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Introduction
Parkinson disease (PD) is an age-related neurodegenerative 

disorder that can result in a variety of cognitive deficits including 
impairments in processing speed [1-3], working memory [4,5] and 
inhibition [6,7]. In addition, elderly people with PD are at higher risk 
for loss of independence due to cognitive impairment [8]. In fact, there 
is evidence that cognitive slowing occurs independent of motor slowing 
in PD. For example, Sawamoto et al. [9] designed a test to specifically 
measure processing speed, and accuracy was used as the outcome 
measure. Results showed decreased performance in PD at increased 
speeds of stimulus presentation. However, while cognitive deficits have 
been consistently observed in PD, identifying a theoretical framework 
in which to interpret these findings has been less extensively studied. 

Cognitive decline across the life span has been most successfully 
characterized using a multivariate model [10,11]. Age-related changes 
in cognitive performance have been linked to a reduction in cognitive 
resources. In a review of theoretical models of aging and cognition, 
Brown and Park [12] describe three cognitive resources that contribute 
to performance, specifically processing speed, working memory and 
inhibition. The speed at which the brain processes information has been 
shown to decrease with age [13,14]. For example, Deary and Ritchie 
[15] found decreased speed of processing for the Digit Symbol test, and 
experimental measures (tests of simple and choice reaction time) as 
well as a psychophysical measure of efficiency of early stage perceptual 
processing in two large groups of 70 and 83 year old participants. 

Furthermore, longitudinal studies indicate that decreased processing 
speed is associated with changes in complex cognitive abilities as we 
age [16-19]. For example, Ritchie et al. [20] used a visual inspection 
task with minimal motor requirements to measure processing speed 
three times over six years in a population of 70 year old participants. 
Results revealed a strong correlation between the slope of change for 
intelligence measures and processing speed measures. In fact, individual 
differences in speed of processing measures have been shown to account 
for the majority of age-related variance in measures of diverse and 
complex function, including working memory and inhibition (see [13] 
for review).Thus it has been proposed that processing speed sub serves 
a range of other cognitive functions, making it an explanatory construct 
in age-related cognitive decline [13,21-23].

Previous studies of working memory, or the amount of information 
that can be simultaneously stored in a temporary buffer for manipulation 
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during processing [24], support this hypothesis. Working memory 
has been shown to decrease with age (e.g. [25-27]).Interestingly, 
Salthouse and Babcock [28] investigated age-related differences of 
three components of working memory: processing efficiency, storage 
capacity and coordination effectiveness. Performance declined with 
increased age; however the impact of age was mediated by processing 
speed of simple operations. Furthermore, Parkin and Java [29] found 
that performance on the Symbol Digit Substitution test was a strong 
predictor of memory performance. Thus there is ample support for 
the hypothesis that processing speed sub serves higher order cognitive 
function from the study of working memory.

Similarly, age-related decline in the performance of measures of 
inhibition have been associated with processing speed as well. Inhibition, 
or the ability to suppress attention to irrelevant or off goal-path 
thoughts (e.g. [30]), is important for the efficient operation of selective 
attention and working memory, limiting the amount of information 
into working memory that is not along the goal-path [31]. Inhibition is 
also important during parallel processing, when deficits may result in 
cross talk, and during language comprehension, suppressing irrelevant 
meanings of words of phrases [31]. Thus deficits in inhibition increase 
the contents of working memory with irrelevant information, resulting 
in competition at retrieval, which leads to poorer memory performance, 
increased distractibility, increased errors and increased response time. 
Adolfsdottir et al. [32] recently measured inhibition and switching in 
a longitudinal study of 123 subjects, with three samples over six years. 
They found that age contributed to longitudinal models of inhibition 
and switching as did processing speed, while measures of education and 
retest effects did not. Similarly, Marco et al. [33] examined inhibition, 
cognitive flexibility and processing speed in a group of people with 
agenesis of the corpus callosum and matched controls. They found that, 
while performance on timed measures of inhibition and flexibility were 
impaired, group differences could be largely explained by performance 
on measures of processing speed. Thus there is strong evidence that 
reductions in processing speed significantly contribute to the decline 
in measures of working memory and inhibition in healthy aging [13].

