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Introduction
The overarching goal of biomass research is to develop innovative

and pragmatic routes to exploit and utilize biomass resources [1,2].
These studies focused on both basic science and potential industrial
applications [3] and have begun to address several challenges including
the overall declining petroleum resources, increasing fuel demands and
growing environmental concerns from the use of fossil fuels. In
addition, the U.S. Department of Agriculture and U.S. Department of
Energy have established a vision to derive 25% of chemicals and
materials, and 20% of transportation fuels from biomass by 2030 [4]
therefore, it is imperative to develop sustainable production of fuels,
chemicals and bio-derived materials. Biomass is a readily available and
low-cost material feedstock for biorefining operations that to date have
been made primarily from fossil fuel resources [5]. The increasing
global presence and growth of the integrated “biorefinery” concept has
generated some of the most exciting and relevant technological topics
in modern society [6].

Both biochemical and thermochemical conversion technologies
have been developed for converting biomass to fuels and chemicals for
several decades but some of the most translational results have
occurred in the last ~10 years [3]. This short review will focus on
recent studies the fundamental chemistry and the application of the
thermochemical conversion platform, especially for the pyrolysis
process.

Due to the complicated nature of biomass, understanding the
biomass pyrolysis pathways calls for fundamental investigation of
pyrolytic behaviors of various biomass components, which include
cellulose, hemicellulose, lignin, tannin, lipid, protein, and chitin for
normal lignocellulosic biomass, algae, and other bioresources [2,7].
This short review will primarily examine recent research for the
pyrolysis process for these biomass components and the future
opportunities.

Pyrolytic Behaviours for Major Biomass Components

Cellulose
Cellulose is the most abundant terrestrial biopolymer. Generally, bio

resources contain approximately 35-50% cellulose [8,9]. The major
thermal decomposition product of cellulose has been reported [10,11]
as levoglucosan, however, the detailed formation pathway(s) is still
being developed. In addition, understanding the decomposition/
transformation pathways of levoglucosan during the aging process of

pyrolysis oils is a crucial topic, since levoglucosan is often the most
abundant component in whole biomass pyrolysis oils. The applications
of levoglucosan, such as fermentation, modification and upgrading,
will be a meaningful topic in the near future.

Lignin
Lignin is the second most abundant biomass component and the

primary renewable aromatic resource in nature, and it’s also one of the
most complex natural polymers in regards to its chemical structure
and composition [4,12-15]. Therefore, thermal deconstruction of
lignin is an extremely complicated and crucial topic. The pyrolysis oil
produced from lignin has been reported to be the most difficult one to
upgrade [16-22]. The very complicated components of lignin pyrolysis
oil bring a huge barrier to understand the fundamental chemistry of
aging and upgrading processes. Due to the high average molecular
weight, complex and unstable structures of lignin pyrolysis oil [23-25].
Many traditional analytical methods are challenged to fully analyze
bio-oils. In contrast, advanced NMR methodology continues to
improve the analysis of various lignin pyrolysis oils [4,7,8,26,27].

Several model structures, which could represent lignin pyrolysis oil,
have been proposed in the literature [19,28] and some synthesized
compounds based on these model structures have been used to further
understand lignin pyrolysis oil. Future pyrolysis studies will continue
to use model compounds to explore and define the fundamental
chemical mechanisms of pyrolysis.

Hemicellulose
Hemicellulose is a polymer of several different sugars, including

pentose such as xylose and arabinose and hexoses such as galactose,
glucose and mannose. Typically, hemicellulose content in bioresources
ranges ~25-30 wt% [29,30]. Surprisingly, there is very limited
information about pyrolysis/torrefaction of hemicellulose in the
literature. It has been reported [6,31-33] that hemicellulose is the very
first component to decompose during the biomass torrefaction process
generating a liquid and gas product stream.

