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Abstract

In the last two decades, repetitive Transcranial Magnetic Stimulation (rTMS) has been increasingly employed in
Parkinson’s disease (PD) to enhance and restore motor function. Different cortical regions have been investigated
as treatment targets (i.e. primary motor cortex, dorsolateral prefrontal cortex and supplementary motor area) and
stimulation parameters (frequency, intensity, number of pulses) showed high heterogeneity between studies. Herein
we review 40 studies, both open-label and randomized controlled trials: mixed results have been yielded regarding
the effectiveness of rTMS treatment for motor symptoms in PD, due to the high variability of employed protocols,
sham procedures and target regions. Although overall results seem to support the notion of potential beneficial
effects of rTMS in PD, further research is needed to identify the optimal treatment parameters and to evaluate the
potential conjunct use of rTMS in patients with deep brain stimulation (DBS) implants.

Keywords: Parkinson’s disease; Transcranial magnetic stimulation;
Treatment; Motor function

Introduction
Parkinson’s disease (PD) is a chronic degenerative disorder of the

central nervous system, primarily affecting motor function. Motor
symptoms derive from the loss of dopaminergic neurons in the
substantia nigra [1], while later in the progression of the disease,
cognitive, behavioral and psychiatric symptoms may arise, particularly
dementia and depression [2].

Current pharmacological treatments aim at symptoms
management: in the last 30 years, levodopa (L-DOPA) has been the
most widely used treatment for motor symptoms and still represents
the most effective drug for PD [3]. Nevertheless, as the disease
progresses, L-DOPA efficacy diminishes, leading to fluctuations in
drug response (“on-off” periods). This requires a dose increasing,
which usually leads to major side effects such as levodopa-induced
dyskinesias (LIDs) [4]. Also, pharmacological agents seem to be
effective in the short-term but cannot stop the dopaminergic
degeneration and, consequently, the disease progression. Therefore,
non-pharmacological approaches with potential disease-modifying
effects have been developed: surgical procedures, such as deep brain
stimulation (DBS), are currently widely employed, yet their use is
restricted to a few selected patients due to their invasive features [5].
On the other hand, repetitive Transcranial Magnetic Stimulation
(rTMS) has been investigated as a non-invasive candidate treatment
for PD, particularly for motor symptoms. Two decades of studies have
provided mixed results regarding rTMS efficacy in PD, probably due
to the variability among protocols parameters and treatment targets.
Herein we will review the most employed rTMS treatment protocols
for motor symptoms in PD, summarizing results obtained from 40
studies, both open-label and randomized controlled trials (RCTs),

focusing on different target areas. We will also briefly discuss the
potential use of rTMS in patients with DBS implants.

Cortical And Functional Alterations in Parkinson’s
Disease

Several cortical and subcortical dysfunctions have been identified in
PD. The disease is generally attributed to disruptions in the
nigrostriatal dopamine system: these are also responsible of a global
effect on brain organization at a cortical level [6]. One of the major
evidences is the progressive loss of dopaminergic neurons in the
substantia nigra pars compacta, which leads to a consequent depletion
of dopamine in the striatum and is responsible of impaired synaptic
plasticity [7]. The impairment in neuroplasticity, particularly in long-
term depression (LTD) and long-term potentiation (LTP) induction,
seems to be related to symptoms onset [7,8].

Corticospinal excitability has been investigated in PD through the
employ of TMS protocols (e.g. paired-associative stimulation – PAS),
focusing on motor-evoked potentials (MEPs) responses, which are
thought to reflect LTD-like or LTP-like phenomena [9]. Cortical
plasticity seems to be impaired since the early stages of disease [10]
and dopaminergic agents, such as L-DOPA, may not suffice to restore
plasticity [11]. Multiple corticospinal pathway alterations were found
in PD: an excessive excitability, concomitant to or resulting from
reduced inhibition, was found at ‘rest’, while defective activation or
inadequate modulation was found during production of a voluntary
output [12]. Motor cortical facilitation appears to be increased while
inhibition is decreased in PD: increased cortical facilitation, which
may be a compensatory mechanism, partly accounts for the decreased
inhibition, but there is also impairment in synaptic inhibition in PD
[13]. Diminished central silent period (CSP) and short-interval
intracortical inhibition (SICI) were reported, while an enhanced size of
MEPs has been illustrated [12].
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Lastly, neuroimaging studies showed a decreased activity in the
supplementary motor area (SMA), dorsolateral prefrontal cortex
(DLPFC) [14] and primary motor cortex (M1): the latter was found to
be hypoactive in early PD and hyperactive in the advanced stages of
the disease [15,16].

