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Currently there are numerous gaps in existing knowledge about 
exogenous nucleotide application to fish including various aspects 
of digestion, absorption, metabolism, and influences on various 
physiological responses, especially expression of immunogenes and 
modulation of immunoglobulin production. Additional information 
is also needed in regard to age/size-related responses and appropriate 
doses and timing of administration. Thus further research in these 
areas should be pursued.

Immunostimulants
On a worldwide scale, fisheries landings remain constant at about 

90 million tons of fish whereas commercial aquaculture supplies per se 
is approximately 60 million tons and is increasing at a rate of about 8% 
per annum. Use of immunostimulants (natural immune stimulants) is 
a unique approach for fish culturists to control disease losses in their 
facilities and numerous polysaccharides from a variety of sources 
have the ability to stimulate the immune system, and thus behaving 
as immunostimulants. Immunostimulants have an architecture 
consisting of repeating units of single molecular forms such as glucose 
in β-glucans and (deoxy) riboses in DNA/RNA, fatty acid chains in 
bacterial lipopolysaccharides (LPS) and certain lipoproteins. Such 
patterns are abundant in microbial communities of prokaryotes, and 
can be termed pathogen-associated molecular patterns (PAMPs) if they 
initiate inflammatory responses. It was turned out that commential 
microbiota also contain those molecular patterns in them and now 
scientists tend to use a broader term, microbe-associated molecular 
pattern (MAMP).

Sakai indicated that immunostimulants could be grouped 
depending on their sources; bacterial, algae-derived, animal-derived, 
nutritional factors and hormones/cytokines[1]. This sub-grouping 
changed the concept that immunostimulants instead are divided 
according to their modes of actions. Previously, an immunostimulant 
was defined based upon its activity on mononuclear phagocytic system 
only[2]. However, due to recent discoveries of the pattern recognition 
receptors (PPRS) of the phagocytic cells, the former definition of 
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immunostimulant needs to be redefined. Different leucocytes possess 
different PPRs and the immune cells bring about different immune 
responses depending on the types of ligands PPRs interact with. To 
define an immunostimulant, all elements of the immune system must 
be considered, and according to Bricknell and Dalmo[3] the definition 
could be; “An immunostimulant is a naturally occurring compound 
that modulates the immune system by increasing the host’s resistance 
against diseases that in most circumstances are caused by pathogens”. 
Immunostimulants have been used as feed additives for several years 
in aquaculture, and yeast β-glucan may be the one with the longest 
track record. In nature, β-glucans are widespread and have been 
characterized in microorganisms, algae, fungi and plants[4]. The 
chemical structure of β-glucan varies with respect to molecular weight 
and degree of branching. For example, β-glucan from yeast contains 
a particular carbohydrate consisting of glucose and mannose residues 
and is a major constituent in the cell membrane. 

Nucleotide-supplemented diets are not strictly immunostimulants 
by definition but provide a dietary supplement that allows improved 
resistance to a pathogen insult. Although such diets have been reported 
not to induce measurable immunostimulatory effects[5-7], they 
nevertheless seems to be able to up-regulate several immune genes in 
turbot (Scopthalamus maximus L.), which contradicts the earlier claims 
that these diets are not immunostimulatory [7]. 
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The biological effects of immunostimulants are highly dependent 
on the receptors on the target cells recognising them as potential high-
risk molecules thus triggering various defence pathways. Thus, it is 
important to increase the knowledge of receptor specificity and the 
inflammatory processes the different receptors, upon antigen binding, 
are induced. However, many mammalian receptors reported to bind 
immunostimulants such as NLR (NOD-like receptors) have yet to be 
reported in fish. Nevertheless, assuming that fish and mammalian cells 
share many similar receptors, one may predict the biological outcome 
of immunostimulants in fish.

In order to evaluate whether immunostimulants may act in 
synergy with pro– and prebiotics we recommend this option merits 
further investigations. Probiotics appear to modulate immunity of the 
host by improving the barrier properties of mucosa and modulating 
production of cytokines (protein mediators produced by immune cells 
and contribute to cell growth, differentiation and defence mechanisms 
of the host)[8]. Viable live probionts are better than the non-viable 
heat-killed probionts in inducing higher immune responses in rainbow 
trout (Oncorhynchus mykiss Walbaum), especially enhancing head 
kidney leucocyte phagocytosis, serum complement activity etc., [9]. 
In recent years, several in vivo and in vitro studies have investigated 
the interaction between dietary probiotics and immunocompetence in 
humans as well as in fish and aquatic animals[8,10-17]. By increasing 
the host’s adaptive and innate immune mechanisms, lactic acid bacteria 
(LAB) can protect the host against infection by enteric pathogens and 
tumour development. Immunological and other mechanisms behind 
the probiotic action may include; 

* Stimulation of antibody secreting cell response [18]

*  Enhancement of phagocytosis of pathogens [9,19]

*  Modification/enhancement of cytokine production/ natural 
complement activity [20,21]

*  Improvement of the host innate or acquired immune responses, 
direct effect on other microorganism in the digestive tract, adhesion 
sites, microbial action or response stemming from microbial 
products, host products or food components [22]

Consequently, probiotic bacteria may influence both adaptive 
and innate immune responses. Probiotics may reverse the increased 
intestinal permeability induced by antigens, but no information is 
available about long-term effects. 

Nutritional factors and the immune response 

It is well known that nutrition may affect fish health and immune 
responses. Nutritional factors are components of the diet essential for 
normal growth and development of the fish. Many of these undoubtedly 
have roles in the immune response. Vitamins C, B6, E and A, and the 
minerals iron and fluoride have been identified as micronutrients that 
can affect disease resistance. With respect to the strict definition of 
immunostimulants; vitamins and minerals are not immunostimulants 
as they enhance the immune system by providing substrates and 
serving cofactors necessary for the immune system to work properly, 
but controversy exists [1,23]. 

Readers with special interest on the effect of nutritional factors on 
immune response of fish are referred to the comprehensive reviews 
published [1,24-37]. To our knowledge no information is available 
about nutritional balance and the immune response and as a natural 
consequence this topic merits further investigations.

β-1,3/1,6-glucans

Glucans are high molecular-weight substances composed of 
glucose as building blocks, usually isolated from cell walls of bacteria, 
mushrooms, algae, cereal grains, yeast and fungi[38]. Glucans in 
general comprise a great variety of substances common in nature (such 
as cellulose, glycogen, and starch), most of which do not interact with 
the immune system. Pharmacologically, they are classified as biological 
response modifiers (BRM). The common feature of immunomodulatory 
glucans is a chain of glucose residues linked by β-1.3-linkages, also 
called beta-glucans. Of the different β-glucans, the products known as 
β-1.3/1.6-glucans (read as “beta-one-three-one-six-glucans”), derived 
from baker’s yeast, are suggested to be the most potent immune-system 
enhancers. β-1.3/1.6-glucans is characterized by side-chains attached 
to the backbone that radiate outward like branches on a tree.

The primary structure of the β-1,3/1,6-glucan is determinant for 
its immune-enhancing ability. The frequency and nature of side-chains 
strongly affect the ability of the glucan to mediate binding to surface 
receptors on the target cells influencing the effectiveness of the glucan 
as an immunostimulant. 

The effectiveness of MacroGard® in stimulating the immune 
system combined with improved growth and feed conversion has been 
proven in some experiments[39,40]. MacroGard® has been suggested 
to be used in feed for all aquatic organisms and also to enrich live feed 
such as Artemia. Some studies involving shrimp have also suggested 
that the product contributes to a better growth in crustaceans[40,41]. 

MacroGard® is an environmentally sound alternative to feed 
antibiotics and chemotherapeutics for livestock, pets and cultured 
aquatic organisms. MacroGard® is based on a well-characterized 
β-1,3/1,6-glucan that has been in use world-wide for almost 25 years 
as an immune modulating agent in animal husbandry and aquaculture 
(see Table 1). 

When included in feed or administered on mucosal surfaces, 
MacroGard® modulates immune responses and affects biological 
functions in a favourable way. The products are extracted and purified 
from food-grade baker’s yeast by patented processes. The use of 
MacroGard® may be regarded as a natural input that compensates 
for a possible sub-optimal function of the immune system of farm 
animals, companion animals and aquatic species in intensive culture. 
The product has also been suggested to reduce the use of antibiotics 
in animal husbandry and consequently the concern that developing 
antibiotics resistance that may undermine the health security effective 
antibiotics represents. In aquaculture, glucans have been successfully 
been used to enhance the resistance of fish and crustaceans against 
bacterial and viral infections and (Table 1) present an overview of 
papers using glucans as immunostimulants in aquaculture.

In Norway, β-glucan, as prebiotics and nucleotides, has been used in 
the pancreas disease (PD) diets; to fed fish suffering from PD (Gonzalez 
Vecino, personal communication). In this case, the β-glucans are a 
very small part of the diet composition, and the benefits of the diets 
come mainly from a very specific formulation concentrated to recover 
pancreas and reduce inflammation in muscle and heart.

