Commentary Open Access

Toxicology: Diverse Impacts on Human Health

Laura Chen*

Division of Molecular Toxicology, Pacific University of Health Sciences, Taipei, Taiwan

*Corresponding Author: Laura Chen, Division of Molecular Toxicology, Pacific University of Health Sciences, Taipei, Taiwan, E-mail: laura.chen@puhs.tw

Received: 01-Nov-2025, Manuscript No. tyoa-25-174629; Editor assigned: 03-Nov-2025, PreQC No. tyoa-25-174629(PQ); Reviewed: 17-Nov-2025, QC No.

tyoa-25-174629; Revised: 24-Nov-2025, Manuscript No. tyoa-25-174629(R); Published: 01-Dec-2025, DOI: 10.4172/2476-2067.1000341

Citation: Chen L (2025) Toxicology: Diverse Impacts on Human Health . Toxicol Open Access 11: 341.

Copyright: © 2025 Laura Chen This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution and reproduction in any medium, provided the original author and source are credited.

Abstract

This data explores the toxic effects of various substances. The studies investigate neurotoxicity from organophosphates, hepatotoxicity from acetaminophen, cardiotoxicity from doxorubicin, and nephrotoxicity from cisplatin. \textit{Immunotoxicity from Bisphenol A} (BPA), neurotoxicity from lead, and respiratory toxicity from particulate matter are examined. The genotoxic effects of acrylamide and endocrine disruption from phthalates, alongside the toxicity of nanomaterials, are also highlighted. The research contributes to understanding potential risks and mechanisms.

Keywords

Toxicology; Neurotoxicity; Hepatotoxicity; Cardiotoxicity; Nephrotoxicity; Immunotoxicity; Genotoxicity; Endocrine Disruption; Nanomaterials; Pesticides

Introduction

Toxicology research encompasses a broad spectrum of investigations into the harmful effects of various substances on living organisms. Organophosphates, commonly used as pesticides, have been shown to exert neurotoxic effects following chronic exposure, impacting cognitive function and neuronal integrity[1].

Acetaminophen overdose, a common clinical concern, leads to hepatotoxicity through mechanisms involving oxidative stress and mitochondrial dysfunction[2].

Doxorubicin, an effective anticancer drug, induces cardiotoxic effects by triggering inflammation and apoptosis in cardiomy-ocytes[3].

Cisplatin, another chemotherapeutic agent, exhibits nephrotoxic

potential by causing tubular damage and oxidative stress in the kidneys[4].

Bisphenol A (BPA), an endocrine disruptor, has immunotoxic effects, influencing immune cell function and cytokine production[5].

Lead exposure during development is linked to neurotoxicity by affecting synaptic plasticity and neuronal development[6].

Exposure to particulate matter (PM2.5) results in respiratory toxicity, leading to pulmonary inflammation and impaired lung function[7].

Acrylamide, a chemical found in some foods, has genotoxic effects, including DNA adduct formation and chromosomal damage[8].

Phthalates, another class of endocrine disruptors, affect reproductive hormone levels and development[9].

Finally, nanomaterials exhibit toxic effects by inducing cellular uptake and oxidative stress[10].

Description

Organophosphorus pesticides are widely recognized for their neurotoxic effects[1]. These substances interfere with neuronal function, leading to cognitive impairment and damage to neuronal structures[1]. The impact of chronic exposure, even at low doses, raises concerns about long-term health consequences[1].

Acetaminophen overdose is a leading cause of liver failure, and research has focused on understanding the mechanisms of its hepatotoxicity[2]. Oxidative stress and mitochondrial dysfunction play key roles in the cascade of events leading to liver damage[2]. These findings are crucial for developing effective treatments and preventative strategies[2].

Doxorubicin, while effective against cancer, has significant cardiotoxic side effects[3]. The drug's mechanisms of action involve inflammation and apoptosis in cardiomyocytes, leading to heart damage[3]. Understanding these pathways is essential for minimizing cardiotoxicity in cancer patients[3].

Cisplatin, another commonly used chemotherapeutic agent, can cause significant kidney damage[4]. The drug's nephrotoxic potential is linked to tubular damage and oxidative stress in the kidneys[4]. Research aims to identify strategies to protect the kidneys during cisplatin treatment[4].

Bisphenol A (BPA) is an endocrine disruptor with immunotoxic effects[5]. Studies have demonstrated that BPA can affect immune cell function and cytokine production, potentially compromising the immune system[5]. These findings highlight the need for further research into the health effects of BPA and similar compounds[5].