Rtms Rationale in Parkinson’s Disease
There is very little basic knowledge about the mechanisms of action

of rTMS in PD, in fact remarkably different protocols have been
employed: both low- and high-frequency stimulation have been
investigated, as well as focal or circular coils and both motor and
frontal/prefrontal targets. Since rTMS is capable to reach a 2-cm
depth, subcortical structures such as the basal ganglia, cannot be
directly modulated by the stimulating coil but may be modulated
through functional connections with cortical areas (network effect)
[17]. For instance, a series of studies showed functional changes within
the basal ganglia after high-frequency rTMS over the left M1 or left
DLPFC, which determined a focal release of endogenous dopamine
[18-20]. This led to the development of protocols targeting three main
cortical areas: the M1, SMA and DLPFC, characterized by a
pathological increase or decrease in excitability during various stages
of PD. Other cortical regions have been targeted (i.e. vertex, dorsal
premotor cortex (PMd), occipital cortex), yet the number of studies on
these targets is very limited and results have been generally
inconsistent.

rTMS treatment in PD generally aims at improving motor
symptoms, such as LIDs, bradykinesias and freezing of gait (FOG),
though some studies also focused on non-motor symptoms, including
depression and apathy [21], speech and voice [22,23] and cognitive
functions [24].

An increase in cortical excitability and facilitatory effects on M1 are
broadly documented after high-frequency stimulation [25,26]; by
contrast, low-frequency stimulation is known to decrease cortical
excitability [27]. Nevertheless, it is difficult to establish univocally the
exact effects of low- or high-frequency protocols, since it is likely that
the effects depend on the state of activity of the brain at the time of
stimulation [28].

rTMS Studies in PD
In the last two decades a growing number of studies investigated the

role of rTMS in the treatment of PD: herein we review 40 studies
[29-68], whether randomized or open-label, summarizing results
obtained by stimulation targeting different cortical regions. We
decided to include only studies focusing on motor symptoms,
therefore studies employing neuropsychological testing, mood rating
scales, voice and speech rating scales and cortical excitability or
neurotransmitter levels measures were excluded. Most studies focused

on three regions: M1, SMA and DLPFC [29-63] [Table 1-3], while
fewer targeted other areas [36, 61,64-68][Table 4]. Nine studies
[32-34,39,45,52,54,55,63] tested the effects of only one rTMS session,
while the remaining administered a higher number of sessions,
ranging from 2 to 20. Most studies, especially those targeting M1, SMA
and DLPFC, administered high-frequency stimulation (24 of 40
studies) [29-34,37-38,40-44,49-51,53-55,57-58,60-62], while low-
frequency stimulation was employed primarily in studies targeting
other regions. The intensity of stimulation ranged from 20% of motor
threshold to 120%. Sample sizes were generally under 30 subjects,
except for five studies [36,40,57,58,64]. In regard to outcome
measures, the Unified Parkinson’s Disease Rating Scale – Section III
(UPDRS-III) was the most employed measure (33 of 40 studies)
[32-34,36-44,47-51,53-68], yet some studies employed other motor
function measures such as movement and reaction time [29,30,35],
Grooved Pegboard test for fine movement [31], pointing, pronation
supination, Purdue Pegboard Test [45], movement frequency [46] and
gait kinematics [52].

rTMS studies targeting M1
25 studies [29-53] [Table 1] focused on M1 as target area: 4 of these