Baker’s yeast, Saccharomyces cerevisiae, is the 2nd major by-product 
from brewing industry and contains various immunostimulating 
compounds such as β-glucans (the cell walls are constructed almost 
entirely by β-1,3-D-glucan, β-1,6-D-glucan, mannoproteins and 
chitin bound together by covalent linkages), nucleic acids and 
oligosaccharides [42] and it has the capacity to enhance growth and 
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Immunostimulant Species Administration and dose
Length of 
administ-
ration 

Mechanism of
action/results References 

β-1,3 glucans Carp i.p; 2-10 mg kg-1 BW 12 days ↑ phagocytic activity of
 kidney leucocytes [152]

Channel
catfish

Injected; 50 and 70 μg 
fish-1 (100 g BW) 
suspended in 0.2 ml PBS

2 weeks ↑ phagocytic, bacterial activity 
and serum antibody 
concentration

[153]

Marron 0.08, 0.1, 0.2, 0.4 and 
0.8 % supplementations 12 weeks ↑ haemocyte count

→ on physiological parameters [154]

β-glucan
Atlantic 
halibut 
(larvae)

Immersion (25 mg l-1) 5 days Absorbed laminaran [155]

Carp i.p (10 mg kg-1) 15 days ↑ superoxide dismutase and
catalase activities [156]

Coho i.p (5 and 15 mg kg-1) 36 days → immune response [157]
Trout Oral 4 weeks ↑ stress resistance [158]
Turbot Oral (2 g kg-1) 5 weeks ↑ leukocyte number [159]
Trout i.p 18 days ↑ resistance to IHNV [39]

Trout Oral (0, 0.2 and 0.4 %) 37 days ↓ expression of genes involved
In acute inflammation reaction [160]

Sea bass Oral (2% wet body 
weight) 2 weeks ↑ complement activation [161]

Sea bass Oral (0.1%) 60 days
↑ serum complement activity,
serum lysozyme, gill and 
liver HSP

[162]

Sea bass Oral (250, 500, 
1,000 ppm) 25 days ↑ respiratory burst activity

 of head kidney macrophages [163]

Snapper Oral (10g kg-1) 84 days
↑ macrophage superoxide 
Anion production and growth
→ complement activity

[164]

Tilapia and 
Japanese eels i.p (10 mg kg-1) 2 days

↑ lysozyme activity, phagocytic
activities in anterior kidney and
peripheral blood phagocytes 
and classical complement path-
way 

[165]

Nile
tilapia Oral 6 weeks ↑ stress resistance [166]

Red drum Oral (2% of diet) 6 weeks → on stress resistance [124]
Flounder Oral (3 g kg-1) n.i ↑ respiratory burst activity [167]

Channel 
catfish Oral (1g/kg) 4 and 6 

weeks

→ growth performance
hematology or immune 
function
Some improvement in stress
resistance

[168]

Climbing 
perch

Β-glucan suspension
(0, 5, 10 15 mg l-1) 7 days

↑ lysozyme and bactericidal
activities and survival of spawns
immersed in 15 mg l-1 when
challenged with A. hydrophila

[169]

American 
White
shrimp

Immersed 120 hours
↑ total haemocyte counts and
soluble haemocyte protein 
after 48-120 hours

[170]

Shrimp Oral (0.2% w/w) 7 days 
↑ prophenoloxidase and 
reactive oxygen intern-
mediate activity

[171]

White 
shrimp Oral (2000 mg kg-1) 6 weeks

↑ total haemocyte counts, 
phenoloxidase, superoxide
anion and superoxide dismu-
tase until day 27

[172]

Carpet shell
clam

i.v (0.05, 0.1, 0.5 and 1.0 
mg ml-1)

Different 
sampling 
times

↑ nitric oxide production
Hemolymph treated with 
β-glucan inhibited growth of
Vibrio algynolyticus, Vibrio
splendidus and Escherichia
coli 

[173]

Scallop i.p 7 days
↑six enzymes in 
haemocytes. β-glucan-induced activation was stronger at 
15˚C than 25˚C .

[174]

β-glucan + mannose Snapper Oral (0.1-1.0% w/w)
n.i 
in vitro 
study

↑ macrophage activation [175]
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Immunostimulant Species Administration and dose
Length of 
administ-
ration 

Mechanism of
action/results References 

β-glucan + LPS Salmon 10 μg ml-1V
n.i 
in vitro 
study

↑ lysozyme activity [176]

β-1,3 and β-1,6
glucans

Sea urchin
eggs

0.01, 0.05, 0.1, 0.25, 0.5 
and 1.0 mg ml-1 Incubation ↑ survival of embryos [177]

β-1,3 and β-1,6
inked yeast glucan
(M-glucan)

Salmon
Injected i.p (1 ml of 
0.5% (w/v) M-glucan 
in 0.9% saline)

22 days

↑ macrophage and
neutrophil numbers, head 
kidney macrophages and
ability to kill A. salmonicida

[178]

Salmon 0, 500 and 1000 mg kg-1 70 days

→ no detrimental effect 
↓lice- infected fish when the
fish were fed 14 % soybean 
meal + 14 % sunflower and 
yeast extract 

[179]

Trout Injected i.p 1 ml of 1%
M-glucan suspension

3 weeks ↑macrophages ability to kill 
A. salmonicida and
serum lysozyme activity

[180]

β-1,3 glucan from
Schizophyllum
commune

Black tiger 
shrimp Oral (0 and 2 g kg-1) 40 days

↑ survival, haemocyte activity,
cell adhesion and superoxide
anion production

[181]

Glucan (barley
extract (Sigma) Trout

Injected i.p. 100 μg 
glucan dissolved in
PBS. Immersed the 
concentration of
100 μg ml-1 glucan for
30 min

10 days ↑ phagocytic activity and
numbers of circulatory
glass-adherent cells

[182]

Yeast glucan Salmon i.p 20 days
↑ resistance to 
V. anguillarum, V. salmonicida 
and Y. rückeri

[183]

Salmon i.p 4 weeks ↑ complement and 
lysozyme activity [184]

Salmon i.p (0.5 mg/fish) 43 weeks ↑ survival against 
A. salmonicida infection [185]

Salmon i.p 7 weeks ↑ antibody
→ resistance to A. salmonicida [186]

Salmon Oral and anal (150 mg 
kg-1) 2 days ↑ acid phosphatase [187]

Trout i.p n.i ↑ lysozyme activity [188]

Trout Diet (0, 0.125 and 0.25 g 
k-1) 4 + 4 weeks

4 weeks
↑ survival and growth
4 – 8 weeks
↑ survival (0.25 g k-1) 
→ feed conversion

[189]

Indian major 
carp 15 + 30 days

↑ superoxide anion, in vitro 
phagocytic activity and nitrite
production of leucytes (10 days)
→ heamatocrit

[190]

Indian major 
carp and rohu Diet (0 and 5 g kg-1) 15 + 20 days

↑ phagocytosis and prolifer-
ation of lymphocytes and 
oxidative radical and nitrate 
production

[191]

Pacu Diet (2.5 and 5 %) 86 days ↑ feed efficiency
→ plasma glucose and cortisol [192]

Fathead 
minnows Diet (10 g kg-1) 14 days ↑ degranulation of primary

granules in fish neutrophils [193]

Shrimp immersion 43 days
↑ growth at 0.5; 1 and 2 mg 
ml-1, but not at 0.25 mg ml-1 
↑ phenoloxidase activity and
resistance to V. vulnificus

[194]

Black tiger
shrimp Oral (0.2 %) 3 days

↑ phenoloxidase, no. of 
haemocytes and bacterial 
killing activity against Vibrio
harveyi

[195]

Pacific white
shrimp Oral (0, 1 and 2 g kg-1) 4 weeks

↑ total haemocyte – and 
granular haemocyte counts
→ growth

[196]
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Immunostimulant Species Administration and dose
Length of 
administ-
ration 

Mechanism of
action/results References 

Yeast glucan + 
Vitamin C Trout

Diets containing yeast
glucan and vitamin C 
at 150, 1,000 and 
4,000 p.p.m

4 weeks

↑ alternative pathway of
complement – and 
macrophage activity and 
specific Ab response 
following vaccination
with Y. ruckeri 

[197]

Saccharomyces 
cerevisiae Sea bass Diet (0, 10, 20, 30 and 

40 %) 12 weeks
↑ feed conversion (10, 20 and 30 %), N retention (% N 
intake)
→ growth and energy retention (% E intake)

[198]

Sea bream 0 and 10g kg-1 6 weeks ↑ serum peroxidases and complement activity [199]

Sea bream In vitro experiment, head kidney 
leucocytes 0 – 30 min ↑ degranulation [200]

