricular zone (VZ) of the mouse brain are highly 
sensitive to CMV [6]. The undifferentiated neuroepithelium of the VZ 
ventricular wall includes neural stem cells, which mediate not only self-
replication, but also differentiation of neurons and glial cells [7,8]. It has 
been shown that when CMV infects undifferentiated neurons, along 
with reduced self-renewal capacity, it also inhibits the differentiation of 
glial cells into neurocytes [9]. Although the in vivo infection dynamics 
of CMV in humans can only be conjectured on the basis of autopsy 
results [10], the glial cells of the ventricular wall in the brains of people 
infected with congenital CMV are known to be susceptible to viral 
infection, and it is possible that brain developmental disabilities are 
caused by the resulting suppression of proliferation and differentiation. 
Accordingly, early treatment is necessary when fetal CMV infection is 
detected, and if possible, prenatal treatment is preferable.

 In recent years, administration of immunoglobulin injection into 
the fetal abdominal cavity (IFAC) has been reported as a prenatal 
treatment for congenital CMV [11-13]. If consistent treatment 
throughout the fetal and neonatal periods can be established by 
determining treatment result indicators, the introduction of treatment, 
suspension and eventual establishment of a prognosis may be possible.

 In this study, we used fetal umbilical cord venous blood infected 
with CMV to establish the extent of fetal invasion and prognostic 
indicators in CMV infection.

Materials and Methods 
 From January 2006 to December 2010 at the National Defense 

Abstract

Objective: We set out to establish a prognostic indicator for Cytomegalovirus (CMV) infection and determine the 
extent of CMV invasion.

Design: For five cases of fetal CMV infection treated at our facility, we measured the levels of NSE, S-100β, and 
GFAP, and we conducted a comprehensive analysis of cytokines to compare with the clinical course.

Results: NSE for cases 1 and 4 increased significantly from 10 to 78 ng/ml, and from 15.0 to 30.0 ng/ml, 
respectively. On the other hand, NSE in Case 3 showed a major decrease from 220.0 to 9.6 ng/ml, while that of Case 2 
remained in the normal range and that of Case 5 fluctuated slightly from 13 to 15 ng/ml. In all cases, almost no changes 
in S-100β and GFAP were observed during the course of treatment. Conversely, our comprehensive analysis detected 
no expression of cytokines, such as TNF-α and IL-2. But IP-10, a monocytic chemotactic factor, revealed a tendency 
for high levels; 766.2 ± 716.1 pg/ml vs 155.0 ± 104.1 pg/ml (mean ± S.D.) (p=0.077). 

Conclusion: Our results suggest that an increased NSE level with fetal CMV infection indicates nerve damage 
associated with CMV. Moreover, the absence of inflammatory cytokines suggests an immature cell-mediated immune 
response in the infected fetus.

Medical College, the cordcentesis was conducted on five patients with 
fetal CMV infection between gestational weeks 27 and 35. Diagnosis 
of fetal CMV infection was made when all of the following conditions 
were met: amniotic CMV-DNA was identified by real time PCR in 
cases which fetal growth restriction exceeded -1.5 S.D., fetal ascites 
and hepato-splenomegaly were detected by ultrasound. After giving 
an explanation and obtaining consent from the five patients, fetal 
treatment was conducted by intra-peritoneal administration of 2 g 
immunoglobulin per 1 kg body weight and the efficacy of treatment 
was evaluated by collecting approximately 5 ml venous blood.

Biochemical tests 

The CMV DNA viral load was quantified using real-time polymerase 
chain reaction (PCR). Platelet count was performed and the levels of 
gamma-glutamyl transpeptidase (γGTP) and neuron specific enolase 
(NSE) were measured using a radioimmunoassay. S-100β and glial 
fibrillary acidic protein (GFAP) levels were determined by ELISA.

Immunological tests

Using data from the three cases CMV infection and two normal 
cases collected during the same period, the levels of 27 cytokines were 
measured with a multiplex system (Bio-Rad, Hercules, CA). To compare 
the two groups, the Wicoxon signed rank sum test was performed using 
JMP 8.0 (2008; SAS Institute Inc., Cary, NC). Statistical significance was 
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Platelet count decreased from 1.4×104 to 0.7×104/μl and NSE levels 
increased markedly from 10 to 78 ng/ml.