[36, 41, 43, 53] also provided multiple targets stimulation. Most
studies (17 of 25) [29-34,37-38,40-44,49-51,53] employed high-
frequency stimulation, while the number of pulses and the number of
sessions were characterized by high heterogeneity, ranging from 75 to
3000 pulses per session and from 1 to 20 sessions. The first study
performed in PD patients [29] reported an improvement of movement
time and reaction time following high-frequency rTMS over M1: most
later studies (19 of 25) [29-30,33-35,37-42,44-46,48-53] also found
improvements on motor performance after rTMS treatment. One of
these studies [53] employed a deep TMS (dTMS) protocol with an H-
coil to stimulate motor and prefrontal cortices: the authors found a
significant UPDRS-III improvement after treatment. The remaining 6
studies [31,32,36,43,45,47] found no significant improvements after
rTMS treatment: Ghabra et al. [31] found no significant effect of high-
frequency rTMS on fine movement in 11 PD patients. Tergau et al.
[32] found no significant effect on both UPDRS-III and reaction time
following both low- and high-frequency stimulation. Okabe et al. [36]
found no significant differences between M1, occipital or sham
stimulation in a sample of 85 subjects, since UPDRS total and motor
scores improved to same extent in all groups. Rektorova et al. [43]
found no improvements in freezing of gait after low-frequency
stimulation both over M1 and DLPFC. Rothkegel et al. [45] found no
clinically relevant difference after one session of both conventional
low- and high-frequency rTMS and theta-burst stimulation: none of
the protocols excelled placebo stimulation. Lastly, Filipovic et al. [47]
found no significant differences in motor function after 4 sessions of
low-frequency rTMS.

Study N of patients Stimulation parameters N of pulses /
session N of sessions Outcome measure

Pascual-Leone et al., [29] 6 5 Hz – 10% RMT n.a. 3 Movement time; reaction time

Siebner et al., [30] 12 5 Hz – 90% RMT 750 2 Movement time

Ghabra et al., [31] 11 5 Hz – 90% RMT n.a. 2 Grooved Pegboard test (Fine movement)

Tergau et al., [32] 7 1/ 5/ 10/ 20 Hz – 90% MT 500 1 UPDRS-III;
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reaction time

Siebner et al., [33] 10 5 Hz – 90% RMT 2250 1 UPDRS-III

De Groot et al., [34] 9 5 Hz – 90% RMT 2250 1 UPDRS-III; movement time

Sommer et al., [35] 11 1 Hz – 120% RMT 900 3 Movement time

Okabe et al., [36] 85 0.2 Hz – 110% AMT 100 8 UPDRS-III

Khedr et al., [37] 19 5 Hz – 120% MT 2000 10 UPDRS-III

Bornke et al., [38] 12 10 Hz – 90% RMT 1000 2 UPDRS-III

Lefaucher et al.,[39] 12 0.5 / 10 Hz – 80% RMT 600 / 2000 1 UPDRS-III

Khedr et al., [40] 35 10 / 25 Hz – 100% RMT 3000 6 UPDRS-III

Lomarev et al., [41] 18 25 Hz – 100% RMT 1200 8 UPDRS-III

Khedr et al., [42] 20 25 Hz – 100% RMT 3000 6 UPDRS-III

Rektorova et al., [43] 6 10 Hz – 90% RMT 1350 5 UPDRS-III; FOG

Kim et al., [44] 9 5 Hz – 90% RMT 75 2 UPDRS-III

Rothkegel et al., 2009 22 0.5 / 10 Hz – 80% RMT 600 / 2000 1 Pointing; pronation supination; Purdue
Pegboard Test

Gruner et al., [46] 15 1 Hz – 90% RMT 1800 4 Movement frequency

Filipovic et al., [47] 10 1 Hz – 90% RMT 1800 4 UPDRS-III

Kodama et al., [48] 1 0.9 Hz – 110% AMT 200 – 600 20 UPDRS-III

González-García et al., [49] 10 25 Hz- 80% RMT 200 15 UPDRS-III

Benninger et al.,[50] 13 50 Hz – 80% AMT 600 8 UPDRS-III

Maruo et al., [51] 21 10 Hz – 100% RMT 1000 3 UPDRS-III

Von Papen et al., [52] 10 1 Hz – 80% RMT 900 1 Gait kinematics

Spagnolo et al., [53] 27 10 Hz – 90% RMT 1680 12 UPDRS-III

Table 1: rTMS studies in PD: M1 as target area. rTMS, repetitive Transcranial Magnetic Stimulation; PD, Parkinson’s Disease; M1, Primary
Motor Cortex; Hz, Hertz; MT, Motor Threshold; AMT, Active Motor Threshold; UPDRS (III), Unified Parkinson’s Disease Rating Scale (Section
III); FOG, Freezing of Gait.