Sea bream 0, 1, 5 and 10g kg-1 6 weeks ↑ total serum IgM level [201]

Sea bream In vitro experiment, blood 
leucocytes 30 min ↑ inhibition of the phagocytic ability [202]

Sea bream 0, 11.5 and 23 % (Y2) 10 weeks
↑ growth, feed intake, lipid content (Y2) and arginase 
activity
→ body composition

[203]

Gilthead 
seabream

Lyophilised S. cerevisiae (0, 1, 5 
or 10g kg-1) 4 weeks ↑ cellular parameters [204]

Gilthead 
seabream

S. cerevisiae (0, 10, and 20 %) 
(BDY protein) instead of fish 
meal 

12 weeks

→ growth, alkaline phospha-tase, blood urea Nitrogen, 
serum protein, cholesterol, triglyceride, albumin and 
amylase
↓ plasma glucose (10 % BDY)

[205]

Nile tilapia Diet (0 and 0.1 %) 9 weeks ↑growth and feed efficiency [206]

Nile tilapia

S. cerevisiae (0, 25, 50, 75
and 100 %) (BDY protein) 
instead of soy bean meal (SBM) 
protein

6 weeks + 5 
days

→ growth and feed 
utilization when 50 % BDY 
protein instead of SBM protein

[207]

Nile tilapia

S. cerevisiae (0, 25, 50, 75
and 100 %) (BDY protein) 
instead of soy bean meal (SBM) 
protein

122 days
→ growth and feed 
utilization when 25 % BDY 
protein instead of SBM protein

[208]

Hybrid striped 
bass Diet (0, 1, 2 and 4 %) 8 weeks ↑growth and feed efficiency [209]

Hybrid striped 
bass Diet (0, 1 and 2 %)

7 weeks 
(trial 1) and 
4 weeks 
(trial 2)

→ growth (trial 1)
Trial 2
↑ resistance against Streptococcus iniae and extra-
cellular superoxide anion 
→ growth and feed efficiency 

[210]

Hybrid striped 
bass Diet (0, 1 and 2 %) 16 and 21 

weeks

↑growth, feed efficiency, serum peroxidase and 
extracellular superoxide anion of head kidney 
macrophages (16 weeks)
→ resistance against mycobacterial infection

[211]

Pacu
S. cerevisiae (0, 30, 35, 50, 
70 and 100 %) (BDY protein) 
instead of fish meal

54 days

↑growth and feed utilization 
(until 50 % replacement). 
Protein retention was higher in
fish fed 35 and 50 5 replace-
ment
→ protein digestibility

[212]

Galilee tilapia 0 and 10g kg-1 6 weeks
↑growth, feed utilization and
resistance against waterborne
Cu toxicity 

[213]

Beluga Diet (0, 1 and 2 %) 6 weeks

2 % inclusion ↑final weight,
weight gain, SGR and FCR
↑ autochthonous LAB levels
→survival rate, haematological and serum biochemical 
parameters resist

[97]

Symbols represent an increase (↑) in the specified response; no change (→); decrease (↓); n.i – no information given.
Salmon – Atlantic salmon; Trout – rainbow trout; Coho – Coho salmon (Oncorhynchus kisutch), Turbot – Scophthalmus maximus; Sea bass - Dicentrachus labrax, Snapper 
– pink snapper (Pagrus auratus); Flounder – Japanese flounder (Paralychthis olivaceus), Nile tilapia - Oreochromis niloticus; Red drum - Sciaenops ocellatus; Channel 
catfish - Ictalurus punctatus
ROS – reactive oxygen species; IHNV – infectious hematopoietic necrosis virus

Table 1: Glucans as immunostimulants in fish, shrimp and scallop. 
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increase both humoral (myeloperoxidase and antibody titer) and 
cellular (phagocytosis, respiratory burst and cytotoxicity) immune 
responses, and to increase or confer resistance against pathogenic 
bacteria in various fish species (Table 1).

Bioactive alginate (high-M alginate) and Ergosan 

The adaptive immune system is poorly developed in early 
developmental stages of fish [43,44], which is why immunostimulants 
and probiotics have been used in an attempt to increase survival of 
larvae against microbial pathogens [45-47]. In this respect, alginate has 
been proposed as a potential candidate. Alginate is a polysaccharide 
composed of β-1,4-D-mannuronic acid (M) and C5-epimer α-L-
glucuronic acid (G) [48]. The monomers are usually arranged in 
M-blocks, G-blocks and alternating MG-blocks [49]. Alginate also 
binds various cations found in the seawater such as Mg2+, Sr2+, Ba2+, and 
Na+. Commercial alginates are extracted from three species of brown 
algae; Laminaria hyperborean, Ascophyllum nodosum and Macrocystis 
pyrifera, in which alginate comprises up to 40% of the dry weight [50]. 
Furthermore, bacterial alginates, not commercial products, have also 
been isolated from Azotobacter vinelandii and several Pseudomonas 
species [51].

Commercially available alginates today have M-content ranging 
between 30 and 70%. Alginates with even higher M-content, typically 
higher than 80%, have also been shown to be potent stimulators of 
immune cells such as human monocytes [52]. High-M alginate has also 
been used as an immunostimulant for enhancement of innate immune 
resistance in fish larvae and fry[53-56]. 

Ergosan is an algal based product and contains 1 % alginic acid 
extracted from Laminaria digitata. The first study on Ergosan in 
aquaculture, to the author’s knowledge, was reported by Miles and co-
authors on striped snakehead (Channa striata) [57]. In a study with 
rainbow trout, Peddie et al. reported that a single injection of 1 mg of 
Ergosan significantly augmented the proportion of neutrophils in the 
peritoneal wall, increased the degree of phagocytosis, respiratory burst 
activity and expression of interleukin-1β (IL-1β), interleukin-8 (IL-8) 
and one of the two known isoforms of tumour necrosis factor-alpha 
(TNF-α) in peritoneal leucocytes one day post-injection [58]. However, 
humoral immune parameters were less responsive to intraperitoneal 
alginate administration with complement stimulation only evident in 
the 1 mg-treated group at 2 days post-injection. (Table 2) presents an 
overview of reports using alginates and Ergosan in fish studies.

Plant extracts

Some immunostimulants cannot be used because of various 
disadvantages, such as high cost and limited effectiveness upon 
parenteral administration. Numerous plants have on the other hand 
long been used in traditional medicine for the treatment and control 
of several diseases[59]. As herbs have little side effects and are easily 
degradable and abundantly available in farm areas, numerous 
investigations have investigated the effect of plant products on innate 
and adaptive immune response and to prevent and control fish and 
shellfish diseases [60]. 

Dügenci and co-authors investigated the effects of mistletoe, 
nettle and ginger on dietary intake of rainbow trout [61]. The diets 
contained lyophilized extracts of these plants at two inclusions levels, 
0.1 and 1%, in a 3 week experiment. At the end of the experimental 
period, various parameters of innate defence mechanisms, including 
extracellular and intracellular respiratory burst activities, phagocytosis 
in blood leukocytes, total plasma protein level, specific growth rates 

and condition factors were examined. Inclusion of the plant materials 
increased the extracellular respiratory burst activity (P<0.001) 
compared to control. Furthermore, fish fed the diet containing 
1% ginger roots exhibited a significant innate immune response. 
Phagocytosis and extracellular burst activities of blood leukocytes were 
significantly higher in this group compared to the control group. All 
plant extracts increased plasma protein level except for the 0.1% ginger 
supplemented diet. The highest level of plasma proteins was observed 
in the group fed with 1% ginger extract. 

Oral administration of the medical plant, Eclipta alba, on the 
non-specific immune responses and disease resistance of tilapia 
(Oreochromis mossambicus) has been investigated[62]. The results 
indicated that E. alba administrated in the diet significantly enhanced 
the non-specific immune parameters tested. Furthermore, when tilapia 
was challenged with Aeromonas hydrophila mortality was significantly 
reduced in E. alba treated fish.

Lectins are proteins or glycoprotein substances, usually of plant 
origin, and they are sugar-binding proteins which are highly specific 
for their sugar moieties. Lectins are also known to play important roles 
in the immune system by recognizing carbohydrates that are found 
exclusively on pathogenic bacteria, or that are inaccessible to host cells 
[63]. Examples are the lectin complement activation pathway, and 
mannose binding lectin (MBL), also named mannose- or mannan-
binding protein (MBP). MBL recognizes carbohydrate patterns, found 
on the surface of a large number of pathogenic micro-organisms, 
including bacteria, viruses, protozoa and fungi. Readers with special 
interest in lectins and immune response are referred to the recent 
comprehensive reviews [64-65]. 

