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Introduction
Pulses are known for their nutritious composition. They contain 

a high number of bioactive substances including enzyme inhibitors, 
oligosaccharides, and phenolic compounds offering beneficial effects 
[1]. Beans are classified as the main group of pluses used as common 
food for humans [2] and animals [3,4] due to their composition [5]. 
According to the 2005 Dietary Guidelines, a frequent consumption of 
beans (four or more times per week) is recommended [6]. Regarding 
the mineral composition, elements such as Ca, K, Mg are considered 
macronutrients, while Fe, Cu, Zn, Mn, Ni micronutrients [7].

Beans are characterized not only by high biomass production 
but also an intensive heavy metals accumulation [1]. In the case of 
heavy metals, it is known that both the direct contact with polluted 
environment and the consumption of contaminated food may cause 
serious health damages [8-10]. Dramatic effects of heavy metals on 
growth and development of animals and plants are widely known 
[11,12], and more recent studies have revealed that even essential 
elements, such as Mn, may be dangerous if extensive exposure (i.e., 
from food, work and the environment) occurs [13]. Horticultural 
plants and cereals are widely produced for human and animal 
consumption, and they can play an important role in the assumption 
of potentially toxic elements and heavy metals. The uptake of heavy 
metals depends on many factors, such as the biological specificity of the 
plant, the conditions of soil, water, and air in the growing environment 
[14-16]. However, the correlation between metal contaminants in soil 
and crops is complex and not obvious [17]. Indeed, the bioavailability 
of the contaminant is one of the main factors to be considered in order 
to assess possible effects on the food chain [18-20], but it’s not enough. 
It is crucial to know the elemental composition of food in relation with 
the estimated amount consumed. In this context, the World Health 
Organization (WHO) [21], the US- Environment Protection Agency 
(US-EPA) [22], and the European Commission (EC) [23] have already 
determined the provisional tolerable daily intake (PTDI) guidelines 
for potentially toxic elements. In the frame of Surveillance methods 
for routine monitoring, the association of analytical communities 
(AOAC) has developed the performance requirements of standard 
methods for heavy metals determination in a wide diversity range of 

foods and beverages, comprising plants. The required values for limit 
of quantification (LOQ), repeatability (r), reproducibility (R), and 
recovery [24] have been set. Atomic absorption spectroscopy (AAS) 
and inductively coupled plasma (ICP) based spectroscopies are the 
reference techniques [25,26].

Total reflection X-ray fluorescence (TXRF) is a technique for 
elemental analysis which has been recently becoming very attractive in 
environmental and food fields. Indeed, TXRF offers some advantages 
compared to AAS or ICP such as the small amount of sample required 
(few mg or μL), the absence of matrix effects, the possibility to perform 
direct analysis [27,28], and short measurement times (100-1000 s) 
for simultaneous multi-elemental analysis. Moreover, the actual 
commercial bench top systems do not need gasses or water cooling, 
allowing a very simple instrumental setup and reducing maintenance 
costs. TXRF is a geometrical modification of conventional X-ray 
fluorescence (XRF), leading to a substantial improvement of detection 
limits [29]. In recent years, many studies about TXRF analysis of 
environmental samples such as water [30-32], soils [33-36], air 
particulate matter [37-39], bio-monitors [40-42] and plants [43-46] 
have been published. Recently, applications of TXRF for the analysis 
of foodstuffs have been also reviewed [47]. An additional interesting 
aspect to be considered is that TXRF could be used as fast screening tool 
for simultaneous multi-elemental determination at the very low level.

One of the most successful ways to obtain valuable information 
about the interaction of heavy metals with plants is the determination 
of their compositions after growing in controlled environmental 
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Abstract
This work is to demonstrate the usefulness of total reflection X-ray fluorescence (TXRF) for fast and reliable 

quantitative analysis of heavy metals in plants used for accumulation studies. A model study of beans germination in 
lead contaminated environment under controlled laboratory conditions was realized. Metal accumulation in different 
parts of the plant was evaluated. Two different sample preparation procedures for TXRF analysis were considered: 
microwave acid digestion and direct analysis of suspended powdered sample. Quantitative determination of macro, 
micro, and trace elements was performed. Root showed the highest accumulation of lead, followed by stem, leaves 
and crops. Results showed that direct analysis of suspended powdered samples may be used as a fast and simple 
method for screening.
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conditions in presence or absence of heavy metals. The analysis of 
different parts of the grown plants, such as leaves, stems, roots and 
crops, figures out composition changes and heavy metals accumulation.