 Case 2: CMV-DNA levels increased slightly from 2.5×102 to 
4.4×102 copies/ml. Although the γGTP levels increased from 570 to 
855 IU/l, the platelet count stayed almost the same at 1.9×106/μl. NSE 
levels did not change significantly and remained in the range of 5.9 to 
5.2 ng/ml.

 Case 3: CMV-DNA levels decreased from 4.9×103 to 2.4×103 

defined as p<0.05. This study was approved by The National Defense 
Medical College Hospital Ethics Committee, and written consent was 
obtained from the patients prior to including them in the study.

Results
Biochemical tests

 The changes in levels are summarized in Figure 1.

 Case 1: γGTP levels gradually decreased from 701 to 621 IU/l. 

Figure 1: NSE increased significantly for cases 1 and 4, but in Case 3 showed a major decrease in Case 3. In all cases, almost no changes in S-100β and GFAP 
were observed during the course of treatment.
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copies/ml. There were almost no changes in γGTP (315 to 289 IU/l) 
levels or platelet count (1.9×105 to 2.0×105/μl). NSE levels showed a 
major decrease from 220.0 to 9.6 ng/ml.

 Case 4: CMV-DNA decreased to ~10% from 6.3×105 to 6.0×104 
copies/ml. γGTP levels decreased markedly, but remained in the 
normal range from 731 to 154 IU/l. The change in platelet count from 
0.7×104 to 1.1×104/μl was less significant. NSE levels increased from 
15 to 30 ng/ml.

 Case 5: CMV-DNA levels increased slightly from 9.1×101 to 
4.0×102 copies/ml. γGTP levels increased from 668 to 693 IU/l, and 
platelet count decreased from 2.6×104 to 2.4×104/μl, which was not 
significant. NSE levels did not change significantly and remained in the 
range of 13 to 15 ng/ml.

 Only slight changes of S-100β and GFAP levels were observed in 
the patients during the course of treatment. 

Immunological tests

 Table 1 and Figure 2 show the comprehensive analysis of cytokines, 
such as IL-2, IL-6, IL- 8, IL-10 and TNF-α in umbilical cord venous 
blood. Almost no inflammatory cytokines were detected in either 
group. Conversely, the values of the monocyte chemocyte factor known 

as gamma interferon-inducible protein 10 (IP10) showed a trend for 
higher (766.2 ± 716.1 pg/ml vs 155.0 ± 104.1 pg/ml, mean ± S.D., 
p=0.077), and tended to decrease in line with fetal therapy.

Discussion 
Extent of fetal CMV invasion

 Cytomegalic inclusion disease (CID) is defined as a CMV 
infection that results in underdevelopment and microcephaly, 
including at least one of the following: jaundice, hepato-splenomegaly, 
thrombocytopenia, petechiae or seizures [14-17]. Although CMV 
infection is diagnosed when detected in amniotic fluid by PCR, there is 
no relationship between the CMV gene dosage in the amniotic fluid and 
neonatal prognosis [18]. The CMV-DNA level in umbilical cord venous 
blood was used to diagnose the presence of the viral infection; however, 
it did not appear to be a suitable indicator of therapeutic effect. 

 On the other hand, because impaired liver function is inevitable 
with fetal CMV infection, γGTP was proposed as a possible indicator 
of fetal treatment efficacy. γGTP contributes to the movement of 
amino acids through the cell membrane and exists in vivo mostly as 
a membrane-bound enzyme. In humans, γGTP is most active in the 
kidney, and it is also distributed in the pancreas, liver, small intestine 
and testes. The microsomal fraction of hepatocytes is produced in the 

Gestational week 
PDGF-bla {peal)

IL-
lill(pginal)

1L- 1 ra 
(pgital)

IL-2 
(pginal)

IL-4 
(p1itn1)

IL-5 
{pgitn1)

IL-6 (p6/
tn1)

IL-7 
(ps/snl)

IL-8 (p6/
tn1)

1L-9 
(pWral)

IL-10 
(pgirn1)

IL-12 
(pgical)

LL-13 
(pg.,rail)

1L-15 
(pginal)