In a recent paper, Galina and co-authors reviewed studies currently 
being carried out on herbs and herbal extracts that have been shown 
to modulate the immune system in fish and special attention was 
given to; Astragalus, Ganoderma, Lonicera and Chinese and Indian 
herbs [66]. Based on the results available per se Galina and co-authors 
suggested that herb extracts might have a potential application as an 
immunostimulant is fish, due to that they can easily be obtained, are as 
not expensive and act against a broad spectrum of pathogenic bacteria, 
and could be alternatives to vaccines, antibiotics or chemotherapeutic 
agents. In a more recent study, Soosean and co-authors reported 
that mangosteen (Garcinia mangostana) extracts as feed additive 
to African catfish (Clarias gariepinus) had no significant effect on 
growth parameters, feed conversion ratio and haemoglobin content. 
However, significantly higher red blood cells and white blood cell 
counts were recorded in fish fed the shoot extract [67]. In their study 
on kelp grouper (Epinephelus bruneus), Harikrishnan and co-authors 
evaluated the efficacy of dietary doses of Lactuca indica extracts on 
immunological parameters and disease resistance against Streptococcus 
iniae infection [68]. Based on their results, the authors suggested that 
supplementation of L. indica enhanced the immune system and the 
disease resistance against pathogenic infection. Enhanced immune 
response of tiger shrimp (Penaeus monodon) by the medical herb black 
nightshade (Solanum nigrum) and disease resistance against Vibrio 
harveyi were investigated by Harikrishnan and co-authors [69]. In this 
study the authors displayed improved immune response including 
respiratory bursts, PO-, SOD – and GPx activities and disease resistance 
by feeding tiger shrimp black nightshade at 0.1 and 1 % doses. This 
herb has also been shown to have inhibitory in vitro growth effect on 
A. hydrophila and improved survival and increased haematological 
parameters of spotted snakehead (Channa punctatus) infected with A. 
hydrophila [70]. 
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AquaVac Ergosan – extracts of Laminaria digitata and Ascophyyllum nodosum.
Symbols represent an increase (↑) in the specified response; no change (→); decrease (↓).
n.i – no information given

Table 2: Bioactive alginate (high-M alginate) and Ergosan as immunostimulants in fish.

Immunostimulant Fish Administration and 
dose

Length of administ-
ration 

Mechanism of
action/results References 

High-M alginate Atlantic
halibut Immersion n.i ↑ survival [214]

Atlantic
halibut

Bioencapsulated in 
Artemia

Different periods during 
initial feeding

↑ growth [215]

Atlantic cod
and spotted 
wolffish Diet 59 days

55 days

↑ growth
Uptake of 125 I-labelled
molecule in the stomach 
and intestine

[56]

Turbot Enriched in Artemia 1 week ↑ survival [53]

Alginate Atlantic
salmon

Macrophage
culture n.i

↑ phagocytic activity and
 respiratory burst

Rokstad et al.
(unpublished data) cited in 
Vadstein [54]

Atlantic salmon Diet Six months

↑ lysozyme activity 
→ survival, colour, taste consistency
and grading [216]

Turbot Diet 13 days
↑ protein synthesis and
protein turnover
→ survival and larval size

[217]

Ergosan Striped 
snakehead i.p 14 days ↑ inhibition index of macrophages and serum on in 

vitro growth of Aphanomyces invidans [57]

Rainbow trout i.p 1 day ↑ neutrophils and respiratory burst [58]

Sea bass Diet (0.5 %) 60 days
↑ serum complement activity,
serum lysozyme, gill and 
liver HSP

[162]

AquaVac Ergosan Rainbow trout Diet (0.5 %) Three cycles (95 days 
in total)

↑ growth (95 days) and the 
growth related gene 
expression of IGFI, TRαmRNA
and TRβ, and gene expression 
of IL-1β, IL 8 and TLR3 in spleen
↓ cortisol, HSP70 gene 
expression in liver, MYO gene
expression

[218]

Readers with special interest in the topic plant products on innate 
and adaptive immune response of fish and shellfish are referred to the 
recent review of Harikrishnan et al. [60]. 

Mechanisms of action

Phagocytic activity of kidney leucocytes

Phagocytic activity is the principle function of kidney leucocytes 
of teleosts. Monocytes, macrophages, dendritic cells, and neutrophils 
belong to the phagocytic leucocytes called phagocytes. In host defense, 
phagocytes respond to microbes in a sequential manner: active 
recruitment of the cells to the sites of infection through inflammatory 
responses, ingestion of microbes by the process of phagocytosis, and 
destruction of the ingested microbes. Phagocytosis is an active, energy-
requiring engulfment process of large particles (>0.5 µm in diameter). 
The first step in phagocytosis is the recognition of microbe by the 
specific receptors expressed on the phagocyte such as TLRs (toll-like 
receptors). The bound microbes are ingested into vesicles forming 
phagosomes inside of the cells and the phagosomes are then fused 
with lysosomes that contain many different proteases. The internalized 
microbes will be killed there through proteolytic processes [71]. 

Macrophage activation

Macrophage activation is initiated upon binding of the microbe to 
the cell. The recognition of microbes by phagocytes such as macrophages, 
neutrophils, and dendritic cells is selective and mediated by receptors 
on phagocytic cells. Upon microbe binding, the receptors cooperatively 
activate the cells through a receptor-mediated signal transduction 
to kill ingested microbes. The receptors responsible for microbe 
recognition include TLR (toll-like receptors), G protein-coupled 
receptors, antibody Fc and complement C3 receptors, and receptors 
for cytokines, mainly IFN-γ. Activated macrophages kill phagocytosed 
microbes by the action of microbicidal molecules in phagolysosomes 
of phagocytes. In addition, activated macrophages secrete cytokines 
such as TNF, IL-1, and IL-12, which cause inflammation and bridge to 
activate the adaptive immune system. 

Respiratory burst activity

Respiratory burst (sometimes called oxidative burst) is the rapid 
release process of reactive oxygen species (ROS) such as superoxide 
anion, hydroxyl radical and hydrogen peroxide from activated 
macrophages and neutrophils. The respiratory burst, releasing 
important bactericidal ROS molecules, plays a crucial role to remove 
microbes from the body. The respiratory burst is mediated by the 
enzyme phagocyte oxidase, which converts molecular oxygen to ROS 
and is usually triggered by bacterial products or by inflammatory 
mediators. The respiratory burst activity is an indicator of the status of 
macrophage and neutrophil activation [71]. 
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Acid phosphatase

Acid phosphatase is a ubiquitous enzyme that removes phosphate 
groups from other molecules. The acid phosphatase is one of the 
lysosomal hydrolases which exist in phagolysosomes of macrophages 
(lysosomal acid phosphatases). When the macrophage is activated, 
the inside of phagosome becomes acidic. In an acidic environment, 
lysosomal hydrolases including acid phosphatase are activated to kill 
microbes. Acid phosphatase activity is an indicator of the microbicidal 
activity of macrophages and a high concentration of acid phosphatase 
in the blood is a sign of a chronic infection [71,72]. Recently, acid 
phosphatase activity tests are used for the diagnosis of prostate cancer 
and breast cancer in human.

Serum complement activity

The complement system is one of the major effector mechanisms 
of the humoral immunity as well as the adaptive immunity, which 
involves the clearing of pathogens from an organism. The complement 
system consists of serum and cell surface proteins that are activated 
by microbes (the alternative pathway) and antibodies (the classical 
pathway). Activation of the complement system involves the sequential 
proteolysis of proteins to generate new enzyme complexes with 
proteolytic activity, which is a characteristic of a proteolytic enzyme 
cascade. The products of the complement activation become covalently 
attached to microbes, antibodies bound to microbes, and to other 
antigens. The binding of complement products to the target molecules 
cause lysis of the microbe, facilitation of opsonization (the process 
of attaching IgG or complement fragments to microbial surfaces for 
phagocytosis) and phagocytosis, and inflammation [71].

Phenoloxidase activity

Phenoloxidases are known to be involved in the innate immune 
response of invertebrates such as shrimps and crabs. Phenoloxidases 
are composed of tyrosinases, catecholases and laccases which are the 
terminal components of the prophenoloxidase (proPO) system, the 
modified complement system of several phyla of invertebrates[73]. 
The proPO system is present in the blood of a wide range of marine 
invertebrates, especially crustaceans. Phenoloxidases play a role 
in bactericidal activity and the enhancement of phagocytosis in 
crustaceans [74-76]. 

Serum antibody concentration 

B lymphocytes recognize antigens such as microbes using their 
receptors (membrane-bound antibody molecules). The engagement of 
antigen receptors and other signals trigger the lymphocytes to expand 
their numbers and to differentiate into antibody-secreting mast cells, 
which secrete different classes of antibodies with distinct functions. 
The functionally different antibodies have the same antigen specificity, 
through which the antibodies recognize the same microbes despite 
their different classes. Antibodies bind to microbes and prevent them 
from infecting cells (neutralization). The binding of antibodies to 
microbes also promotes opsonization and phagocytosis of microbes to 
kill and mediate antibody-dependent cellular cytotoxicity (ADCC). In 
addition, antibodies trigger activation of the complement system (the 
classical pathway), which in turn causes to increase phagocytosis of 
microbes opsonized with complement fragments and inflammation. 
Serum antibody concentration is an indicator of B lymphocyte 
activation against specific microbes [71].