There is evidence from the study of disease supporting the 
processing speed theory of cognitive function, including conditions 
such as agenesis of the corpus callosum [33], aging and alcoholism 
[34] and rheumatoid arthritis [35]. However, the relationship between 
deficits in processing speed, working memory and inhibition in PD 
has not been extensively examined. In fact, it has been argued that the 
concept of parkinsonian bradyphrenia has not been clearly defined and 
should be analyzed as slowness of different cognitive processes (for 
review see [36]). One possible theoretical framework for understanding 
the complex phenomenon of bradyphrenia in PD is the processing 
speed theory of cognitive aging. To that end we tested the hypothesis 
that, as in healthy aging, measures of processing speed underlie deficits 
in working memory and inhibition in PD.

Methods
Participants

For this study, a group of 77 individuals with PD (48 males, 29 
females) and 54 individuals without PD (29 males, 25 females) were 
recruited from movement disorder clinics, senior centers, support 
groups, and veteran’s organizations. The participants were all between 
the ages of 54 and 80 with English as a first language. The participants 
with PD were all diagnosed by a movement disorders neurologist and 
had history of good clinical response to levodopa and/or dopamine 
agonist treatment. The exclusion criteria included traumatic head or 

spine injury, brain tumor, stroke and history of drug abuse, significant 
symptoms of depression (Geriatric Depression Scale score>20) and 
Mini Mental State Exam score less than 20. All participants with PD 
were being treated using dopamine replacement therapy including 
levodopa with carbidopa, dopamine agonists and/ or COMT inhibitors. 
All participants provided written, informed consent and the study was 
approved by an institutional review board. 

Instruments

Subjects performed tests in a private room and testing lasted 2-4 
h. The test battery was presented in a pseudorandomized order across 
participants. Participants with PD were tested during their best ON 
medication state (based on patient self-report), after their morning 
dose of medication.

Descriptive measures

• Epworth Sleepiness Scale (ESS; [37]): A short questionnaire 
about daytime sleepiness.

• The Frontal Lobe Personality Scale (FLOPS; [38]), now known 
as the Frontal Systems Behavior Scale (FrSBe), is a 46-item 
questionnaire designed to assess behavioral disturbances 
associated with damage to frontal lobe regions of the brain. 
Subjects are instructed to answer each item from two time 
points: “Before Injury” and “At Present”. There are three 
subscales which provide measures for Apathy, Disinhibition 
and Executive Function [39,40]. We used the “at present” 
Apathy scale for further analysis.

• Geriatric Depression Scale (GDS; [41]): A measure of depressive 
symptoms in the form of a 30-item self-report. 

• Hoehn and Yahr scale (H&Y; [42]): A measure of PD severity. 

• Mini-Mental State Examination (MMSE; [43]): An estimate of 
general cognitive function based on orientation, registration, 
attention and calculation, recall and language.

• National Adult Reading Test, Revised (NART-R; [44]) is a 
measure of semantic memory commonly used to estimate 
premorbid intellectual function. The participant is asked to 
pronounce a series of 61 irregularly spelled words. 

• The Unified Parkinson ’s disease Rating Scale (UPDRS; [45]) is 
a clinical scale used to evaluate PD severity in multiple domains. 
UPDRS Part I measures mentation, behavior and mood. UPDRS 
Part II measures activities of daily living. UPDRS Part III measures 
motor performance. USDRS Part IV measures complications of 
therapy. A nurse practitioner trained in the use of the UPDRS 
administered the UPDRS interview and evaluation. 

Neuropsychological tests 

• Delis-Kaplan Executive Function System (D-KEFS; [46]) 
contains subtests used to measure executive functions including 
inhibition and switching based on a Stroop task (Color-Word 
Interference). We subtracted the completion time for the Word 
Naming condition from the completion time for the Inhibition 
condition to measure inhibition. 

• WAIS-III Digit Span [47] is a measure of forward and reverse 
digit span using progressively longer numerical sequences 
to assess simple auditory attention and working memory, 
respectively. Digit span backward was recently validated as a 
diagnostic measure of cognitive impairment in PD [48].
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• Symbol Digit Modalities Test (SDMT, Oral Version [49]) is a 
psychometric measure of processing speed and visual tracking. 
The participant is presented with a coding key containing nine 
numbers, each corresponding to a different symbol. Below the 
key, a series of symbols is also presented, and the participant 
must state the number corresponding to the symbols in order 
as quickly as possible. Score is the number of items successfully 
completed in 90 s.