CMV 1 27-5 50.9 n.d. 74.5 n.d. n.d. n.d. n.d. n.d. 26.0 n. cf. n.i n.i n.d. n.d_

29-2 28.9 n.d. 153.3 n.d. ad. n.d. 19.1 n.d. 33.6 n. d. n.i n.i n.d. n.d_

334 617 n.d. 26.5 n.d. ad. n.d. n.d. nit 23.6 n. d. rid_ n.i rid_ rid_

CMV 2 28-3 98_5 n.d. n.d. n.d. ad. n.d. n.d. nit n.d. n. d. rid_ n.i rid_ rid_

30-6 2617 n.d. 9.6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.i n.d. n.d_

32-6 106.6 n.d. n.d. n.d. ad. n.d. n.d. n.d. n.d. n.d. n.i n.i n.d. n.d_

CV1V 3 30-2 201.1 n.d. n.d. n.d. ad. n.d. n.d. n.d. n.d. n. d. rid_ n.i rid_ rid_

32-0 1079A n.d. 11.9 n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.d. n.i n.d. n.d_

34-1 124.5 n.d. 8.0 n.d. n.d. n.d. n. d. n.d. n.d. n.i n.i n.d. n.d. n.d_

Normal 1 33-6 1712 n.d. 60.6 n.d. n.d. n.d. n. d. n.d. 651.0 n.d. n.d. 12.4 n.d. n.d_

Nornaal 2 34-1 258_6 n.d. n.d. n.d. n.d. n.d. n.d. n.d. 40.9 rid_ rid_ n.d. rid_ nil_

Gestational 
week

1L-17 
(pgintl)

Eotaxin 
(pglinl)

FOE 
(pginal)

G-CSF (pVial) 
GM-CSF (pWrial)

IFNI 
(pWrial)

IP-I0 
(pgind)

MCP-1 
(pgind)

M1P-1a 
(pglin.1)

IVI1P- 1 b (pgiffil) 
RANTES (pgiffil)

TNF-ct 
(pgical)

VEGF 
(pg1m1)

CM V 1 27-5 n_d_ 27.2 58.2 n.d. 134.5 9.1 1377.1 401.9 rid_ 305.6 1061.1 rid_ 18.4

29-2 n.d_ 15.9 61.3 n.d. 70.4 n.d. 1284.7 540.1 n.d. 339.1 458.4 n.d. 10.8

33-1 n.d. n.d. 25.7 n.d. 74.0 5.1 2258.0 57.8 n.d. 330.1 453.1 n.d. n.d.

C....VW 2 28-3 n.d. n.d. 67.6 n.d. 63.9 0.7 456.9 394.8 n.d. 185.4 1639.1 n.d. 142

30-6 n.d. rut 98.0 n.d. 64.6 7.1 532.1 452.3 n.d. 259_7 2035_1 n.d. 16.4

32-6 nil n_d. 54.4 n.d. 71.8 19.8 269.1 241.3 n.d. 156.1 17653.7 n.d. 10.0

CM V 3 30-2 nisi n.d. 44.7 n.d. 116.7 10.9 162.9 246.6 n.d. 126.0 18343.7 n.d. 222

32-0 n.d_ n.d_ 53.9 n.d. 107.5 31.4 265.1 186.7 rid. 1892 n.d. n.d. 18.3

34-1 mil_ n_d_ 38.9 n.d. 85.7 14.6 269.7 9115 n.d. 126.5 34900 n.d. 12.3

Normal 1 33-6 15 n.d_ 122.4 n.d. 159.4 71.0 228.6 185.6 n.d. 426.6 n.d. n.d. 245.4

Normal 2 34-1 n_d. n_d_ 55.2 n.d. 97.5 19.8 61.4 270.11 n.d. 81.2 7761.6 n.d. 29.4

n_d_ I not detected.
Table 1: Anasysis of cytokine in umbilical vein for congenital CMV infected fetuses. Ahuost no inflammatory cytokines, such as 1L-2, IL-6,1L- 8, 1L-10, and TNF-a, were 
detected in either group.
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liver, and although their function is to move to the membrane of cells 
in structures, such as the bile canaliculi, liver and bile system disorders 
cause enzyme deviation and cause them to enter the circulatory system. 
As a result, γGTP is generally used as an indicator of liver function.