Leukocyte number

Leukocytes (white blood cells) are immune cells involved in 
defending the body against both infectious microbes and foreign 
materials. Leucocytes consist of neutrophil, eosinophil, basophil, 
monocyte, and lymphocyte. They are all derived from a hematopoietic 
stem cell in the bone marrow. Neutrophils and monocytes are involved 
in the innate immune response as the first line of the defense system. 
Effector cells of the innate immune system circulate in the blood and 
migrate into tissues and kill microbes through phagocytosis. The innate 
immune cells also play a role in the inflammatory response by releasing 
cytokines. Lymphocytes including T cells and B cells are the only cells in 
the body capable of specifically recognizing and distinguishing different 
antigenic determinants (epitopes). When these adaptive immune 
effector cells recognize the microbes, the number of lymphocytes is 
significantly increased as a part of their effector functions. Although the 
number of the innate immune cells are also expanded upon activation, 
the level of increase is much lower than that of the adaptive immune 
cells. The number of leukocytes in the blood is often an indicator of the 
activation of the immune system or of leukemia [71].

Lysozyme activity

Lysozyme is a cationic enzyme that attacks the β-1,4 glycosidic 
bond between N-acetylmuramic acid and N-acetylglucosamine in the 
peptidoglycan of bacterial cell walls. This activity causes the lysozyme 
to lyse certain gram-positive bacteria and even some gram-negative 
bacteria. Lysozyme activity has been detected in mucus, serum, organs 
and eggs of several fish species [77]. Lysozyme is produced mainly by 
macrophages and its production is induced in response to microbial 
components such as microbial lipopolysaccharide (LPS) [78] and many 
other immunostimulants.

Do immunostimulants raise the level of protection against 
disease?

A large number of reviews have been published during the last 20 
years concerning the advantages of immunostimulants in fish and the 
immune system [1,3,23,28,30,32,79-90]. In this section an attempt has 
been made to compile the recent developments in the field, mainly over 
the last five years, besides the earlier work done in the field of disease 
resistance in fish with exposure to immunostimulants. 

Several types of β-glucan have been successfully used to enhance 
resistance of fish and crustacean against bacterial and viral infections. 
An overview is presented in (Table 3). Most pathogens used in these 
challenge experiments are bacteria reported in commercial aquaculture 
and include; A. hydrophila, Aeromonas salmonicida, Aphanomyces 
invadans, Edwardsiella ictaluri, Edwardsiella tarda, Photobacterium 
damselae ssp. piscicida, Vibrio (Listonella) anguillarum, Vibrio harvei, 
Yersinia ruckeri, Lactococcus garvieae, S.iniae and Streptococcus sp. as 
well as infectious hematopoietic necrosis virus (IHNV), white spot 
syndrome virus (WSSV) and parasites. Readers with special interest 
in the topic immune response and aquatic viruses are referred to the 
recent reviews [91,92].

Recognition of invasive pathogens is an essential step for the 
activation of the immune system. This is accomplished by binding of 
PRRs to PAMPs. The PRRs and PAMPs activate appropriate immune 
responses [93]. β-glucan binding proteins (β-GBP) are known as one 
of the most important PRRs in invertebrates [94] and fish [95]. The 
presence of these proteins in invertebrates and fish may indicate that 
the defence systems against β-glucan containing microorganisms are 
crucial for these organisms.

Effect of immunostimulants on gut microbiota
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Resistance to
pathogen Agent Species Route of

exposure
Length of 
administration

Mechanism of
action/results References

Aeromonas
hydrophila Yeast glucan Tilapia and 

grass carp i.p 14 days
↑ protection in both species and 
number of NTB-positive staining 
cells

[219] 

Glucan Rohu Oral 7 days

↑ phagocytotic activity,
bactericidal activity,
antibody titre and
agglutinin level

[220]

Glucan Rohu i.p 28 days

↑ phagocytotic activity,
lysozyme activity,
bactericidal activity,
complement activity and
resistance

[221]

Garlic Rohi i.p 10 days ↑superoxide production, lysozyme 
activity and resistance [222]

Glucan Catla i.p 30 days ↑ antibody titre and
macrophage activating factor [223]

Glucan from
S. cerevisiae

Carp
(25-30 g)

i.p (0, 100, 500 and 
1000 µg 
fish-1)

14 days

↑ total leukocyte count and 
neutrophil and monocytes, 
increase survival in a challenge 
experiment with Aeromonas 
hydrophila

[224]

Glucan from
S. cerevisiae

Carp
(25-30 g)

i.p (0, 100, 500 and 
1000 µg 
fish-1)

14 days

↑ total leukocyte count and 
neutrophil and monocytes, 
superoxide anion production 
by kidney macrophages and 
resistance (500 µg) against A. 
hydrophila

[225]

β-glucan in
combination 
with LPS

Carp
(25-30 g)

i.p, bathing and 
oral ad-ministration 14

↑ total blood leukocyte count and 
neutrophil and monocytes and
resistance against A. hydrophila 
when i.p and oral administration 
were used

[226]

Levamisole carp
Diet (0, 125,
250 and 500 mg 
kg-1)

70 days

↑ resistance and erythrocyte 
count, haemoglobin content, 
haematocrit, total serum protein, 
albumin and globulin of fish fed 
250 mg kg-1 

[227]

β-glucan and 
S. uvarum Carp i.p 15 days ↑ resistance and serum

lysozyme activity [228]

Glucan Asian
catfish Oral 30 days ↑ antibody titre and

protection [229]

Glucan Blue gourami i.p (5, 10, 20 and 
40 mg kg-1) 22 days

↑ chemiluminescent response 
of head-kidney phagocytic cell 
isolated from fish i.p with a dose 
of 20 mg kg-1 and resistance 

[230]

Glucan Indian major 
carp i.p 1 week

↑superoxide production
and phagocytic activity
resistance unclear

[231]

S. cerevisiae zebrafish i.p (0.5, 2 and 5 mg 
ml-1) 6 + 4 days

↑ resistance (5 mg), 
myelomonocytic cells in kidney 
and enhanced the ability of kidney 
cells to kill the pathogen

[232]

S. cerevisiae Nile tilapia

Oral (0, 0.25,
0.5, 1, 2 and
5 g kg-1) and
i.p

12 weeks +
10 days

12 weeks
↑ growth, feed utilization and 
protein turn-over (1-5 g kg-1) and
resistance (5 g kg-1)

[233]

S. cerevisiae Nile tilapia Oral (2 % 
autolyzed yeast; 
0.3 % cell wall) 

70 days

↑thrombocytes and nonspecific 
acute inflammatory response
↓neutrophils, macrophages an 
lymphocytes

[234]

Green tea
(Camellia sinensis) Nile tilapia

Oral (0, 0.125, 
0.25, 0.5, 1 and 2 
g kg-1)

12 weeks +
10 days (i.p
challenge)

↑ growth and feed utilization 
(highest at 0.5
G kg-1), haematological and 
biochemical parameters (0.25-2 g 
kg-1) and resistance with 
increasing inclusion levels 

[235]

Debaryomyces 
hansenii

Leopard
grouper

Oral (106 
yeast g-1) 5 weeks

↑ resistance and growth
→ immunological parameters 
after 4 weeks

[236]
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Resistance to
pathogen Agent Species Route of

exposure
Length of 
administration

Mechanism of
action/results References

Macrogard Tench Oral (0, 0.5, 1 and 
2 g    kg-1) 1 month ↑ resistance and phagocytic 

activity (1 and 2 g kg-1) [237]

Schizophyllan
Two orna-
mental fish 
species

i.p (108 cells ml-1) 24 days ↑ resistance against both 
pathogens [238]

A.hydrophila and 
Pseudomonas 
fluorescens

Glucan Brook trout i.p and 30 min 
immersion 4 weeks

↑ resistance (up to 7
 days). By day 14 no resistance 
was reduced

[239]

Aeromonas
salmonicida Macrogard Trout Oral 1 week

↑ MPO activity,
phagocytic activity,
superoxide production
and Ig level

[240]

Aeromonas
salmonicida and
Vibrio salmonicida

Laminaran Atlantic salmon i.p (23.6 mg kg-1) 35 days

↑resistance against 
V. salmonicida
→ resistance against 
A. salmonicida 

[241]

Aphanomyces
invadans Ergosan Striped 

snakehead
Injected 
intramuscularly 2 weeks

↑ inhibitory effect of
 Serum and macrophage 
activating factor

[57]

Edwardsiella ictaluri Yeast glucan Channel
catfish i.p  2 weeks ↑ resistance and

phagocytic activity [153]

Glucan Channel
catfish Oral 2 weeks

↑ macrophage and
 neutrophil migration 
→ resistance
 

[242]

Edwardsiella
tarda Glucan Carp i.p 12 days ↑ resistance [152]

Glucan Rohu i.p 10 days ↑ bactericidal activity
 ↑resistance  [243]

Glucan Rohu i.p 28 days

↑ phagocytotic activity,
lysozyme activity,
bactericidal activity,
complement activity and
resistance

[221]

Glucan -
injections Rohu i.p 28 days

↑ phagocytotic activity,
lysozyme activity,
bactericidal activity,
complement activity and
resistance

[222]

Yeast glucan Tilapia and 
grass carp i.p 14 days

↑ protection in both species and 
number of NTB-positive staining 
cells

[219] 

Pasteurella piscicida Glucan Yellowtail i.p 10 days → resistance [244]

Photobacterium 
damselae ssp.
piscicida

Glucan Gilthead sea 
bream

Immersion (107 
cells l-1) 10 days

↑ resistance (10 g kg-1)
→ resistance (5 g kg-1)
and phagocytic activity [245]

Vibrio alginolyticus Glucan White shrimp Oral 120 hours
↑ resistance, phenol-
oxidase and respiratory
burst

[246]

Glucan Fresh-water 
prawn

Bath exposure with 
glucan. 

