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Abstract
N fertilizers together with the development of high yielding varieties were major drivers of the enormous increase 

in crop productivity during the past 50 years. Despite increasing food production, application of higher nitrogen 
fertilizers in intensive agriculture also contributed in global warming. In context to environment there is an increasing 
interest to breed crop varieties for organic agriculture. However, we know much about regulation of nitrogen 
metabolism in intensive agriculture as compared to organic agriculture. The current need and gaps in understanding 
of nitrogen metabolism in organic environment is discussed.
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Need to Understand Nitrogen Use Efficiency in Organic 
Agriculture

Nitrogen (N) is quantitatively the most important nutrient for 
plant development. Limited N availability has severe consequences for 
plant metabolism and growth [1]. Inadequate N supply, for example 
leads to reduced leaf area, chlorophyll content and photosynthetic rate, 
resulting in lower biomass and yield of storage compounds. Indeed 
high application of N fertilizers together with the development of high 
yielding varieties were major drivers of the enormous increase in crop 
productivity during the past 50 years, allowing for significant decrease 
in world hunger despite a doubling of the population [2] Approximately 
85 to 90 Million Metric tons (MMt) of nitrogenous fertilizers are added 
to soil worldwide annually up from 1.3 MMt in 1930 and 10.2 MMt in 
1960 [3] and this is predicted to increase up to 240 MMt by the year 2050 
[4] which dramatically affect the N cycle and associated processes [5,6]. 
Over 40 years the amount of mineral N fertilizer applied to agricultural 
crops increased by 7.4 fold whereas the overall yield increase was only 
2.4 fold [7]. This means that Nitrogen Use Efficiency (NUE) which 
may be defined as the yield obtained per unit of available N in the soil 
has declined sharply. In most intensive agricultural production system 
the nitrogen use efficiency is approximately 33% and a substantial 
proportion of the remaining 67% is lost into the environment [8].

N introduced into the environment largely through N fertilization 
has resulted in significantly negative environment consequences [9-11]. 
Nitrogen lost from agricultural system will entered to groundwater, 
lakes, estuaries and coastal water where the reactive nitrogen can 
participate and induces in a wide range of biotic and abiotic process [12]. 
The link between agriculture and nitrate pollution is well established 
with impact on drinking water. For example, in the United State, 89% 
of total N inputs into Mississippi river come from agricultural runoff 
and drainage [13]. The production and excessive uses of N fertilizer also 
play a large role in ozone depletion and global warming [14]. Nitrous 
oxide (N2O) is the third most abundant greenhouse gas (GHG) with 
only carbon dioxide (CO2) and Methane (CH4) being most prevalent 
[15] and is a 300 times more potent GHG than CO2 [16]. In India, N 
fertilizer application contributed most of N2O emission, a 49% share in 
2005 (Out of 267 Gg, where Gg=1000000 kg) compared to 40% in 1985 
(144 Gg) [17]. Agriculture sector activities (mainly nitrogen fertilizer 
use) are the main contributor of global anthropogenic N2O emission 
(ca. 58%) [18]. In addition to these negative environmental effects, 
synthetic nitrogen fertilizer is typically the single highest input cost 

for many crops and since commercial fertilizer production (via Haber 
Bosch method) is energy intensive process which require approximately 
1% of the world’s annual energy supply. This cost is dependent on the 
price of energy [19] and adding to food production cost [20].