rTMS studies targeting SMA
rTMS treatment has been administered over the SMA by 6 studies

[54-59] (Table 2): two employed high-frequency stimulation [54,57],
two employed low-frequency [56,59] and the remaining two employed
both high- and low-frequency stimulation [55,58]. The number of
pulses was between 900 and 1800 pulses/session and the treatment
duration involved more than one session except for two studies
[54,55]. SMA trials yielded mixed results: the first study on this target
area [54] reported a worsening in complex movements after one
session of high-frequency rTMS, while all the other five found some
degree of improvement. Koch et al. [55] reported that low-frequency
stimulation markedly reduced dyskinesias, while high-frequency
stimulation determined a slight, but not significant increase in
dyskinetic behavior. A transient reduction in dyskinesias was also

observed after one session of low-frequency rTMS, without further
beneficial effects with repeated sessions [56], while a decrease in LID
lasting for 24 hours after 10 sessions of low-frequency rTMS, yet
without a change in motor performance was observed by Sayin et al.
[59]. Modest improvements in motor symptoms were also reported by
Hamada et al. [57]. One randomized, double-blind, sham-controlled,
multicenter study with a parallel design [58] provided Class 1 evidence
for the effectiveness of 1 Hz rTMS over the SMA for motor symptoms
in PD: low-frequency stimulation was compared to both high-
frequency and sham stimulation and the effects were monitored for up
to 20 weeks: at this time, results showed 6.84-point improvement of
the UPDRS part III in the 1-Hz group, while sham stimulation and 10-
Hz rTMS improved motor symptoms transiently, but their effects
disappeared during the observation period.

Study N of patients Stimulation parameters N of pulses / session N of sessions Outcome measure
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Boylan et al., [54] 10 10 Hz – 96% MT 2000 1 UPDRS-III

Koch et al., [55] 8 1 / 5 Hz – 90 / 110% RMT 900 1 UPDRS-III

Brusa et al., [56] 10 1 Hz – 90% RMT 900 5 UPDRS-III

Hamada et al., [57] 99 5 Hz – 110% RMT 1000 8 UPDRS-III

Shirota et al., [58] 106 1/ 10 Hz – 110% RMT 1000 8 UPDRS-III

Sayin et al., [59] 17 1 Hz – 90% RMT 1800 10
UPDRS-III;

AIMS

Table 2: rTMS studies in PD: SMA as target area. rTMS, repetitive Transcranial Magnetic Stimulation; PD, Parkinson’s Disease; SMA,
Supplementary Motor Area; Hz, Hertz; RMT, resting motor threshold; MT, Motor Threshold; UPDRS (III), Unified Parkinson’s Disease Rating
Scale (Section III); AIMS, Abnormal Involuntary Movement Scale.

rTMS studies targeting DLPFC
7 studies [41,43,53, 60-63] employed rTMS over the DLPFC and

four [41,43,53,61] provided multiple targets stimulations. All studies
except one [63] employed high-frequency stimulation, UPDRS-III as
outcome measure and more than one session of rTMS. Only two of the
multiple targets studies found some degree of improvement after
rTMS treatment: cumulative benefits due to the stimulation of both

M1 and DLPFC in each session (300 pulses for each of 4 target areas:
left and right M1, left and right DLPFC) were found [41], as well as
UPDRS-III improvements after dTMS stimulation with a double
target protocol (840 pulses on M1 and 840 pulses on PFC) [53]. The
remaining studies [43,60-63] failed to find any improvements in
motor function after rTMS treatment.