4 hours + 1 week 
immersion with 
the pathogen

↑ haemocyte lysate supernatant, 
lysozyme and phosphatase 
active-ties and increased 
resistance
→ total protein content

[247]

Vibrio anguillarum Yeast glucan Salmon i.p 20 days ↑ resistance [183]

High-M alginate Turbot Immersion (105 
cells 
ml-1)

1 week ↑ resistance [53]

High-M alginate Atlantic halibut
Immersion (5x105 
or 1.4x107 cells 
ml-1)

Different periods 
during initial 
feeding

↑ resistance at the highest dose
→ resistance at lowest dose [215]

Cationic cod milt 
protein

Atlantic cod 
(5 g)

Bath challenge 
(5x106 cells ml-1) 4 weeks ↑ resistance [248]

Vibrio anguill-arum and 
Vibrio
campbellii

Glucan from
S. cerevisiae

Gnoto-biotic 
Artemia

Immersion (5x106 
cells ml-1) 6 days ↑ resistance against both 

pathogens [249]

Vibrio campbellii Glucan from
S. cerevisiae Artemia Immersion (5x106 

cells ml-1) 5 days

Protection against Vibrio 
campbellii when
supplied in advance of the 
challenge

[250]
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Resistance to
pathogen Agent Species Route of

exposure
Length of 
administration

Mechanism of
action/results References

Glucan from
S. cerevisiae Artemia Immersion (5x106 

cells ml-1) 6 days ↑ survival and resistance against 
V. campbellii [251]

Vibrio damsela Yeast glucan Turbot
Yeast glucan was 
used as
adjuvant 

42 days
↑ activities of the immune 
parameters when glucan was 
injected after the bacterin

[252]

Vibrio harvei Glucan Croaker i.p 8 weeks

↑ lysozyme activity,
phagocytic activity and
resistance (0.09%)
→ resistance (0.18%)

[253]

Vibrio vulnificus Glucan Tiger shrimp Immerse 43 days

↑ resistance in shrimp treated with 
0.5 and 1 mg/ ml glucan but no 
in groups treated with 0.25 and 2 
mg/ ml glucan

[194]

Vibrio sp. 
90-69B3 Yeast Culture Pacific white 

shrimp Oral i.p after 4
weeks ↑ resistance [254]

Yersinia ruckeri Yeast glucan Salmon i.p 20 days ↑ resistance [183]

S. cerevisiae Rainbow 
trout i.p 14 days ↑ resistance, growth, lysozyme 

and complement activities [255]

Lactococcus garviae Alginate micro-
particles Trout i.p 3 weeks → resistance [256]

Streptococcus sp. Glucan Yellowtail i.p 10 days
↑ resistance and serum 
complement
↑ lysozyme activity

[244]

Sodium alginate Grouper i.p 6 days

↑ lysozyme activity,
respiratory bursts,
phagocytic activity and
resistance

[257]

Streptococcus
iniae Glucan Hybrid striped 

bass Oral 3 weeks → resistance [258]

Glucan Nile tilapia Oral 14 weeks ↑ resistance when fish were fed 
100 and 200 mg glucan [259]

Glucan Shark Oral 2 weeks ↑ resistance [260]
Virus

IHNV Glucan Rainbow trout i.p 18 days 
↑ resistance 
→ respiratory bursts and
TNF-α-expression

[39]

WSSV β-1,3-glucan Penaeus 
monodon

Oral (0 and
2g kg-1) 15 days ↑ resistance [261]

β-1,3-glucan Penaeus 
monodon i.p 20 days ↑ resistance and the

Immune system [262]

Marine yeast
(Candida sake) White prawn Oral (10 %) 40 + 10 days ↑ immunity index and

resistance [263]

Marine yeast
glucan

Penaeus 
monodon Oral 21 days

↑ resistance, but higher molecular 
weight and lower degree of 
branching acts better

[264]

Parasite
Loma morhua Glucan Atlantic cod Oral n.i ↑ lymphocyte density [265]

Loma salmonae
β-1,3/1,6 
glucan Rainbow trout i.p (0, 50, 100, 500 

and 1000 µg) 10 weeks
During week 8-9 post exposure 
a significant reduction in no. of 
xenoma-positive fish was noticed. 

[266]

Symbols represent an increase (↑) in the specified response; no change (→); decrease (↓); n.i – no information given.
i.p – intraperitoneal injection
n.i – no information given
IHNV – infectious hematopoietic necrosis virus
IHNV – infectious hematopoietic necrosis virus
WSSV - White spot syndrome virus

Table 3: Immunostimulants and disease susceptibility in fish and shrimps.

Immunostimulants seem to be valuable for the control 
of fish diseases. However, knowledge regarding the ability of 
immunostimulants to modulate the gut microbiota in a healthier 
way and decrease the infection pressure by improving the gut 
function is scarce. To our knowledge only two studies, Gildberg and 
Mikkelsen [46] and Skjermo et al. [96] have been done on the topic; 
immunostimulants and modulation of the gut microbiota. In their study 
on Atlantic cod (Gadus morhua) fry, Gildberg and Mikkelsen evaluated 

the effect of supplementation of LAB either alone or in combination 
with immunostimulating peptides [46]. After three weeks of feeding, 
the fish were challenged by bath exposure to V. anguillarum (107 ml-

1; 1hour). Twelve days after infection significantly (p<0.05) reduced 
cumulative mortality was recorded in fish fed diet supplemented with 
LAB, originally isolated from Atlantic salmon (Salmo salar) and with 
immunostimulating peptides. No synergistic or cumulative effects 
were achieved by combining LAB and immunostimulating peptides. 
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Four weeks after infection similar cumulative mortality (80–84%) was 
observed in all groups. LAB seems to colonize the internal mucus layer 
of the cod fry pyloric caeca, and a significant number of the bacteria 
survived the passage of the whole gastrointestinal tract. 

In a study with Atlantic cod larvae, Skjermo and co-authors [96] 
evaluated the effect of β-(1→3, 1→6)-glucans (chrysolaminaran) from 
the marine diatom Chaetoceros mülleri, a commercial yeast-glucan 
product and high-M alginate (high content of mannuronic acid isolated 
from Durvillaea antarctica), on the microbial community in larval gut 
and water. Total colony forming units (CFU) were evaluated on marine 
agar, and Vibrio - and Pseudomonas - like species on selective agars 
(TCBS and marine Pseudomonas agar with CFC - supplement). The 
larvae were rapidly colonised after hatching, but no or weak effects 
of the stimulants were observed on the bacterial colonisation rates or 
the bacterial community. The total CFU varied from 101 to 102 CFU 
per μg larva after initiation of the first feeding. Bacteria belonging to 
Pseudomonas appeared to increase throughout the period, whereas 
the level of Vibrio-like bacteria was low and stable. However, in 
this investigation the authors only focused on characterisation of 
Pseudomonas- and Vibrio-like bacteria and did not use molecular 
methods to evaluate the entire bacterial community. 

Hoseinifar and co-authors evaluated the effect of brewer’s yeast 
(S.cerevisiae var. ellipsoideus) on gut microbiota of juvenile beluga 
(Huso huso) and displayed that juveniles fed 2 % S. cerevisiae var. 
ellipsoideus increased the levels of autochthonous LAB [97]. The authors 
suggested that this interesting finding might occur as a result of the 
provision of enzymes, RNA and free nucleotides, B-complex vitamins 
and/ or amino acids by the dietary yeast. Whether supplementation 
of S. cerevisiae var. ellipsoideus improved disease resistance against 
pathogens was not investigated and merits further evaluation.