Data Analysis
All statistical analysis was performed using SPSS (version 23; http://

www.ibm.com/analytics/us/en/technology/spss/). Between groups com-
parisons were made using Multivariate Analysis of Variance (MANOVA).
Pearson correlation (p<0.05) was used to evaluate the linear relationship 
between processing speed and demographic, cognitive, motor, mood and 
disease severity measures for participants with PD.

We also performed two mediation analyses to evaluate a presumed 
mediation effect of processing speed and mood variables on the 
relationship between age and 1) working memory and 2) inhibition (see 
http://davidakenny.net/cm/mediate.htm for an overview). We followed 
the four steps described by Baron and Kenny [50] and others [51,52] to 
establish mediation. We used hierarchical regression to show that either 
working memory or inhibition score were correlated with age to establish 
that there was an effect to be mediated. Second, we used a similar 
regression model to determine that age was correlated with the possible 
mediating variables (processing speed, depression and apathy). Third, we 
determined if the mediator affected the outcome variable (either working 
memory or inhibition measures) by entering both age and the mediators 
into a regression model with working memory or inhibition measures 
as the outcome variable. Further, we used this same model to determine 
the degree of mediation (complete or partial).The amount of mediation 
is called the indirect effect or the reduction of the effect of the causal 
variable (age) on the outcome (working memory or inhibition) due to 
the mediators. We used bootstrapping to test the indirect effect [53,54]. 
We resampled with replacement 5000 times to determine a confidence 
interval and p value. We used the PROCESS SPSS macro provided by 
Hayes and Preacher to perform this analysis [55].

Results
Group differences

Demographic and descriptive data: The PD and control groups 
were not significantly different in age (F(1,129)=3.332, p=0.070), 
years of education (F(1,129)=2.169, p=0.143), daytime sleepiness 
(F(1,129)=3.545, p=0.062), premorbid IQ (F(1,129)=0.099, p=0.753) 
and MMSE score (F(1,129)=0.459, p=0.499; Table 1). However, 
the PD group indicated greater symptoms of depression (GDS; 
F(1,129)=12.277, p<0.001) and apathy (FLOPS; F(1,129)=9.159, 
p=0.003) than the control group. Note that PD participants were at 
a relatively early disease stage (H&Y scale score, Table 2). Dopamine 
equivalents are listed in Table 2.

Cognitive measures

For the measure of processing speed, the PD group correctly 
completed fewer items in 90 s compared to the control group, with 
a mean difference of 8.3 items (SDMT F (1, 129)=18.648, p<0.001, 
Table 3). 75% of PD participants (58/77) had processing speed scores 
below mean control group performance. For the measure of working 
memory, while there was no statistically significant difference between 
groups (Digit Span Backward; F(1,129)=3.818, p=0.053; Table 3), there 
was a trend toward significance. In addition, the PD group performed 
the inhibition task more slowly than the control group, with a mean 
difference of 8.9 s (DKEFS CWI Inhibition minus Word Reading; F 
(1,129)=7.785, p=0.006). 57% of PD participants (44/77) took longer 
to complete the inhibition task than mean control group performance. 
There were no differences between groups for the measure of simple 
auditory attention (Digit Span Forward; F (1, 129)=0.266, p=0.607). 

Regression analyses

For all PD participants, processing speed (SDMT) was correlated 
with the variables associated with cognitive aging theory (age, working 
memory and inhibition; Figure 1) and multiple additional variables, 
including measures of daytime sleepiness (ESS), depression (GDS), 
apathy (FLOPS), MMSE score and disease severity (UPDRS score; 
Tables 1 and 2). Decreased speed of processing was associated with 

N Age (years) Education (years) ESS NART-R GDS* FLOPS Apathy MMSE 
Control 54 (F=25) 66.0 (6.0) 16.6 (3.1) 7.0 (3.3) 113.6 (7.6) 2.8 (3.5) 24.2 (7.5) 28.8 (1.2)
PD 77 (F=29) 68.0 (6.3) 15.8 (2.8) 8.4 (4.8) 114.1 (8.5) 5.5 (5.0) 28.3 (7.6) 28.6 (1.6)

Daytime sleepiness (ESS: Epworth Sleepiness Scale), Measures of premorbid IQ (NART-R: National Adult Reading Test - Revised), Depression (GDS: Geriatric Depression 
Scale), apathy (FLOPS Apathy) and mental state (MMSE: Mini-Mental Status Exam)
* CO vs. PD p<0.05

Table 1: Demographic measures.