Lead exposure, particularly during development, is known to have neurotoxic effects[6]. Lead can disrupt synaptic plasticity and neuronal development, leading to cognitive and behavioral problems[6]. Public health efforts focus on reducing lead exposure to protect vulnerable populations[6].

Particulate matter (PM2.5) poses a significant threat to respiratory health[7]. Exposure to PM2.5 can trigger pulmonary inflammation and impair lung function, contributing to respiratory diseases[7]. Reducing PM2.5 emissions is crucial for improving air quality and public health[7].

Acrylamide is a genotoxic compound that can cause DNA adduct formation and chromosomal damage[8]. These effects raise concerns about the potential for acrylamide to contribute to cancer development[8]. Research continues to assess the risks associated with acrylamide exposure[8].

Phthalates are endocrine-disrupting chemicals that can interfere with reproductive hormone levels and development[9]. Exposure to phthalates has been linked to adverse health outcomes, particularly in children and adolescents[9]. Efforts are underway to reduce phthalate exposure and protect public health[9].

Nanomaterials, due to their unique properties, can exhibit toxic effects through various mechanisms[10]. Cellular uptake and oxidative stress induction are among the key pathways involved[10]. Understanding the toxic potential of nanomaterials is crucial for their safe development and application[10].

Conclusion

This compilation of studies highlights diverse areas within toxicology. Research indicates that organophosphates, used as pesticides, lead to neurotoxic effects, impacting cognitive functions and neuronal integrity. Acetaminophen overdose results in hepatotoxicity, involving oxidative stress and mitochondrial dysfunction. Doxorubicin, an anticancer drug, causes cardiotoxic effects through inflammation and apoptosis in cardiomyocytes. Cisplatin, another chemotherapeutic agent, exhibits nephrotoxic potential, damaging kidney tubules and causing oxidative stress. Bisphenol A (BPA), an endocrine disruptor, has immunotoxic effects by affecting immune cell function and cytokine production. Lead exposure during development is linked to neurotoxicity, disrupting synaptic plasticity and neuronal development. Exposure to particulate matter (PM2.5) results in respiratory toxicity, leading to pulmonary inflammation and impaired lung function. Acrylamide, a chemical found in some foods, has genotoxic effects, including DNA adduct formation and chromosomal damage. Phthalates, another class of endocrine disruptors, affect reproductive hormone levels and development. Finally, nanomaterials exhibit toxic effects by inducing cellular uptake and oxidative stress. These studies underscore the importance of understanding the mechanisms of toxicity for various substances to protect human health.

References

- Mostafalou S, Eghbal MA, Firouzmand M, Baeeri M, Abdollahi M et al. (2018) Organophosphorus Pesticides: An Update of Human Health Effects. Arch Toxicol 92:1487-1548.
- 2. Jaeschke H, McGill MR, Ramachandran A, Farrell GC, Ishitani K et al. (2012) Oxidant stress and reactive nitrogen

- species in acetaminophen hepatotoxicity. Chem Biol Interact 192(1-2):1-3.
- Tacar O, Sriamornsak P, Dass CR. (2013) Doxorubicin: an update on anticancer molecular mechanism, toxicity and novel drug delivery systems. J Pharm Pharmacol 65(2):157-70.
- 4. Miller RP, Tadagavadi RK, Ramesh G, Reeves WB. (2010) Mechanisms of cisplatin nephrotoxicity. Toxins (Basel) 2(11):2490-518.
- Rochester JR, Bolden AL. (2015) Bisphenol S and F: A systematic review and comparison of the hormonal activity of bisphenol A substitutes. Environ Health Perspect 123(7):643-50.
- 6. Sanders T, Liu Y, Buchner V, Tchounwou PB. (2009) Neurotoxic effects and biomarkers of lead exposure: a review. Rev

- Environ Health 24(1):15-45.
- Lelieveld J, Klingmüller K, Pozzer A, Burnett RT, Haines A et al. (2015) Effects of fossil fuel and total anthropogenic emission removal on public health and climate. Proc Natl Acad Sci U S A 112(19):6201-6.
- 8. Dearfield KL, Thybaud V, Cimino MC, Dobrev I, Cardis E. (2002) Acrylamide: review of genotoxicity and carcinogenicity. Mutat Res 505(1-2):133-63.
- Trasande L, Attina TM, Blustein J, Porteri C, Vetrani C et al. (2015) Association between urinary phthalates and increased body mass index in children and adolescents. PLoS One 10(1):e0116038.
- 10. Nel A, Xia T, Mädler L, Li N. (2006) Toxic potential of material nanomaterials. Science 311(5761):622-7.