Based on the fact that no information is available about the effect 
of immunostimulants on the “good” gut microbiota with antagonistic 
activity against fish pathogenic bacteria, this should be a topic of 
further research as the gastrointestinal tract in fish is a potential port 
of entry for pathogenic bacteria [98-106]. The importance of the topic 
is illustrated by a study showing that intraperitoneal injection of 
immunostimulatory substances affects the allochthonous (transit) gut 
microbiota including LAB of Atlantic salmon [107]. 

Nucleotides 

Dietary nucleotides have attracted attention as key ingredients 
missing from nutritional formulae for many years. They are the building 
blocks of tissue RNA and DNA and of ATP, and their presence in 
breast milk has stimulated research in babies which has indicated that 
supplementation of infant formula milk leads to improved growth and 
reduced susceptibility to infection [108-110]. Nucleotide fortification 
of breast milk substitutes has been recommended to the U.S. Food and 
Drug Administration for approval [111]. There is increasing evidence 
that nucleotides administered intravenously or in the diet are capable 
of modifying immune responsiveness and recovery of organs that have 
undergone a metabolic or inflammatory insult. 

It is generally accepted that nucleotides have essential physiological 
and biochemical functions including encoding and deciphering genetic 
information, mediating energy metabolism and cell signalling as well 
as serving as components of coenzymes, allosteric effectors and cellular 
agonists[112,113]. However, controversy has existed for many years 
over the roles of nucleotides administered exogenously. As neither 
overriding biochemical malfunctions nor classical signs of deficiency are 

developed in endothermic animal models, nucleotides have traditionally 
been considered to be non-essential nutrients. However, this opinion 
has been challenged by several research publications during the last 
decade which suggest that dietary nucleotide deficiency may impair 
liver, heart, intestine and immune functions[114]. The modulatory 
effects of dietary nucleotides on lymphocyte maturation, activation and 
proliferation, macrophage phagocytosis, immunoglobulin responses, 
gut microbiota as well as genetic expression of certain cytokines 
have been reported in endothermic animals[115,116]. Nucleotide 
supplementation has been one important aspect of research on clinical 
nutrition and functional food development for humans[109,110]. 

Although initial efforts in evaluation of dietary supplementation 
of nucleotides for fishes could be traced to the early 1970s, research at 
that time mainly focused on the possible chemo-attractive effects of 
these compounds [117-119]. However, the pioneer investigations by 
Burrels and co-authors resulted in increased attention on nucleotide 
supplementation for fishes as their studies indicated that dietary 
supplementation of nucleotides enhanced resistance of salmonids to 
viral, bacterial and parasitic infections as well as improved efficacy of 
vaccination and osmoregulation capacity[5,6]. To date, research related 
to nucleotide nutrition in fishes has to some extent showed consistent 
and encouraging beneficial results in fish health management (Table 
4), although most of the suggested explanations put forward by the 
authors remain hypothetical. Systematic research on fishes is therefore 
needed. 

Because increasing concerns of antibiotic use have resulted in a ban 
on subtherapeutic antibiotic usage in Europe and the potential for a 
ban in the US and other countries[120], research on immunonutrition 
for aquatic animals is becoming increasingly important[121]. Research 
on nucleotide nutrition in fish and shrimp is needed to provide insights 
concerning interactions between nutrition and physiological responses 
as well as provide practical solutions to reduce basic risks from 
infectious diseases for the aquaculture industry. Devresse hypothesized 
that nucleotides are a key nutrient for the shrimp immune system and 
supplementation of nucleotides or other nucleic acid-rich ingredients 
such as yeast or yeast extract may enhance disease resistance and 
growth of shrimp [122]. Although yeast products have been used in 
shrimp diet formulations, the role of yeast nucleotides remains largely 
unanswered. In their comprehensive review, Li and Gatlin summarized 
and evaluated knowledge of nucleotide nutrition in fishes as compared 
with that of terrestrial animals[123]. 

The roles of nucleotides and metabolites in fish diets have been 
sparingly studied for nearly 20 years. Beside possible involvement 
in diet palatability, fish feeding behaviour and biosynthesis of non-
essential amino acids, exogenous nucleotides have shown promise 
most recently as dietary supplements to enhance immunity and 
disease resistance of fish produced in aquaculture. Research on dietary 
nucleotides in fishes has shown they may improve growth in early stages 
of development, enhance larval quality via broodstock fortification, 
alter intestinal structure, increase stress tolerance as well as modulate 
innate and adaptive immune responses. Fishes fed nucleotide-
supplemented diets generally have shown enhanced resistance to viral, 
bacterial and parasitic infection. Despite occasional inconsistency in 
physiological responses, dietary supplementation of nucleotides has 
shown rather consistent beneficial influences on various fish species. 
Although nucleotide nutrition research in fishes is in its infancy and 
many fundamental questions remain unanswered, observations 
thus far support the contention that nucleotides are conditionally or 
semi-essential nutrients for fishes, and further exploration of dietary 

http://www3.interscience.wiley.com/cgi-bin/fulltext/118545333/main.html,ftx_abs#b6#b6
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a - symbols represent an increase (↑), decrease (↓) or no change (→) in the specified response. 

Table 4: Research on dietary supplementation of nucleotides on fishes.

Nucleotide form Dose and/or feeding 
regime Length of administration Species Initial size Effecta Authors

Ascogen S 2 and 5 g kg−1 diet 16 weeks Hybrid tilapia 21 days old ↑growth and survival [267]

Ascogen P 5 g kg−1 diet, fixed ration 
approaching satiation daily 7 weeks Hybrid striped 

bass 7.1; 9.1 g
↑ neutrophil oxidative radical production 
and 
survival after challenge with S. iniae

[268-269]

Ascogen 5 g kg−1 diet 120 days Hybrid tilapia 30 days old ↑ antibody titer after vaccination and 
mitogenic response of lymphocyte [270]

0.62, 2.5 and 5 g kg−1 diet 
at 1% bw day−1 37 days Rainbow trout 163.4–169.7 

g fish−1 ↑ growth [134]

Nucleic acid 5.8 and 11.5 % 10 weeks Sea bream 12.7 g

↑ growth, ornithine carbamyltransferase 
activity
→ body composition, hepatic glutamate 
dehydrogenase and uricase activities

[203]

Optimûn 2 g kg−1 diet, containing 
0.03% NT, 2% bw day−1 3 weeks Rainbow trout 217 ± 62 g ↑ survival after challenge with 

V. anguillarum [5]

2 g kg−1 diet, containing 
0.03% NT, 1% bw day−1 2 weeks Rainbow trout 53–55 g ↑ survival after challenge with infectious 

salmon anaemia virus [5]

2 g kg−1 diet, containing 
0.03% NT, 2% bw day−1 3 weeks Coho salmon 100 g ↑ survival after challenge with 

Piscirickettsia salmonis [5]

2 g kg−1 diet, containing 
0.03% NT, 2% bw day−1 3 weeks Atlantic salmon 60 g ↓ sea lice infection [5]

2 g kg−1 diet, containing 
0.03% NT at 1.5% bw day−1

3 weeks before vaccination 
and 5 weeks post-vaccination Atlantic salmon 34.7 ± 9.6 g ↑ antibody titer 

↓ mortality [6]

2 g kg−1 diet, containing 
0.03% NT at 1.5% bw day−1 8 weeks Atlantic salmon 43 ± 3.0 g

↑ growth 
↓ plasma chloride [6]

2 g kg−1 diet, containing 
0.03% NT 10 weeks Atlantic salmon 205 g ↑ intestinal fold [6]

NA 120 days “all-female” 
rainbow trout 80–100 g

↑ B lymphocytes and 
resistance to IPN virus 
↓ plasma cortisol

[271]

2 g kg−1 diet, containing 
0.03% NT to hand satiation 
daily

15 weeks Turbot 120.9 ± 
5.1 g

Altered immunogene expression in 
various tissues [7] 

2 g kg−1 diet 6 weeks Red drum 1 g
→ Growth, whole body composition and 
in situ challenge with Amyloodinium 
ocellatum

[126]

Ribonuclease-
digested yeast RNA 15 mg fish−1, by intubation 3 days Common carp 100 g

↑ phagocytosis, 
respiratory burst, 
complement and
lysozyme 
↓ A. hydrophila  
  infection

[273]

Aquagen Oral 2 weeks Shark 1.4 ± 0.2 g ↑ resistance after 
 challenge with S. iniae [260]

Nucleotide mixture 4 g kg−1 diet 5 weeks Pacific white 
shrimp ca. 0.83 g ↑ growth [274]

4 g kg−1 diet 4 weeks Red drum 10.2 ± 0.2 g
↑ growth, neutrophil oxidative radical 
production and survival after challenge 
with  V. harveyi

[275]

supplementation of nucleotides for application in fish culture is 
warranted. Hypothesized reasons associated with these beneficial 
effects include dietary provision of physiologically required levels of 
nucleotides due to limited synthetic capacity of certain tissues (e.g. 
lymphoid), inadequate energetic expenditure for de novo synthesis, 
immunoendocrine interactions and modulation of gene expression 
patterns. 

