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Introduction
Introns may be a good source for finding DNA polymorphisms in 

the eukaryotic genome as they rapidly accumulate mutations without 
greatly affecting gene function. Exon-primed intron-crossing (EPIC) 
polymerase chain reaction (PCR) has been developed and applied to 
find genetic polymorphisms in a wide variety of animals [1-5]. Primers 
designed to target conserved areas may have a wide utility across a 
broad range of animal taxa [6-10]. The universality of the primers for 
EPIC PCR depends on the conservation of exonic sequences, and the 
efficiency of PCR amplification may be primarily affected by gene copy 
number, including pseudogenes. Genes encoding ribosomal proteins 
(RPs) may be highly suitable for designing universal primers, as RPs are 
the most highly conserved genes among eukaryotes and are typically 
encoded by a single gene [11,12]. Indeed, the coding sequences of RP 
genes are reported to be highly conserved among humans, fruit flies, 
and nematodes [13]. In this study, we designed 19 primer pairs in exons 
of 12 RP genes and demonstrated the universal utility of these primer 
pairs using samples of distantly related aquatic animal species.

Materials and Methods
Eighty different ribosomal protein genes were mapped to 

human chromosomes [14], and cDNA data for the homologous 
genes of the copepod (Lepeophtheirus salmonis, Acartia pacifica, or 
Calanus helgolandicus), sea urchin (Strongylocentrotus purpuratus or 
Paracentrotus lividus), and fish (Danio rerio or Ictalurus punctatus) 
were obtained from the Gen Bank database. RP genes that were not 
found in all three of these reference animal taxa were not analyzed. 
BLAST searches [15] using these reference cDNA sequences against the 
draft genome sequences of the Pacific blue fin tuna [Thunnus orientalis; 
accession nos. BADN01000001-BADN01133062 in the DNA Data 
Bank of Japan (DDBJ)] [16] detected partial sequences of 31 RP genes 
among 35 bluefin tuna scaffolds. For each of the 31 genes detected, a 
multiple sequence alignment was constructed by ClustalX version 1.83 
[17], and conserved regions suitable for designing universal primers 
were surveyed. Crude DNA extractions of the long-spined sea urchin 
(Diadema savignyi), neon flying squid (Ommastrephes bartramii), 
golden crab (Chaceon granulatus), mako shark (Isurus oxyrinchus), 
and skipjack tuna (Katsuwonus pelamis) derived from our laboratory 
collection were used for evaluating the universal utility of the primers. 
PCR amplifications were performed in a 12 μL final volume containing 

1 μL of template DNA, 1.2 μL 10x buffer, 1 mM of each deoxynucleotide 
phosphate (dNTP), 0.4 μM of each primer, and 0.5 units of EX Taq 
polymerase (Takara, Japan). The same reaction conditions were applied 
for all primer pairs in which the reaction mixtures were preheated to 
94°C for 4 min, followed by 35 amplification cycles (94°C for 30 sec, 
55°C or 58°C for 30 sec, and 72°C for 50 sec), with a final extension 
at 72°C for 7 min. PCR products were electrophoresed on a 1.5% 
agarose gel (UltraPure Agarose, Invitrogen, Carlsbad CA), stained with 
ethidium bromide and photographed.

Results and Discussion
Relatively conserved exon sequences among distant reference 

animal taxa were determined for 12 genes in which 19 primer pairs 
(A–S) were designed for EPIC PCR (Table 1). To design the primers, 
we adopted a primer length of 20 bases, a moderate GC content 
(approximately 50%), and usually less than three degenerated bases, 
and because the conserved regions among the variety of taxa were not 
extensive, there were limited options for selecting primer positions.

At a lower annealing temperature (55°C), amplification of single 
to multiple fragments ranging from approximately 100 to 4,000 bp 
(fragments smaller than 100 bp were not counted) was observed in at 
least three taxa for each primer pair (Figure 1). The number of amplified 
fragments decreased at the higher annealing temperature (58°C), to 
the extent that no amplified fragments were obtained for three primer 
pairs (B, I, and K; Figure 2). Amplification failure may be attributable 
to primer mismatch, large numbers of processed pseudogenes [18], 
and/or non-specific annealing, which may be responsible for multiple 
fragment amplification. At the higher annealing temperature, the 
number of primer pairs which amplified a single fragment was 13 pairs 
in tuna, followed by 8 in sea urchin, 6 in shark, 3 in squid, and only 2 
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annealing temperature (Figure 2) were selected and subjected to 
direct nucleotide sequencing using PCR primers. Partial or complete 
nucleotide sequences were successfully determined for eight (one each 
from primer pairs D, E, and G; two from L; and three from Q) out of 
13 amplicons. Conserved exon sequences and expected exon–intron 
motifs for the respective RP genes were confirmed in six amplicons from 
D, E, G, and Q, whereas these were not determined in two amplicons 