 Moreover, because fetal platelet production occurs in not only 
bone marrow but also liver, a decrease of fetal platelet count is believed 
to indicate impaired liver function. Because fetal therapy using 
immunoglobulin is not considered a radical therapy in the treatment 
of CMV, restoration of normal levels is difficult, even when treatment 
is administered. However, the associated risk of intra-cerebral 
hemorrhage, which contributes greatly to selecting a delivery method, 
is reason enough to measure platelet count; this is consistent with 
fetal thrombocytopenia being considered an indirect indicator of liver 
function impairment.

 Benoist et al. [19] reported that prognosis correlates strongly with 
ultrasound findings and platelet values, rather than with the levels 
of AST, ALT and γGTP, and the amount of CMV virus in infected 
infants. Rivera et al. [20] reported a correlation between symptoms at 
birth and ALT elevation with a neonatal platelet count <100,000/μl. 
Liesnard et al. [21] indicated that in 29 cases of CMV-infected infants, 
thrombocytopenia was observed in two cases, both of which had shown 
ultrasound anomalies in utero. Azam et al. [22] reported that in eight 
cases of terminated pregnancies, thrombocytopenia was observed in 
four cases, three of which had shown ultrasound anomalies in utero. 

 In addition to these reports, measuring the γGTP level and platelet 
count in umbilical cord venous blood to determine the extent of CMV 
invasion and treatment efficacy among infants displaying fetal CID can 
also be potentially useful for establishing a treatment plan.

Search for fetal nerve damage markers due to CMV

We tried to establish objective indicators of the extent of CMV nerve 
damage during fetal life. Reports on adult patients with brain trauma 
indicate the benefits of measuring serum S-100β, NSE and GFAP values 
for determining the extent of early nerve damage, as well as the benefits 
of tracking expected prognosis [23]. In addition, elevated serum S-100β 
and NSE levels have been reported in pathological conditions, such as 
stroke and myocardial infarction [24-28]. Moritz et al. [29] reported 
that only serum S-100β levels with subarachnoid hemorrhaging in 
adults are associated with post-disorder prognosis. Conversely, with 
normal-pressure hydrocephalus and dementia, cerebral infarction 
causes elevated cerebrospinal fluid GFAP levels [30-32]. Furthermore, 
Herrmann et al. [33] reported that serum GFAP values, following 

cerebral infarction correlate with the volume of the infarct area and 
neurological damage. While S-100β is a family of calcium-binding 
proteins found in astroglial, oligodendroglial and Schwann cells, it 
is also secreted by cutaneous and intramuscular nerve tissue [34,35]. 
Conversely, enolase is a glycolytic enzyme with three subunits (α, β and 
γ) and five isozymes (αα, ββ, γγ, αβ, and αγ). Because the γγ and αγ 
types of enolase exist in the cytoplasm of nerve cells, they are called 
NSE. Normal levels of serum NSE are <10 ng/ml. GFAP, on the other 
hand, is a protein constituting the microstructures of glial cells.

 Accordingly, we assumed that GFAP, S-100β and NSE might exert 
an influence on CMV infection. Umbilical blood levels of S-100β and 
GFAP showed no change before and after treatment. On the other hand, 
NSE values were abnormally elevated prior to treatment and tended 
to decrease after treatment. Congenital CMV infection is a disease 
causing neurodevelopmental disorders and the association of nerve-
related proteins, such as S-100β, NSE and GFAP with long-term infant 
neurological outcome should be further analyzed.

Influence of CMV infection on the fetal immune system

 Almost no inflammatory cytokines were detected in either group, 
suggesting that the cell-mediated immune response is not yet mature at 
around 30 weeks of gestation. CMV has high genetic homology and is a 
MHC class I histocompatibility antigen, which may mitigate or inhibit 
the response of killer T cells and natural killer cells in infected cells 
[36]. In cases of CMV infection, the insufficient activation of T cells 
and natural killer cells and the insufficient production of more specific 
antibodies may result in a more severe fetal infection. Therefore, if CID 
symptoms start to appear, early treatment, including fetal treatment, 
is desirable. Furthermore, although IP-10 levels tended to be high 
in CMV infection, we believe that treatment with immunoglobulin 
potentially mitigated the inflammation due to CMV because a decrease 
in IP-10 levels with fetal treatment was observed. 

Conclusion
 The increase of NSE level with fetal CMV infection indicates nerve 

damage associated with CMV. Moreover, the absence of inflammatory 
cytokines shows an immature cell-mediated immune response in the 
infected fetus.
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