In addition, select hemicelluloses are extracted and partially
degraded during kraft pulping [34,35] and are byproduct of juice
production [36]. Both of these industries and others may be a source of
hemicelluloses in the future and hence the investigation of pyrolysis
process of hemicelluloses will be very meaningful. The study of
pyrolytic behavior of hemicellulose may well begin with mannose–the
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most abundant sugar in softwood hemicelluloses, and xylose–the most
abundant sugar in hardwood hemicelluloses [29,30].

Tannin
Tannins are a commonly found biopolymer in the leaves and bark of

most plants and can be more abundant than lignin in some plant
structures [37]. There are two types of tannin–hydrolysable tannins,
which are derivatives of gallic acid and esterified to polyols such as
glucose. Condensed tannins are polymers of flavonoids and much
more complicated than hydrolyzable tannins [37-39]. There are very
limited references investigating the pyrolytic behaviors of tannins.
Some preliminary studies [33,38] indicate that pyrolysis of tannin will
produce catechol and methyl-catechol that makes this waste
biopolymer a promising sustainable resource for these two chemicals.
Several model compounds including gallic acid, flavonoid, and tannic
acid can be employed to provide insights into the mechanisms of
tannin pyrolysis

Lipid
The research on algae has recently become important in view of its

many advantages when compared to the lignocellulosic feedstocks
[7,40]. The thermal treatments including liquefaction, pyrolysis and
gasification of algae for production of biofuel have been reported as
promising methods to utilize this sustainable resource [41,42].
Normally, algae contain carbohydrates, proteins and lipids. In some
cases, lipid content in microalgae can reach as high as 70% of dry
biomass weight [7]. Even after oil extraction, the residual biomass will
still contain some lipids [40]. Therefore, the study of thermal
decomposition of lipid will facilitate an understanding of the pyrolytic
behavior of algae and its residue.

Proteins
For algae, the protein content is ~30-50% on a dry matter basis [7].

The protein is also one of the major components of some agriculture
wastes. However, there is very limited information about pyrolysis of
protein. The fundamental exploration of the pyrolysis of this nitrogen
containing natural resource will provide insight into the thermal
conversion of algae which can exhibit a series of nitrogen contained
pyrolysis products.

Chitin
Chitin is another abundant polysaccharide in nature with a

structure close to cellulose (i.e., replace C2-OH of cellulose with C2-
NH-Ac). It is a major structural constituent existing in the exoskeleton
or cuticles of crab and other invertebrates, as well as in the cell walls of
some fungi [43-45]. Chitin is represented as a linear polysaccharide
composed of N-acetyl-D-glucosamine. As the major by-product from
the seafood industry, it is a natural future target for pyrolysis studies.
Limited current applications of chitin include wound healing, drug
release control, antimicrobial activity for food industry, and hair-care
cosmetic additions [46-48]. Therefore, it will be of significant
economic and environmental of interest if such sustainable chitin bio
refining technologies could be developed. Due to its structural
similarity cellulose and ~7 wt% of nitrogen contents, the conversion of
chitin to nitrogen-containing chemicals or materials will be very
attractive. Catalytic liquefaction is a promising method, which could
depolymerize the chitin and also yield N-containing products.

The current annual stock of waste biomass is estimated as ~46 exa-
joules (EJ) from agricultural biomass and ~37 EJ from forestry biomass
on a worldwide basis, which totals approximately 83EJ, which is
around 20% of the total worldwide energy consumption. Based on the
U.S. billion-ton update, the currently (2012) available forestry wastes,
which typically are <$60 per dry ton, is ~90 million dry tons in the U.S.
Likewise, current available agricultural residues and waste resources at
the same price range are ~240 million dry tons in the U.S. [49].
Certainly, the thermochemical conversion process is a promising
approach to convert these waste bio resources to chemicals and biofuel
precursors [50]. Future studies on the pyrolytic behavior of biomass
components will facilitate the further application for the
thermochemical conversion of waste biomass to fuels and chemicals.
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