Study N of patients Stimulation parameters N of pulses / session N of sessions Outcome measure

Lomarev et al., [41] 18 25 Hz – 100% RMT 1200 8 UPDRS-III

del Olmo et al., [60] 13 10 Hz – 90% RMT 450 10 UPDRS-III

Rektorova et al., [43] 6 10 Hz – 90% RMT 1350 5 UPDRS-III; FOG

Sedlackova et al., [69] 10 10 Hz – 100% RMT 1350 3 UPDRS-III

Pal et al., [62] 22 5 Hz – 90% RMT 600 10 UPDRS-III

Nardone et al., [63] 4 1 Hz – below AMT 1800 1 UPDRS-III

Spagnolo et al., [53] 27 10 Hz – 100% RMT 1680 12 UPDRS-III

Table 3: rTMS studies in PD: DLPFC as target area. rTMS, repetitive Transcranial Magnetic Stimulation; PD, Parkinson’s Disease; DLPFC,
Dorsolateral Prefrontal Cortex; Hz, Hertz; RMT, resting motor threshold; UPDRS (III/IV), Unified Parkinson’s Disease Rating Scale (Section III/
IV); FOG, Freezing of Gait.

rTMS studies targeting other cortical regions
7 studies [36,61,64-68] focused on rTMS stimulation over other

cortical regions apart from M1, SMA and DLPFC, although two
studies [36,61] provided multiple targets stimulation including M1
and DLPFC. Only one study [61] employed high-frequency
stimulation and was among the multiple targets studies. All studies
except for the abovementioned one [61] delivered a low number of
pulses, ranging from 30 to 100, although in repeated sessions. Three
studies [64-65,68] targeted the vertex of the skull: the first 2 studies
[64-65], conducted by the same authors, reported significant
improvements in motor symptoms as suggested by the decrease in
UPDRS scores, while the latter [68] found no differences between real
and sham stimulation groups and suggested the lack of therapeutic
value of this stimulation protocol, which should have been abandoned.

Other three studies [36, 61, 67] focused on the occipital cortex as target
area and no improvements were found. Sedlackova et al. [61] targeted
the occipital cortex as control stimulation site and delivered high-
frequency rTMS stimulation on DLPFC and dorsal Premotor Cortex
(PMd): results showed no significant effect for both areas on all
outcome measures. Lastly, two studies [66,67] targeted frontal regions,
both with low-frequency stimulation and a low number of pulses:
Shimamoto et al. [66] found showed a significant decrease of the
UPDRS scores after 2 months, and a significant increase in ADL
scores. Ikeguchi et al. [67] found that frontal rTMS significantly
improved motor performances including ADL and motor scores in
UPDRS, while occipital rTMS showed no any significant effects on
clinical tests: compared to occipital rTMS, frontal rTMS significantly
improved ADL of UPDRS. 
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Study N of patients
Target

area
Stimulation parameters N of pulses/

session N of sessions Outcome measure

Mally & Stone, [64] 49 Vertex
1 Hz –

30-60% MO
30 x 2 10 UPDRS

Mally & Stone, [65] 10 Vertex 1 Hz – 20% MT 30 20 UPDRS; GRCT

Shimamoto et al., [66] 18 Frontal 0.2 Hz – 700 V 60 8 UPDRS-III

Ikeguchi et al., [67] 12 Frontal; occipital
cortex 0.2 Hz – 70% MO 60 6 UPDRS-III ADL

Okabe et al., [36] 85 Occipital cortex 0.2 Hz – 110% RMT 100 8 UPDRS-III

Sedlackova et al., [61] 10 PMd; occipital cortex 10 Hz – 100% RMT 1350 3 UPDRS-III

Arias et al., [68] 18 Vertex 1 Hz – 90% RMT 100 10 UPDRS-III

Table 4: rTMS studies in PD: Other target areas. rTMS, repetitive Transcranial Magnetic Stimulation; PD, Parkinson’s Disease; PMd, dorsal
Premotor Cortex; PFC, Prefrontal Cortex; Hz, Hertz; MO, maximum output; UPDRS (III), Unified Parkinson’s Disease Rating Scale (Section
III); GRCT, graded rating clinical test; ADL, Activities of Daily Living.