Increasing consciousness of conservation of environment and 
mitigation of climate change brought a major shift in cultivation 
practices of major crops towards organic agriculture. Organic 
agriculture has been shown to improve many different environmental 
and human components of the agro ecosystem [21-23]. It is based 
on minimizing the use of external inputs through use of on-farm 
resources efficiently compared to intensive agriculture and thus the 
use of synthetic fertilizers is avoided. The demand for organic food is 
steadily increasing both in developed and developing countries with 
annual average growth rate of 20-25% [24]. Worldwide over 130 
countries produce certified organic products in commercial quantities 
[25]. An important issue to the acceptance of organic agriculture is 
found in the question of its productivity. Existing analysis have indicate 
the carrying capacity of organic agriculture at 3-4 billion, well below 
the present world population (≈ 7 billion) and that projected up to 9 
billion for 2050 [26]. Several yield trial comparisons between organic 
and conventional (intensive) farming system have shown significantly 
lower yield for organic system [27-29]. In organic agriculture crop 
productivity is mainly limited due to nitrogen availability which is not 
easily controllable [30]. The N availability dependent on mineralization 
of crop residues and farm yard manures applied on the farm. In early 
crop growth stages when demand is low, N is lost while in later stages 
the demand from the plant is often much greater than the supply from 
mineralization. Matching N need and mineralization is indeed one of 
the major limiting factors in organic agriculture system [31]. One of 
the basic principles of soil fertility management in organic agriculture 
is that crop nutrition depends on biologically derived nutrient. Organic 
residues added to the soil surface or incorporated into soil undergo 
decomposition by soil microbes. In addition to the readily available 
ammonium and nitrate ions, soil of organic agriculture can contain a 
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wide range of organic nitrogen compounds such as peptides, proteins, 
free amino acids, amino sugars and nitrogen heterocyclic compounds 
[30,32-34]. The organic nitrogen fraction typically comprises 0.1 to 
0.5% of total soil N [35]. Soil micro-organisms secrete proteases into 
the soil which facilitate the breakdown of proteins and peptides into 
their constituent amino acid units [36].

N is most often taken up by plants as water soluble nitrate (NO3
-), 

ammonium (NH4
+) and to a lesser extent as proteins, peptides or amino 

acids [37-40]. Comparison of rates of root uptake of amino acids, NH4
+ 

and NO3
- have been made for several species and it seems that NH4

+ is 
absorbed at the highest rate followed by amino acids while the lowest 
rate of uptake are usually displayed for NO3

- [41-45]. The actual pool 
size of organic forms of N can be large in agricultural soils [46,47]. 
Therefore an ability of crops to take up organic N seems advantageous 
for crop productivity under organic system. In fact some agricultural 
crop species have been shown to absorb organic N [48], for example, 
in rice, the N uptake rate increases with organic N supply rather than 
on nitrate application [49]. Studies on plant grown in solution culture 
or upon excised roots have also demonstrated that uptake of organic 
N can occur at a rate comparable to or in excess of N uptakes from 
inorganic N sources [50-52]. Several studies has led to the hypothesis 
that plants have two distinct transporter system, one for neutral/acidic 
amino acids and one for basic amino acids [53-57] and a range of such 
amino acid transporters have been identified in the roots of some plants 
[58]. An uptake of free amino acids through active transport system has 
also been demonstrated in maize [59]. However, from the literature it 
is clear that dissolved organic N constitute a major soluble N pool in 
soil and that plant root have potential to access some of this pool, yet its 
importance in plant nutrition is unclear and debatable [60].

Interestingly, in studies where organic crop productivity potential 
has been estimated actually used a variety of a crop species which 
have been selected and breed under conventional high fertilizer input 
agriculture, that may not accurately represent the soil condition 
present in organic system. Similar inference can also be drawn from the 
occurrence of interaction of genotype and N level, which indicate that 
the best performing varieties at high N fertilization are not necessarily 
the best ones where the supply of N is lower [61]. Thus breeding crops 
varieties suited for organic system is gaining attention as farmers 
and researchers realize that beneficial traits for the system should be 
very different from those which produce high yield under intensive 
agriculture [62], for example, genotypic differences were reported in 
wheat cultivars for the capacity to take up amino acids and this may 
certainly affect their performance in organic farming system [63].

Developing crop varieties with high nitrogen use and uptake 
efficiency is of particular importance in organic agriculture [64]. 
Indeed, it is also one of the top objectives in breeding for conventional 
agriculture too. Traditional breeding strategies to improve NUE in 
crop plants have experienced a plateau i.e., increase in N applied do 
not result in yield improvements. FAO data indicate that cereal crops 
including wheat, soya and maize have slowed to a growth rate of 1% 
annually and that in some cases specifically in developed countries, 
growth of crop yield is close to zero [65]. 