Aim of this work is to demonstrate the usefulness of TXRF for fast 
screening and reliable quantitative analysis of heavy metals in plants 
used for accumulation studies. A model study of plant germination 
and growth in Pb contaminated environment has been carried out in 
order to evaluate what may happen to plants grown under extremely 
polluted conditions. A first germination study, TXRF was used to 
prove its screening capabilities. Then, a second and more extensive 
germination study TXRF was used to assess the correlation between 
the content of lead in the environment and in different parts of bean 
plants germinated modulating the amount of soluble Pb.

Materials and Methods
Red kidney bean (Phaseolus vulgaris) commercially available for 

human consumption was used. Two germination experiments were 
performed. In the first germination study, 15 seeds were sown in 10 and 
100 mg/L of lead nitrate (Sigma Aldrich) solutions and MilliQ (MQ) 
water as reference. In the second germination study, seeds were grown 
in different concentration of Pb(NO3)2 solution, respectively 2, 4, 10, 
50, and 100 mg/L and MQ water. Germination studies were performed 
in laboratory conditions at 20-22°C and 12 h in artificial light and 12 h 
in dark. Plants growth was regularly observed. After 12 days the length 
of stems and roots was measured, and different parts of plant were 
collected and weighed. In particular roots, leaves, crops and stems were 
considered. The collected samples were dried at 60°C for 24 hours and 
weighed as dry mass. A total number of 24 plant samples were analyzed 
for the determination of macro, micro and trace elements.

The certified reference material (CRM) SRM-1570A (Trace 
Elements in Spinach Leaves) from NIST [48] was considered as 
reference and used without any further drying or grinding step.

For suspension, the dried sample was ground into fine powder 
using an agate mortar and sifted to 600 µm. About 10 mg of powdered 
sample were mixed with 990 μL of water solution containing Triton 
X-100 1% wt to prepare the suspension. After that, 10 µl of 100 mg/L 
gallium in nitric acid used as internal standard (IS), (Ga-ICP Standard 
Solution, Fluka, Sigma Aldrich) were added, in order to obtain a final 
Ga concentration of 1 mg/L. Samples were vortexed for 1 min at 2500 
rpm and homogenized in ultrasonic bath for 15 min.

For digestion, approximately 0.15 g of dried sample were put in 
Teflon vessels, added with 18 mL of concentrated nitric acid (65% - 
Sigma Aldrich) and 2 mL of MilliQ (MQ) water [49,50]. Samples were 
digested using CEM SP-D microwave system, equipped with 24-places 
auto-sampler closed vessel. Each sample was individually processed. 
The microwave energy applied was precisely controlled by monitoring 
temperature and pressure of the sample, to obtain the maximum 
efficiency. A five steps procedure was automatically performed to have 
complete digestion: 3 min at 160°C, 5 min at 180°C, 3 min at 200°C, 5 
min at 205°C, and 10 min at 210°C. After cooling, the volume of each 
sample was adjusted to 25 mL adding MQ water. Quantitative analysis 
was performed using Ga as IS, in concentration 1 mg/L. Therefore, 50 
µL of IS solution, with Ga concentration 10 mg/L, were added to 450 
µL of digested sample.

Quartz glass reflectors were cleaned, the blank was checked and 
siliconized, putting a drop of 10 µl of Silicone solution in isopropanol 
(Serva Electrophoresis, Heidelberg, Germany), to obtain a hydrophobic 
surface. A drop of 10 µl of the prepared specimens was deposited in 

the center of the prepared reflector and dried on a hot plate at 50°C. 
Three trials were prepared and measured for each specimen. TXRF 
measurements were carried out by a Bruker S2 Picofox spectrometer 
(Bruker AXS Microanalysis GmbH, Berlin, Germany), equipped with 
a Mo tube operating at 750 μA and 50 kV, multilayer monochromator, 
silicon drift detector (SDD) and energy resolution was 165 eV at 5.9 
keV. Samples were irradiated for 600 s live time [50].

Results and Discussion
A first evaluation of the effect of Pb on the growth of beans was 

performed measuring the percentage of germination (PG), defined as 
the ratio between the number of grown seeds with respect to the total 
germinated seeds. PG was 100% in the reference solution, MQ water, 
and decreased with increasing the concentration of soluble Pb, as it was 
expected [2]. PG about 40, 33, 27, 23, and 20 were found for 2, 4, 10, 50 
and 100 mg/L of Pb, respectively.