Dopamine Equivalent H&Y (median) UPDRS Total
PD 612.2 (490.8) 2 38.2 (19.8)

Measures of disease severity (UPDRS: Unified Parkinson’s Disease Rating Scale; H&Y: Hoehn and Yahr Scale), Measures of manual dexterity (FDT: Functional Dexterity Test) 
and mobility (mEFAP: Modified Emory Functional Ambulation Profile)

Table 2: PD specific measures. 

SDMT* (items) Digit Span Backward° (items) DKEFS CWI Inhibition* (s) Digit Span Forward (items)
Control 52.4 (8.0) 7.2 (2.3) 37.7 (10.5) 10.3 (2.3)
PD 44.1 (12.6) 6.6 (1.7) 46.6 (21.6) 10.06 (2.0)

Measure of processing speed (SDMT: Symbol Digit Modalities Test), Working memory (Digit Span Backwards), Inhibition (DKEFS Color Word Interference Condition 3: 
Inhibition minus DKEFS Color Word Interference Condition 2: Word Reading) and attention (Digit Span Forward)
* CO vs. PD p<0.05
° CO vs. PD p=0.053

Table 3: Cognitive measures.

http://www.ibm.com/analytics/us/en/technology/spss/
http://www.ibm.com/analytics/us/en/technology/spss/
http://davidakenny.net/cm/mediate.htm
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poorer performance on measures of working memory and inhibition, 
increased age and increased reported symptoms of depression and 
apathy.

Linear regression analysis was used to investigate the hypothesis 
that processing speed and mood variables mediate the effect of age on 
executive function. For the outcome variable working memory, there 

was no significant relationship between age and working memory 
(r=0.054, p=0.64) in our sample (b=0.015, SE=0.031, p>0.05), thus the 
mediation evaluation criteria described in the data analysis section were 
not met. However, for the outcome measure inhibition, the evaluation 
criteria were met. First, results indicated that age was a significant 
predictor of processing speed (b=-0.731, SE=0.213, p<0.05). Second, 
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Figure 1: Processing speed scatterplots.  
Processing speed (SDMT, total number correct in 90 seconds), working memory (Digit Span Backward) and DKEFS Inhibition is calculated from DKEFS CWI Condition 
3: Inhibition minus DKEFS CWI Condition 2: Word Reading
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processing speed was a significant predictor of inhibition (b=-1.239, 
SE=0.138, p<0.05). Finally, age was no longer a significant predictor 
of inhibition after controlling for the mediator, processing speed 
(b=0.348, SE=0.294, p>0.05), which is consistent with full mediation. 
Approximately 53% of the variance in inhibition was accounted for by 
the predictor processing speed (R2=0.527). The indirect effect was tested 
using a bootstrap estimation approach with 5000 samples [54]. These 
results indicate that the indirect coefficient was significant (b=0.859, 
SE=0.306, 95% CI=0.360-1.588). Greater age was associated with an 
approximately 0.86 s. longer time to complete the inhibition task in 
the PD group. While mood variables were correlated with inhibition, 
the criteria for mediation for depression (b=-0.106, SE=0.060, p>0.05) 
and apathy (b=0.028, SE=0.101, p>0.05) were not met because these 
variables were not correlated with age (GDS r=0.083, p=0.47; Apathy 
Scale r=0.095, p=0.41).

Similarly, for control subjects, there was no significant relationship 
between age and working memory in our sample (b=0.066, SE=0.047, 
p>0.05), thus the evaluation criteria for mediation were not met. 
However, as in the PD group, for the measure of inhibition the evaluation 
criteria were met for controls. First, results indicated that age was a 
significant predictor of processing speed (b=-0.395, SE=0.176, p<0.05). 
Second, processing speed was a significant predictor of inhibition (b=-
0.691, SE=0.197, p<0.05), though again, depression (b=0.214, SE=0.527, 
p>0.05) and apathy (b=-0.090, SE=0.244, p>0.05) were not. Third, age 
was no longer a significant predictor of inhibition after controlling for 
the mediator processing speed (b=0.214, SE=0.276, P>0.05), consistent 
with full mediation. 20% of the variance in inhibition was accounted 
for by the predictor processing speed (R2=0.200). Testing the indirect 
effect using a bootstrap estimation approach with 5000 samples revealed 
that the indirect coefficient was significant (b=0.253, SE=0.161, 95% 
CI=0.021-0.627).Greater age was associated with approximately 0.25 s 
longer time to complete the inhibition task in the control group.