However, with advancement of molecular biology and 
biotechnology, the search to identifying genes that regulate NUE of crop 
plant made progress and successfully transgenic traits have developed 
[66]. But, very less is known about genes regulation of NUE under 
organic environment. Moreover, the transgenic approach is associated 
with problem of expression and NUE phenotype development and 
these approaches also conflicted with the core concept of organic 

agriculture where integrity of plant must be maintained [67]. However, 
DNA based diagnostic techniques seems to fit with this concept. As 
NUE be a multigenic controlled trait, identifying quantitative trait loci 
(QTLs) linked to NUE is a promising way for genetic improvement 
of NUE in organic agriculture [68]. NUE as being the yield of grain 
per unit of available N in the soil [69] depends on uptake efficiency 
and utilization efficiency of genotype. NUE is under strict quantitative 
genetic control and a NUE phenotype is conditioned by several genes 
having trait enhancing (positive) and trait depressing (negative) alleles. 
The efficient cultivar accumulates more positive alleles though negative 
alleles harbor in the genetic pool [70]. The advent of molecular markers 
has opened new vistas of looking into segregation pattern of quantitative 
traits, popularly known as QTL mapping. The basic idea of QTL 
mapping is contemplated by making recombination between positive 
and negative alleles, within a controlled population. Quantifying 
individual phenotype in this population under targeted environment 
will facilitate in determining the association between the segregation 
of markers and the phenotype. It is established that the marker loci 
linked to the positive or negative alleles show co-segregation pattern 
with the phenotype and are mapped as putative QTL [71]. In practice, 
QTL mapping is done by selection and validation of quantitative loci 
linked with the target trait by associating the quantitative trait data 
on segregation population with the marker segregation data through 
multivariate statistical computation [72-74].

Indeed, despite the growing interest of organic agriculture, 
nothing is known at the molecular level about differences in molecular 
regulation of NUE of a crop grown solely with organic fertilizers 
compared to crop grown under conventional inorganic conditions. For 
such type of investigation, maize provides an ideal system because of 
its higher genetic diversity between any two genotypes [75,76]. Maize 
is the third most important cereal crop after wheat and rice and it is 
predicted to become the crop with the greatest production globally and 
in the developing world by 2025 [77]. Nitrogen fertilization is one of 
the most crucial inputs for maize production in many regions of Asia 
and North and South America and represents a significant production 
cost for the farmers [78]. It is estimated that a 1% increase in NUE 
could save ≈$1.1 billion annually [79]. Hybrid corn have a strong 
demand for N over a short time period and it is believed that this may 
not be easily compatible with organic fertilizer [80] and higher NUE 
including use and uptake efficiency is required for increase organic 
maize productivity [81,82]. Previous studies on the genetic basis of 
NUE in maize using different population of recombinant inbreed 
lines have found that a few yield and yield component associated 
quantitative trait loci (QTL) detected under low nitrogen conditions 
were co-located with genes encoding key enzymes involved in nitrogen 
metabolism such as glutamine synthetase, nitrate reductase, sucrose 
phosphate synthase, sucrose synthase and invertase and these were 
considered QTLs for NUE [83-87]. Nitrogen Reductase and Glutamine 
Synthetase are also identified as key regulator for nitrogen assimilation 
in young plants [88].

However, these QTLs identified for low nitrogen condition i.e., no 
synthetic nitrogenous fertilizer added, may not accurately represent 
soil and fertility status of organic farms. Organic and low input systems 
have very different seasonal N cycling and availability. As QTL with a 
significant effect in low nitrogen environment may often show no effect 
in organic fertilization as the underlying gene responses only to specific 
factors [89]. For example, significant differences in gene expression 
were noticed in wheat grown with organic and inorganic fertilization 
[90]. Low N condition is characterized by low N mineralization pool 
[91,92] which is higher in organic farm with less mineral N [93]. NUE 
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may also be influenced by soil bacterial processes and organic and 
inorganic N sources [94,95].

It is high time to understand the basic molecular differences if any, 
in NUE of crop plants under organic and inorganic environment will 
lead to discover the underlying molecular regulator(s) of NUE and 
provide key guidelines for crop breeding meant for organic agriculture.
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