Figure 1 shows the effect of Pb concentration on the length of 
stems and roots of the second germination study, calculated as the 
average of three measured samples, highlighting a significant negative 
relationship.

Elemental analysis of germinated beans was performed by TXRF. 
The main requirements to perform TXRF analysis are having an X-ray 
reflector carrier and a sample deposited on it as a thin film [29]. For this 
reason, most of the literature about TXRF analysis reports the use of 
pretreatments for solid sample solubilization. A comparison of sample 
preparation procedures for TXRF analysis of plants is reported in Table 
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Figure 1: Mean length of stem and root of beans after 12 days of germination 
in different concentrations of Pb(NO3)2.

Type of  
pre-treatment

Type of 
Sample

Sample 
amount (g) Treatment conditions References

Dry Ashing Leaves 2 Heating at 500°C 
(muffle oven) [41]

Wet Digestion Leaves 0.1 Heating at 120°C in an 
electronical furnace [57]

Ultrasound-
assisted 

extraction

Spices
Leaves
Flowers

0.01
Sonication using a 

cup-horn sonoreactor 
and centrifugation

[51]

Microwave acid 
digestion

Leaves 0.5

Digested with HNO3 
and H2O2 in micorwave 

oven

[46]

[40]Lichens 0.15
Leaves

Root
Stem
Crop

0.15 This study

Suspended 
Powdered Root 0.01

Suspension of 
powdered in Triton 
X-100, 1% solution

This study

Table 1: Sample preparation procedures for elemental chemical analysis of plants 
by means of TXRF.
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1. Dry ashing and wet digestion are the most widely employed for this 
kind of analysis. However, both these procedures are time-consuming, 
they require laboratory instrument and loose of volatile elements. 
Ultrasound Assisted Extraction is a more rapid sample preparation 
procedure compared to above mentioned, but parameters such as 
slurry stabilization and sedimentation errors should be carefully 
considered. Moreover, each sample should be treated independently 
from the others. Even known as a critical step, microwave digestion is 
usually the preferred sample preparation procedure for TXRF analysis, 
leading to higher sample homogeneity and lower spectral background. 
Furthermore, direct analysis of suspended powders is also possible. 
Indeed, suspension is simple and fast, it does not require any additional 
instrumentation, lowering also the risk of sample contamination. The 
main drawbacks of suspension are lower homogeneity of the sample 
and higher spectral background, due to particles scattering.

We have tested digestion and suspension as valuable procedure for 
sample preparation and TXRF analysis. Accuracy of both the proposed 
methods was tested with SRM 1570 A, selected for the similarity of the 
matrix with the tested samples. Figure 2 shows TXRF spectra of digested 
and suspended CRM. Qualitative analysis of TXRF measurements 
identifies the presence of Cl, K, Ca, Ti, Cr, Mn, Fe, Ni, Cu, Zn, Pb, 
Br, Rb and Sr. The intensity of all elements, with respect to the IS, is 
higher for the digested sample, except for Cl. This may be due both 
to higher absorption effects and lower homogeneity of the suspended 

sample. The different behavior of Cl, having higher signal in the 
suspended sample, highlights one of the main drawbacks of digestion, 
the possible loss of volatile elements, which is removed as HCl gas 
during this process. Quantitative analysis is performed starting from 
K, because significant absorption effects measuring in air conditions 
and lower fluorescence yield occur for lighter elements [51]. All results 
and detection limits (DL) obtained for digested and suspended CRM 
are reported in Table 2. Certified reference values are reported for 
comparison. As it was expected, considering what have been previously 
stated, DL of all the elements is higher for suspension. The comparison 
between digestion and suspension show that: for K, Ca and Pb results 
of digested samples are higher with respect to suspended, while the 
opposite occurs for Mn, Ni, Cu, Zn Rb and Sr. Relative Standard 
Deviation (RSD) values are comparable and lower than 10% for all 
the elements with the exception of Pb, where the RSD is 14% and 24% 
for digested and suspended sample respectively, probably due to the 
low Pb concentration very near to the detection limit (DL). Statistical 
analysis, based on student t test, shows that results of TXRF analysis 
differ significantly from the reference values only for K. In this case, 
tcrit=4.30 (P>95%, n-1=2). Results obtained with CRM highlights some 
critical aspects in TXRF analysis of suspended sample. However, the 
obtained degree of accuracy suggests that this method can be proposed 
as a suitable tool for a reliable sample screening.