Discussion
Overall, there is growing evidence of potential beneficial effects of

rTMS treatment for motor symptoms in PD: of the 40 studies
reviewed, only 12 [31,32,36,43,45,47,54,60,61-63,68] did not find any
improvement and one of these reported a symptoms worsening after
stimulation [54]. Nevertheless, the magnitude of effects varied
significantly across studies, probably due to the heterogeneity between
stimulation protocols (in terms of frequency, intensity, duration) and
targeted regions. Moreover, many studies were not sham-controlled
and for sham-controlled studies, different methods of sham
stimulation have been used: tilted [33,37,54,56,60,62], sham [39,47,63]
and inactive coils [50,66,68] have been used, as well as occipital
stimulation [40,49,61], coil back surface [41] and realistic sham
[51,57,58]. A very recent review [69] examined 20 RCTs of rTMS
treatment for motor dysfunction in PD to evaluate the efficacy of
treatment and identify protocols factors that moderate the effects of
treatment. The authors reported a significant medium effect size
(standardized mean difference – SMD = 0.46) favoring active rTMS
over sham treatment in the reduction of motor symptoms in PD.
Moreover, the most efficacious treatment protocols appeared to be
high-frequency stimulation over M1 and low-frequency stimulation
over other frontal regions. The effect sizes for high-frequency rTMS
over M1 (SMD = 0.77) and for low-frequency stimulation over frontal
areas (SMD = 0.50) were the highest and significant, while the those
obtained for low-frequency stimulation over M1 (SMD =0.28) and
high-frequency over frontal regions (SMD = 0.23) were not significant.
Also, in terms of moderating factors, the number of pulses per session
and the number of pulses across sessions appeared to be significant
predictors of rTMS effects: a greater number of pulses per session or
across sessions was associated with larger treatment effects. These
results updated the previous reviews [70,71], which also reported
significant, albeit modest, positive effects of rTMS treatment on motor
symptoms in PD. Further research regarding the efficacy of rTMS
treatment on motor symptoms in PD is definitely needed: the
clarification of optimal stimulation parameters (intensity, frequency,
number of pulses) and target area is compelling. Long-term effects of
rTMS treatment also need to be clarified to establish the optimal
treatment duration (number of sessions): the immediate effects after

one or a couple of consecutive sessions, albeit significant, might be
short-lived, while a higher number of sessions requires careful
monitoring for the likelihood of an increase of adverse effects after
multiple sessions. Also, future studies should focus on the response to
rTMS treatment depending on the stage of illness to identify
individualized stimulation parameters for early and advanced stages of
PD, targeting the prevailing symptoms, either motor or cognitive.

Regarding rTMS safety, a recent review [72] examined 1137 patients
with PD who underwent rTMS treatment: only 51 adverse events were
attributed to rTMS treatment and were mainly scalp pain, mild
transient headache, transient tinnitus, nausea and transient increase in
pre-existing back pain. All adverse events attributed to rTMS were
minor and no studies reported the need for medical care in response
an event: given the low rate of occurrence and the transient nature of
the events, the authors concluded that rTMS does not carry significant
risk of adverse events in the PD population. Moreover, TMS has also
been used in patients with DBS implants: of 15 studies [73-87], only
three [73,75,76] employed rTMS, while all the other employed single
pulse TMS paradigms. No adverse events were reported in all 122
patients, so that preliminary evidence suggests that rTMS do not carry
significant risk in this population [72]. Nevertheless, some recent
contributions suggest to avoid rTMS administration in DBS implanted
patients, due to the risk of electrical tissue injury [88,89]. An intriguing
perspective may be the rethinking of TMS and DBS as complementary
strategies instead of alternative procedures: as an investigational tool,
TMS may help in evaluating cortical excitability before and after DBS.
For example, TMS studies have shown subthalamic nucleus (STN)
DBS ability to modulate cortical excitability, restoring intracortical
inhibition [85,86], while basal ganglia DBS seem to mimic the effects
of pharmacological dopaminergic therapy on PD patients cortical
activity, probably recovering the modulation of thalamo-cortical
motor pathway [87]. TMS and functional imaging might also be used
to optimize the delivery of STN-DBS to improve specific functions
such as speech production and general motor abilities [77]. Ultimately,
the conjunct use of TMS and DBS might provide useful insights
regarding the physiological mechanisms underlying the disorder and
DBS mechanism of actions and, therefore, TMS employ in the
selection of suitable candidates for DBS treatment might be promising.
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