Discussion
We identified processing speed and inhibition deficits in relatively 

early stage, medicated PD participants. While the PD and control groups 
were similar for age, years of education, daytime sleepiness, premorbid 
IQ and global cognitive function (MMSE score), the majority (73%) of 
PD participants had reduced processing speed compared to controls, 
while about half the participants showed significantly decreased 
performance on the measure of inhibition. Participants in the PD 
group also reported more depression and apathy. As predicted by 
cognitive aging theory, the relationship between age and inhibition was 
mediated by processing speed, with a large portion of the variance in 
inhibition performance (57%) accounted for by processing speed. In 
contrast, decreased working memory performance in the PD group was 
a statistical trend and performance was not associated with age. While 
depression and apathy scores were correlated with processing speed, 
mood measures did not mediate the relationship between inhibition 
and age in PD. Furthermore, the pattern of mediation was similar in the 
PD and control groups.

Processing speed deficits in PD

Our findings on the prevalence of processing speed deficits in PD 
are in line with existing data. For example, Revonsuo et al. [36] showed 
that patients with PD were significantly slower than controls in tasks 
designed to measure processing speed [36]. They used computerized 
psychophysical measures of central controlled processing involving 
subtraction time and verification time tasks. They found that in 
their group of mildly impaired subjects, performance was slower 

compared to unimpaired PD and control subjects. A more recent study 
by Jokinen et al. [56] also showed slower processing speed in newly 
diagnosed, unmedicated PD patients using an experimental, 2-choice 
reaction time test, a 10-choice reaction time test, and a subtraction 
test. Pure cognitive processing speed was estimated by calculating the 
difference between the subtraction task and the 10-choice reaction 
time task, thus eliminating motor components. Their [18F]fluorodopa 
PET data revealed a relationship between slowing of processing 
speed and dopaminergic dysfunction in the basal ganglia-prefrontal 
cortex circuit. Similarly Yu et al. [57] used multiple psychophysical 
and experimental measures of processing speed as well as measures 
of executive functions, memory, visuospatial processing, attention 
and language in samples of people with PD MCI (mild cognitive 
impairment) and PDD (Parkinson’s disease with dementia) [57]. The 
PD MCI participants showed impaired processing speed and executive 
functions. Interestingly, executive function, as measured using the 
modified Wisconsin Card Sort test was shown to be the most effective 
discriminator of PD from control participants. However, measures of 
processing speed also had large effect sizes ([57]; Table 3), indicating 
that, as in our study, processing speed was a significant component of 
cognitive dysfunction in PD.

The estimate of prevalence of processing speed deficits in PD MCI, 
was calculated using stringent criteria [57], and at 22.7% was much 
lower than the one reported here (77%). However, Yu et al. [57] required 
scores of 1.5 SD below the normative mean, while in the current study 
we used the control mean as our cut off for impaired classification. 
In our study, 35.6% of PD subjects were 1.5 SD below mean control 
group performance. Similarly, Muslimovic et al. [58] found that newly 
diagnosed patients performed significantly different from controls on 
four measures of processing speed including the SDMT [58]. While 
deficits in executive functions were most common, of participants 
with PD that exhibited MCI, 60% had a processing speed deficit. As 
in Yu et al. [57], a strict classification criterion was used (2 SD below 
norm mean). Interestingly, SDMT score was the primary discriminator 
between the PD and control groups in a logistic regression using all 
cognitive measures. Thus while prevalence estimates differ somewhat 
across studies, Parkinsonian processing speed deficits have been 
shown consistently across a variety of psychometric, experimental and 
psychophysical measures.