The first germination study was performed to verify that the 
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Figure 2: TXRF spectra of digested (red) and suspended (green) SRM 1570 A.

Elements Certified values (mg/Kg)
TXRF Digested TXRF Suspended

Mean ± CI (mg/Kg) RSD (%) texp DL (mg/Kg) Mean ± CI (mg/Kg) RSD (%) texp DL (mg/Kg)
K 29000 ± 520 21227 ± 2499 6 10.8 2.8 19879 ± 7173 2 4.4 5.7

Ca 15300 ± 410 13184 ± 2102 8 3.5 2.1 16103 ± 5793 2 0.5 4.4
Mn 75.9 ± 1.9 75.7 ± 16 3 0.04 0.3 68.1 ± 24 1 1.1 0.8
Ni 2.14 ± 0.1 2.57 ± 1 6 1.6 0.2 2.1 ± 1 9 0.1 0.4
Cu 12.2 ± 0.6 13.2 ± 2 1 1.3 0.14 11.4 ± 4 3 0.8 0.4
Zn 82 ± 3 85 ± 17 0.5 0.7 0.14 70 ± 25 1 1.6 0.3
Rb 12.7 ± 1.6 11.6 ± 2 2 1.6 0.1 8.9 ± 3 3 4.1 0.3
Sr 55.6 ± 0.8 57.2 ± 11 0.6 0.5 0.14 51.8 ± 19 3 0.7 0.4
Pb 0.2 ± 0.20 ± 0.1 14 0.1 0.25 ± 0.1 24 1.3 0.15

*Mean is the average of three measurements and CI is the confidence interval

Table 2: Results of TXRF analysis performed on digested and suspended SRM 1570 A in comparison with reference values. Precision is expressed as RSD.
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procedures agree with the average mineral composition of beans in all 
the analyzed parts of the plant: K and Ca (2-5%) are the major elements, 
Fe, Zn and Cu (2-50 mg/Kg) are minor elements, while Mn, Ni, Rb and 
Sr (<10 mg/Kg) are in traces. [7] Linear discriminant analysis (LDA) 
was applied to evaluate elements contribution to the differentiation of 
the four groups of samples: leaves, crops, stems and roots. LDA plot of 
two canonical functions is reported in Figure 4. Results of LDA show 
that the total variance is explained by three discriminant factors. The 
first factor is responsible for 67.4% of the total variance, and the largest 
absolute correlation is found for Mn, Ni, and Rb. The second factor 
accounts for 29.2% of total variance, with Fe and Cu having the largest 
correlation. The third factor explains 3.4% of the total variance and it 
includes K and Ca. LDA shows that only seven elements are sufficient 
to discriminate different parts of plants.

Pb is present in all the analyzed samples, with concentration higher 
than that reported in other similar studies [14-16,53]. This is probably 
due to the longer germination period, 12 days in our case compared to 
5-7 days of the other studies, and absence of chelators in the growth 
solution [54]. Pb uptake of plants grown in MQ water (reference) 
and those grown in all the considered concentrations of lead nitrate 
solutions shows significant differences. Unexpectedly, Pb was detected 
also in reference samples, strongly suggesting the unwanted presence 
of Pb in seeds. The relation between Pb content in plant samples and 
in the growing solution is shown in Figure 5 for roots, stems, leaves, 
and crops. A positive correlation is present in all cases, even if a poor 
linearity is observed for roots and stems. Pb accumulated in root is 
almost two orders of magnitude higher than in all the other parts of 
plant. This can be explained by the uptake mechanism of the plant, 
where metal ions penetrate through the roots. Roots act as a sort of 
barrier for Pb transfer into the plant [54], because it is known that 