Pair Gene Primer Orientation Primer sequence (5'-3') Distance*

A S2 RPS2exCF forward CCHGTNCCCAAGAAGCTGCT 70

S2 RPS2exDR reverse GGTYTCCTTCCASAGRTCAG 43

B S3 RPS3ex1F forward AAATCTCVAAGAAGAGRAAG 2

S3 RPS3ex2R reverse ACRCCGGAGTANCCATCCTC 62

C S3 RPS3ex2F forward GAGGATGGNTACTCCGGYGT 53

S3 RPS3ex3R reverse CKCTTCTGVACMACAGCGGT 48

D S3 RPS3ex3F forward ACCGCTGTKGTBCAGAAGMG 30

S3 RPS3ex4R reverse GTCGCAACCTTCTCAGCRTA 24

E S3 RPS3ex4F forward TAYGCTGAGAAGGTTGCGAC 74

S3 RPS3ex5R reverse AASCKCAGRACACCATARCA 6

F S14 RPS14exAF forward GCCTCMTTYAACGAYACCTT 29

S14 RPS14exBR reverse CKGTCRGCCTTYACCTTCAT 30

G S17 RPS17exBF forward AGWGGMATCTCCATCAARCT 49

S17 RPS17exCR reverse GGRTCRACCTCGATGATSTC 18

H S23 RPS23exAF forward TCACACGCCAARGGCATYGT 15

S23 RPS23exBR reverse ATRGCAGAGTTRGGCTGCTT 14

I S23 RPS23exBF forward AAGAACGGCAARAAGATCAC 42

S23 RPS23exCR reverse TGACCYTTACGWCCRAATCC 26

J S27 RPS27exAF forward GCTAARATYCARGAYAAGGA 4

S27 RPS27exBR reverse GTGCGKCCRTCYTCCAGCTG 43

K L3 RPL3exAF forward GGCTACAAGGCYGGYATGAC 39

L3 RPL3exBR reverse CAGTTYTTGTAGAAKCGACG 149

L L3 RPL3exBF forward GCGTCGMTTCTACAARAACT 2

L3 RPL3exCR reverse GTGAARGCCTTCTTCTYGGA 9

M L3 RPL3exDF forward CAAGGGWCACGGRTDCAAGG 2

L3 RPL3exER reverse GTCTTRCGGGGMAGCTTCTT 25

N L8 RPL8exBF forward AGTTCATCTACTGCGGCAAG 37

L8 RPL8exCR reverse ATGAYGGTDCCYTCAGGCAT 5

O L9 RPL9exCF forward RAACTTCYTGGGRGAGAAGT 110

L9 RPL9exDR reverse ACDGTGGTGGCYTGCTGGAT 10

P L11 RPL11exAF forward CARACGCCHGTCTTCTCCAA 5

L11 RPL11exBR reverse AAGGATCKYACAGTGTAGCG 4

Q L11 RPL11exBF forward CGCTACACTGTRMGATCCTT 87

L11 RPL11exCR reverse CCCARRTCGATGTGYTCCTG 65

R L17 RPL17exAF forward GAGWCMGCTCAGGCCATCAA 132

L17 RPL17exBR reverse TCGGCRCTCTTCTTRGGCCA 8

S L24 RPL24exBF forward AGMCGCAARCACAAGAAGGG 13

L24 RPL24exCR reverse ACYTCAGGCTTCTGRTTCCT 85

*Number of nucleotides between 3’-end of the primers and start or end of the target introns
Table 1: Sequences of primers for amplifying 19 introns of 12 ribosomal protein genes.

in crab. Higher scores observed in tuna and sea urchin are reasonable, 
since RP gene data of teleost and sea urchin were used to design 
primers. The lowest result in crab may indicate distant relationship 
between copepod and decapod.

Two to three amplicons (13 in total) from five primer pairs (D, E, 
G, L, and Q) showing a single fragment amplification at the higher 
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Figure 1: Agarose gel electrophoresis images of the PCR products obtained by 19 primer pairs using a 55°C annealing temperature. A-S correspond to the 
primer pairs shown in Table 1. The left-most lane (1st lane) of each gel image is the size marker (1 Kb Plus DNA Ladder, Invitrogen), and the 2nd-6th lanes 
correspond to long-spined sea urchin (Diadema savignyi), neon flying squid (Ommastrephes bartramii), golden crab (Chaceon granulatus), mako shark (Isurus 
oxyrinchus), and skipjack tuna (Katsuwonus pelamis), respectively.
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Figure 2: Agarose gel electrophoresis images of the PCR products obtained by 19 primer pairs at a 58°C annealing temperature. The left-most lane (1st lane) of 
each gel image is the size marker (Gene Ladder Wide 1, Wako), and the species used are the same as those in Figure 1.
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from L due to the short distance between the primer annealing site and 
an intron (Table 1). All sequences are available in DDBJ and GenBank 
under the accession numbers LC055480–LC055485, LC055565, 
LC055566.

Although intensive investigation into the optimal PCR conditions 
was not performed, amplification failure and multiple fragment 
amplification may be improved by controlling the annealing 
temperature or modifying the primer sequences for taxa of interest.

Thus, the present study offers new nuclear primers potentially 
applicable to a wide variety of marine animal taxa, which may be an 
initial step toward isolating single-copy nuclear DNA sequences in a 
wide variety of marine animals. Subsequent polymorphism detection 
may also provide a more informative database for genetic species 
identification and population study.
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