Processing speed deficits have been hypothesized to account for the 
majority of age-related variance for a large variety of cognitive tasks, 
including working memory and inhibition. These deficits may impact 
cognitive function in two ways [13]. First, cognitive performance 
declines with decreased speed of processing because relevant operations 
cannot be successfully completed in a timely manner, which is called 
the limited time mechanism. If early operations are not completed, 
then later processes will be less effective. Second, the simultaneity 
mechanism assumes that decreased processing speed results in 
reduced performance on complex tasks because the products of early 
processing are no longer available when later processing occurs, thus 
reducing the amount of simultaneously available information. Thus the 
synchronization required for many complex tasks is impaired when 
processing speed is reduced. A necessary assumption of this theory of 
cognitive aging is that processing speed is a fundamental part of the 
cognitive architecture that is common across cognitive domains [13,21-
23]. However not all authors agree [59]. Our findings indicate that this 
process of cognitive decline is exacerbated in PD.

For example, people with PD showed reduced storage capacity 
and impaired ability to filter, or inhibit irrelevant stimuli. In addition, 
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impaired performance on the digit span backward test has been 
reported previously in medicated PD patients [57], which is consistent 
with our findings. Similarly, Warden et al. [60] found decreased digit 
span backward performance in cognitive subgroups of PD participants 
including dementia and mild cognitive impairment [60]. Furthermore, 
multiple aspects of memory ability, including recall, recognition, and 
story-free recall have been linked to processing speed (for review 
see [29]), supporting the hypothesis that processing speed accounts 
for a large portion of the variability in age-related cognitive decline 
on performance of a variety of cognitive measures [13]. Indeed, in 
our data set the measure of processing speed was strongly correlated 
with working memory performance, while processing speed did not 
mediate the relationship between working memory and age. However, 
the failure to meet mediation criteria was due to a lack of correlation 
between the working memory measure and age, rather than processing 
speed (Table 4).

Anatomy of processing speed, working memory and 
inhibition

In PD, the loss of dopamine producing neurons in the substantia 
nigra and of dopaminergic innervation of the caudate nucleus and 
consequent change in basal ganglia outflow, specifically in a basal 
ganglia-thalamocortical loop that includes the prefrontal cortex (PFC), 
is associated with cognitive decline in PD [61-64]. The correlation of 
cognitive aging with both processing speed and frontal lobe volume 
has been shown using high resolution magnetic resonance imaging 
in healthy subjects [65]. The PFC has also been shown to play a key 
role in healthy processing speed. For example, a human fMRI study 
revealed that the success of multitasking training hinged on the speed 
of processing in PFC [66]. Similarly, Woodward et al. [67] found that 

decreased processing speed was associated with impaired response 
selection and abnormal PFC activation in schizophrenia [67]. It is 
interesting to note that decreased processing speed has also been linked 
to global deterioration of white matter integrity [68,69].

Spatial working memory deficits in PD have also been associated 
with frontal lobe function, and patients with frontal lobe lesions have 
been shown to have specific memory deficits related to the temporal 
order of events [70] while item memory was unimpaired compared to 
controls. In PD, deficits in visuospatial working memory [4,5] have been 
described in participants who underwent medication withdrawal. In 
addition there is evidence that normal working memory performance in 
PD is maintained by compensatory mechanisms. Poston and colleagues 
[71] imaged brain activity during high and low load working memory 
tasks in controls and PD participants ON and OFF medication. In the 
OFF state they identified hyperactivation of bilateral putamen and 
posterior insula. This hyperactivation was decreased with dopamine 
replacement therapy and correlated with decreased task performance. 
Thus the relationship between working memory and age may be 
multifactorial in PD. 

Finally, there is a wealth of data on the role of prefrontal cortex in 
response inhibition from monkey lesion work and more recently from 
human fMRI studies (see [72] for review). For example, Rubia et al. [73] 
were able to dissociate response inhibition form error detection using a 
very difficult no-go task which they were able to manipulate to produce 
an error rate of 50%. They found that response inhibition correlated 
with activity in right inferior frontal cortex while error performance 
correlated with mesial frontopolar and bilateral inferior frontal cortex. 
Furthermore, Cai et al. [74] compared brain activation during the stop 
signal task presented in both visual and auditory modalities in health 

Edu. ESS NART-R GDS Apathy MMSE DA EQ UPDRS SDMT Digit Span 
Backward

DKEFS 
Inhibition

Digit Span 
Forward   

0.038 0.011 0.069 0.083 0.095 -0.100 -0.056 0.095 -0.368** 0.054 0.353** 0.005 Correlation
Age