model experiment would have leaded to a substantial and measurable 
accumulation of Pb in beans germinated in contaminated environment. 
Roots of 15 seeds germinated in MQ, and 10, 100 mg/L lead nitrate 
solution were measured by TXRF after suspension in a solution 
containing MQ water and Triton X-100, as stabilizing agent to prevent 
particles sedimentation and provide reproducible thin layers on sample 
carrier after drying [52]. The TXRF spectrum of suspended bean roots 
germinated in 10 mg/L Pb solution is reported in Figure 3. Qualitative 
analysis shows the presence of Cl, K, Ca, Ti, Mn, Fe, Ni, Cu, Zn, Pb, Br, 
Rb and Sr. The comparison of suspended samples spectra reported in 
Figure 2 and Figure 3 show a higher background in the case of roots. 
Indeed, the homogeneity of the CRM, with particle size less than 75 μm, 
is much higher with respect to the sifted root beans powder, leading to 
lower repeatability and less accurate quantitative analysis in the latter 
case [52]. The obtained results are reported in Table 3, where higher 
RSD values are calculated with respect to CRM. Despite of the lower 
accuracy these results allow to verify a significant accumulation of Pb 
in germinated beans proportional to the concentration of the growth 
solution, as well as the unexpected presence of measurable quantities 
of Pb in beans from uncontaminated environment.

On the basis of these preliminary results, we have performed a 
second and more specific germination study to analyze Pb accumulation 
in different parts of plants grown in solutions with modulated content 
of Pb. The TXRF spectrum of digested bean root germinated in 10 mg/L 
Pb solution is reported in Figure 3. Comparison with the spectrum 
of suspended root shows the same composition, highlighting the 
repeatability of the two germination study and TXRF measurements. 
As it was already observed for CRM (Figure 2), the background is 
higher for suspension. Results of quantitative analysis were reported 
in Table 4. Composition data obtained by both sample preparation 
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Figure 3: TXRF spectra of digested (red) and suspended (green) root beans germinated in 10 mg/L Pb(NO3)2.

Part of 
plant

Environment  Pb 
concentration (mg/L)

Elemental concentration (mg/Kg)
K Ca Mn Fe Ni Cu Zn Rb Sr Pb

Root
0 20471 ± 3559 7342 ± 1291 14 ± 3 273 ± 49 15 ± 3 44 ± 7 244 ± 42 3.1 ± 0.6 21 ± 4 62 ± 13

10 34260 ± 5947 2099 ± 372 12 ± 2 194 ± 36 9 ± 2 33 ± 6 161 ± 30 4.1 ± 0.9 3.5 ± 1 2759 ± 476
100 9616 ± 2344 869 ± 146 3 ± 2 60 ± 12 2.1 ± 0.4 13 ± 3 41 ± 7 n.d. n.d. 17615 ± 2964

*n.d. = less than detection limit

Table 3: Elemental concentration of suspended samples expressed as the average and 95% confidence range.
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Part Environment Elemental concentration (mg/Kg)

of plant Pb Concencentration
(mg/L) K Ca Mn Fe Ni Cu Zn Rb Sr Pb

Leaves

0 23850 ± 8605 483 ± 181 15 ± 6 128 ± 46 6 ± 2 23 ± 8 77 ± 29 10 ± 4 0.6 ± 0.5 0.30 ± 0.02
2 25723 ± 9370 711 ± 280 17 ± 7 130 ± 47 5 ± 2 21 ± 8 75 ± 27 6 ± 2 1.0 ± 0.4 3.5 ± 1
4 24919 ± 9000 1417 ± 628 18 ± 8 145 ± 53 8 ± 3 27 ± 60 91 ± 33 3 ± 1 3 ± 1 11 ± 4

10 25069 ± 9050 753 ± 274 13 ± 5 140 ± 51 9 ± 3 25 ± 9 98 ± 43 4 ± 2 0.8 ± 0.4 38 ± 14
50 18599 ± 6723 1610 ± 592 7 ± 3 108 ± 44 8 ± 3 19 ± 7 65 ± 23 5 ± 2 3 ± 1 156 ± 61

100 29643 ± 10794 1617 ± 629 13 ± 5 155 ± 60 13 ± 5 31 ± 11 113 ± 41 10 ± 4 2.5 ± 1 581 ± 212

Roots

0 18777 ± 6782 1230 ± 457 5 ± 2 76 ± 31 4 ± 2 11 ± 4 51 ± 19 6 ± 2 5 ± 2 0.60 ± 0.05
2 21484 ± 7814 1437 ± 519 6 ± 2 104 ± 38 5 ± 2 14 ± 5 67 ± 24 5 ± 2 5 ± 2 279 ± 101
4 22650 ± 8463 1795 ± 679 8 ± 4 85 ± 31 7 ± 6 15 ± 5 79 ± 31 3 ± 1 4 ± 2 484 ± 175

10 23742 ± 8569 1143 ± 414 8 ± 4 110 ± 40 4 ± 2 14 ± 5 77 ± 28 4 ± 2 3 ± 1 1282 ± 462
50 22465 ± 8111 1223 ± 590 6 ± 2 80 ± 31 7 ± 3 16 ± 6 62 ± 23 6 ± 2 1.3 ± 0.6 2947 ± 1065

100 20848 ± 7523 1627 ± 588 5 ± 2 61 ± 22 1.5 ± 1 15 ± 5 69 ± 27 n.d n.d 13920 ± 5024

Crops

0 11355 ± 3712 708 ± 440 15 ± 5 60 ± 20 1.1 ± 0.7 8 ± 2 28 ± 9 4 ± 1 3 ± 1 0.10 ± 0.05
2 12613 ± 4605 568 ± 205 16 ± 6 61 ± 22 0.8 ± 0.3 6 ± 2 28 ± 10 3 ± 1 4 ± 1 4 ± 1
4 13107 ± 4738 634 ± 244 17 ± 6 78 ± 28 1.4 ± 0.9 8 ± 3 34 ± 12 1.8 ± 0.6 4 ± 1 7 ± 3

10 10020 ± 3635 523 ± 189 16 ± 6 69 ± 25 0.9 ± 0.3 7 ± 3 37 ± 13 2.1 ± 0.8 3 ± 1 16 ± 6
50 7718 ± 2798 468 ± 220 14 ± 5 65 ± 25 0.7 ± 0.4 6 ± 2 27 ± 10 3 ± 1 3 ± 1 65 ± 24

100 10992 ± 4005 464 ± 168 14 ± 5 55 ± 20 0.9 ± 0.3 7 ± 3 28 ± 10 4 ± 1 2.4 ± 0.9 134 ± 49

Stem

0 20227 ± 1752 349 ± 30 12 ± 4 77 ± 28 3 ± 1 15 ± 5 54 ± 19 7 ± 2 0.4 ± 0.2 0.2 ± 0.09
2 10798 ± 3901 1714 ± 667 11 ± 4 44 ± 20 2.5 ± 1.3 12 ± 4 46 ± 17 5 ± 2 5 ± 2 21 ± 8
4 27529 ± 9940 1143 ± 571 15 ± 5 150 ± 56 8 ± 3 23 ± 8 100 ± 36 2.5 ± 1 2 ± 1 23 ± 8

10 20668 ± 7510 481 ± 175 12 ± 4 91 ± 33 5 ± 2 15 ± 6 66 ± 24 2.8 ± 1 0.6 ± 0.4 61 ± 22
50 26209 ± 9465 749 ± 276 10 ± 4 119 ± 43 10 ± 4 23 ± 8 80 ± 29 6 ± 2 1.6 ± 0.7 331 ± 120

100 25750 ± 9329 1134 ± 409 11 ± 4 117 ± 42 7 ± 2 20 ± 7 77 ± 28 5.5 ± 2 3 ± 1 750 ± 271
*n.d.: less than detection limit

Table 4: Elemental concentration of digested samples expressed as the average and 95% confidence range.

Figure 4: Results of LDA for two canonical functions applied to different part of plants.
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Pb has lower mobility than other heavy metals, i.e., Cd [53]. Indeed, 
Pb accumulation decreases from roots, stems, leaves and crops in 
agreement with literature [53,55,56].

Conclusion
The composition of plants germinated in polluted environment is 

fundamental to assess the potential health risk related to the assumption 
of heavy metals from food. In this work, two germination studies 
of beans in Pb contaminated controlled conditions are performed 
to evaluate TXRF as useful method for fast sample screening and 
accurate quantitative analysis. Two sample preparation procedures are 
considered: suspension of powdered samples in water and microwave 
acid digestion. The SRM 1570A is used as CRM to check the accuracy 
of quantitative analysis. A good correlation is achieved between 
certified values of SRM NIST 1570 A and those founded from both 
sample preparation methods. It is highlighted that direct analysis of 
suspensions gives less accurate results than microwave acid digestion. 
Our results confirms that root have the highest ability to accumulate 
Pb, followed by stem, leave and crop. In conclusion, this study 
demonstrates that TXRF is a suitable analytical technique for reliable 
quantitative elemental analysis of plant samples with a good accuracy, 
and direct TXRF analysis is suitable for screening purposes.
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