0.743 0.923 0.553 0.473 0.412 0.388 0.643 0.409 0.001 0.638 0.002 0.965 Sig.
 -0.288* 0.425** -0.152 -0.213 0.293** -0.110 -0.084 0.187 0.372** -0.318** 0.245* Correlation

Edu.
 0.011 0.000 0.188 0.063 0.010 0.359 0.467 0.103 0.001 0.005 0.032 Sig.
  -0.192 0.408** 0.296** -0.153 0.186 0.247* -0.315** -0.184 0.330** -0.146 Correlation

ESS
  0.094 0.000 0.009 0.183 0.121 0.031 0.005 0.109 0.003 0.204 Sig.
   0.031 -0.128 0.228* -0.016 -0.010 0.094 0.212 -0.227* 0.310** Correlation

NART-R
   0.787 0.267 0.046 0.897 0.928 0.414 0.064 0.047 0.006 Sig.
    0.438** -0.098 0.353** 0.549** -0.389** -0.181 0.375** -0.184 Correlation

GDS
    0.000 0.396 0.003 0.000 0.000 0.115 0.001 0.110 Sig.
     -0.008 0.280* 0.459** -0.250* -0.231* 0.061 -0.224 Correlation

Apathy
     0.944 0.018 0.000 0.029 0.043 0.600 0.050 Sig.
      -0.081 -0.143 0.403** 0.270* -0.373** 0.225* Correlation

MMSE
      0.500 0.215 0.000 0.018 0.001 0.049 Sig.
       0.299* -0.146 -0.056 0.061 -0.093 Correlation

DA EQ
       0.011 0.224 0.646 0.612 0.439 Sig.
        -0.413** -0.112 0.240* -0.031 Correlation

UPDRS
        0.000 0.331 0.035 0.789 Sig.
         0.314** -0.720** 0.219 Correlation

SDMT
         0.005 0.000 0.056 Sig.
          -0.192 0.622** Correlation Digit Span 

Backward          0.095 0.000 Sig.
           -0.144 Correlation DKEFS 

Inhibition           0.210 Sig.

Edu: Education; DA EQ: Dopamine Equivalents; conventions as in previous tables; DKEFS Inhibition is calculated from DKEFS CWI Condition 3: Inhibition minus DKEFS 
CWI Condition 2: Word Reading 

Table 4: Pearson correlations. 
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subjects. They found that activation in inferior frontal gyrus, middle 
frontal gyrus and basal ganglia was modality independent. In fact, 
mild cognitive impairment, including deficits in working memory 
and inhibition, has been linked to frontostriatal dopamine modulated 
function, while dementia in PD, characterized by impairments in verbal 
fluency, verbal and visual memory and visuospatial skills, is associated 
with more widespread, posterior degeneration [75-77]. 

Bradyphrenia and cognitive aging theory

The term bradyphrenia is frequently used to describe the slowed 
cognitive functioning [78] or slowness in mental processing that is 
associated with PD [79]. In 1922 Navile defined bradyphrenia as a 
chronic loss of initiative and intellectual activity [80]; however, the 
precise characterization of parkinsonian bradyphrenia has long been 
a point of debate [36]. For example, in a review of dementia in PD, 
Potagas and Papageorfiou [81] question the existence of parkinsonian 
bradyphrenia, suggesting that bradyphrenia has not been consistently 
differentiated from motor slowing, executive dysfunction or 
depression. They go on to say that several authors [82] have concluded 
that bradyphrenia has not been demonstrated in PD. In contrast, 
others acknowledge the existence of bradyphrenia in PD but debate 
the precise nature of the syndrome. For example, Rogers et al. [83] 
emphasize impairment of concentration and apathy as contributors 
to slowed cognitive processing; however, others cite attention deficits 
[84] or preserved attention and visuospatial processing [85]. A major 
stumbling block to the study of cognitive slowing in PD has been the 
lack of a concise definition of the term bradyphrenia. This problem is 
not new. In 1993 Revonsuo et al. reviewed the contradictory findings on 
cognitive slowing and concluded that the concept of bradyphrenia is too 
vague to be useful for research or cognitive neuropsychology [36]. They 
went on to suggest that cognitive dysfunction should be studied within 
a conceptual framework, in this case, using information processing 
concepts [36]. Our findings suggest that the processing speed theory 
of cognitive aging may be helpful in defining the term bradyphrenia.

The evaluation of parkinsonian cognitive slowing is confounded by 
motor slowing, memory and inhibition deficits, depression and apathy 
and our data confirm that measures of these variables are correlated 
(Table 4). However, considering some or all of these variables as a 
single concept such as bradyphrenia muddies our efforts to untangle 
this knot [86]. Instead, we used a conceptual framework, specifically 
the processing speed theory of cognitive aging [13], to interpret these 
relationships. We tested the hypothesis that, as in healthy aging, 
measures of processing speed underlie deficits in working memory 
and inhibition in PD. Processing speed and inhibition were clearly 
decreased in PD, while the results for working memory were somewhat 
more complicated. Using the processing speed theory of cognitive 
decline provides a framework for hypothesis testing about this 
complex concept. Our findings suggest that it may be useful to define 
bradyphrenia as decreased processing speed, a deficit which contributes 
to a variety of other cognitive and motor deficits in PD.

Limitations
Quantifying pure processing speed is difficult, as neuropsychological 

measures often involve memory and motor performance that 
may decline independently from aging [2,19,87]. This problem is 
particularly pronounced in PD, where motor deficits are a defining 
characteristic of the disease. We minimized motor requirements of the 
symbol digit substitution test by obtaining oral, rather than written 
responses. Nevertheless, it is difficult to distinguish between the 
cognitive and motor components of behavior. To that end, Sawamoto 

et al. [9] devised a mental-operation task that involved serial updating 
of a series of visual stimuli, with accuracy, rather than response time, 
over a variety of stimulus frequencies as the outcome variable [9]. 
Increasing stimulus frequency resulted in more errors in controls but 
this increase was larger in the group with PD. More recently Sanchez-
Ferro et al. [88] used error rate on Part A of the Trail Making Test 
and found no significant difference in performance between PD and 
control groups [88]. This relatively simple task may be similar to the low 
frequency conditions from Sawamoto et al. [9] where control and PD 
groups showed similar performance. Sanchez-Ferro et al. [88] reported 
processing speed impairment in only 5.7% of their sample.

Conclusion
Dopamine replacement therapy clearly plays an important role in 

cognitive function in PD as well. PD is associated with a loss of dopamine 
producing neurons in the substantia nigra, and dopaminergic processes 
have been shown to be involved in cognitive functions such as processing 
speed. A study by Volkow et al. [89] linked deficits in processing speed 
and executive functions to a decrease in the binding of D2 receptors in 
the caudate and putamen in healthy subjects. In addition, D2 activity 
has been shown to be a strong predictor of performance on cognitive 
tasks that included processing speed in healthy subjects, indicating 
that changes in the striatal dopamine system are associated with loss 
in processing speed proficiency [90]. Similarly, Eckart and Bunzeck 
[91] reported that administering the drug levodopa (dopamine 
precursor) to healthy subjects accelerated the onset of the EEG novelty 
signal in the medial temporal lobe. When compared to placebo and 
the cholinesterase inhibitor galantamine, data indicated that levodopa 
regulates the speed of processing of new information. In PD, deficits in 
visuospatial working memory [4,5] have been described in participants 
who underwent medication withdrawal. Specifically, people with PD 
showed reduced storage capacity and impaired ability to filter, or inhibit 
irrelevant stimuli. Furthermore, recently Warden et al. [60] examined 
digit span backward scores in PD participants ON and OFF medication 
and found a significant improvement in performance ON medication. 
Dopamine also plays an important role in inhibition. Jacob et al. [92] 
antagonized dopamine D1 receptors while recording from neurons 
in prefrontal cortex of non-human primates during the performance 
of a delayed-match-to-numerosity task. They found that D1 
neuromodulation was important for the encoding of relevant stimuli 
in the presence of task-irrelevant input. In PD, impairment of both 
response and cognitive inhibition have also been described (e.g. [93]).
Thus the pathophysiology of PD has been linked to cognitive deficits in 
processing speed and executive functions. While we tested all subjects 
during their “best ON” period, clearly dopamine replacement status is 
an important and complex factor in the study of cognitive function. 
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