The numbers of scientific publications dealing with dietary 
nucleotides in fish has been relatively limited since the comprehensive 
review of Li and Gatlin[123] was published. The section below 
summarises the dietary effects of nucleotides on a number of fish 
species such as red drum (Sciaenops ocellatus), red-tail black shark 
(Epalzeorhynchos bicolor), Asian carp (Catla catla), barramundi (Lates 

calcarifer), cobia (Rachycentron canadum), grouper (Epinephelus 
malabaricus) and salmonids such as rainbow trout and Atlantic salmon 
published post 2006.

The use of dietary nucleotides in red drum Sciaenops ocellatus has 
also been evaluated on growth and feed utilisation[124]. Juvenile fish 
(ca. 122g) were fed purified a commercial nucleotide product 0.2% 
(Optimûn, Chemoforma, August, Switzerland) or nucleotides mixtures, 
which contained equal amounts of CMP (cytidine monophosphate), 
UMP (uridine monophosphate), AMP (adenosine monophosphate), 
IMP (inosine monophosphate) and GMP (guanosine monophosphate), 
at 0.03%, 0.1% and 0.3% of the diet for a period of four weeks[125]. Fish 
fed dietary nucleotides had showed a clear trend towards increased 
growth, measured as SGR at the end of the trial. Growth improvements 
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ranged from 5-6% up to 8% higher than the control diet for the fish 
fed the nucleotide mixtures and commercial product respectively. A 
similar trend towards improved feed efficiencies was observed in all 
the groups fed diets containing added nucleotides. No diet effect on 
body composition was observed in contrast to previous observations. 
A clear trend of diet effect on neutrophil oxidative radical production 
was also observed that could suggest that excessive dose could inhibit 
immune responses. Fish were challenged against V.harveyi at the end 
of the four-week feeding period but no differences were observed in 
terms of survival when compared to the control diet. The authors 
reported on unexpected high mortalities within the 3 days post-
challenge in contrast to previous experiments so it was concluded that 
further studies are needed in order to evaluate potential effect of dietary 
nucleotides on red drum resistance against V. harveyi [126].

Red drum was also the fish species selected by Cheng and co-authors 
to assess the effects of dietary nucleotides on intestinal morphology 
and immune responses [127]. The authors used around 7g fish to 
compare a commercial nucleotide product, Ascogen P® (Canadian 
Byosystems Inc., Calgary, Alberta, Canada), at 0.5% and 1% inclusion 
levels against a control diet not enriched with nucleotides. Evaluation 
of immune response after six weeks of feeding showed increased 
extracellular superoxide anion production at the highest dose. In 
general intestinal morphology, measured as fold height, enterocytes 
height and microvillus height, in the pyloric caeca, proximal, mid- and 
distal intestine, was positively influenced by dietary nucleotides. Thus, 
fold height in the proximal intestine was increased by nucleotides as 
previously reported for Atlantic salmon [5,6]. Enterocyte height was 
increased in the pyloric caeca, proximal and distal intestine, not in the 
mid intestine, by nucleotides. The microvillus height was also increased 
in the pyloric caeca, proximal, mid and distal intestine. 

Russo et al. examined the effects of commercial beta-glucans 
(Macroguard®, Biotec Pharmacon ASA, Tromsø, Norway) and 
nucleotide product (AquagenTM, NOVARTIS-Aqua Health Ltd., 
Charlottetown, Canada) on disease resistance of red-tail black shark 
(Epalzeorhynchos bicolor) against S.iniae infection [128]. Two trials 
were conducted using 1.4g fish feeding control, beta-glucan (0.1% 
inclusion) or nucleotide diet (0.2% product inclusion) for 24 days. In 
the first trial both vaccinated and non-vaccinated fish were used while 
in the second experiment nucleotide- or beta-glucan-enriched diets 
were fed only to vaccinated fish and results compared against a non-
vaccinated fish fed control diet. Results of the first trial showed that 
both commercial products were able to reduce mortalities compared to 
the fish fed control diet in both vaccinated and non-vaccinated fish. In 
the second experiment vaccinated fish fed beta-glucans and nucleotide 
suffered lower mortalities than the vaccinated fish fed control diet and 
despite slightly lower mortality in the beta-glucan group compared to 
nucleotide group no statistical difference could be claimed. Growth 
performance was influenced significantly by dietary treatment in any 
of the trials conducted.

Jha et al. tested yeast nucleotides, in the form of RNA (Sisco 
Research Laboratories, India), at 0.4% and 0.8% inclusion levels on 
Catla catla fingerlings (ca. 8g start weight) to assess potential changes 
in haemato-immunological responses followed by a challenge trial 
against A. hydrophila after 60 days feeding [129]. Feeding dietary 
nucleotides increased leucocyte counts, total protein, globulins, and 
albumin: globulin ratio, lysozyme activity and respiratory burst activity 
compared to controls. When comparing differences between nucleotide 
doses only the respiratory burst activity was increased by augmenting 
the dietary nucleotides from 0.4% to 0.8% dose. Conversely, the highest 

survival was observed in the fish fed the highest dose of nucleotides. 
Fish fed 0.4% nucleotides also showed significantly higher survival than 
control fish.

At 30˚C barramundi fed diets supplemented with nucleotides 
(Optimûn, Chemoforma, August, Switzerland) grew significantly 
better and had lower FCR than those fed the reference diet with no 
additional nucleotides added[130]. In the same study it is noted that the 
supplementation of dietary nucleotide at 30˚C significantly improved 
the retention efficiencies of protein, energy, lysine and histidine 
compared to the reference diet. However at 37˚C , under heat-stress 
conditions, despite dietary nucleotides reduced FCR an improvement 
in growth was not observed.

Salze et al. supplemented cobia diets with a nucleotide-rich yeast 
extract (Nupro, Alltech, Nicholasville, KY, USA) part of a zero-fishmeal 
feed[131]. The 104g fish fed the zero-fish meal diet, which was based 
on soy protein concentrate, worm meal and mannan-oligosaccharides, 
had similar growth as a control diet with 25.3% fish meal. However the 
experimental design tested was insufficient to separate the effects of the 
different raw materials and to evaluate whether cobia benefited from 
nucleotide supplementation.

Lin et al. reported the benefits of supplementing dietary nucleotides 
on growth and immune responses of grouper (Epinephelus malabaricus) 
juveniles[132]. The first experiment assessed different inclusion levels 
of a nucleotide mixture containing equal amounts of IMP, AMP, GMP, 
UMP and CMP. Weight gain and feed efficiency were the highest in 
the group of grouper fed 0.15% of the nucleotide mixture; with head 
kidney leucocyte superoxide anion production ratio and plasma total 
immunoglobulin concentration also being higher than the fish fed 
the control diet. In the second experiment a diet containing 0.15% 
nucleotide mixture was compared against a control diet and also diets 
containing 0.15% of IMP, AMP, GMP, UMP or CMP. From the second 
experiment it was concluded that juvenile grouper diets containing 
0.15% AMP seemed to have better effects than other diets supplemented 
with different single-nucleotides. Overall conclusion showed that both 
growth and immune responses of juvenile grouper were enhanced in 
grouper diet with 0.15% nucleotide mixture.

Due to its economical impact as a high-value species, research on 
salmonids species and nucleotides has received lots of attention in 
the last years. Tahmasebi-Kohyani and co-authors conducted a dose 
response trial on rainbow trout fingerlings (ca. 23g start weight) in 
order to evaluate their effects on growth, humoral immune responses 
and resistance against S.iniae[133]. A basal diet was supplemented with 
Optimûn (Chemoforma, August, Switzerland) at 0.05%, 0.1%, 0.15% 
and 0.2% inclusion levels and fish were fed for eight weeks. Results 
showed that 0.05% dose was too low and thereafter increased growth, 
FCR, alternative complement activity, lysozyme activity and IgM as 
nucleotide dose was augmented, reaching highest values for each of 
them at the highest nucleotide dose. Similar results were observed 
at the end of the challenge trial and increased survival was observed 
with increasing dietary level of nucleotides from 0.05% to 0.2%. This 
is in agreement with previous work on rainbow trout by Adamek 
and co-authors that used a wider range of concentrations of the same 
commercial product, from 0% up to 0.5% and reported approximately 
0.2% as the optimal dose (Figure 1)[134].

The efficacy of dietary nucleotides (Optimûn, Chemoforma, 
August, Switzerland) increasing survival (+39%) against Piscirickettsia 
salmonis was first reported by Burrells and co-authors on 100g coho 
salmon (Oncorhynchus kisutch) after feeding for three weeks before 
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challenge[5]. The efficacy of dietary nucleotides against P. salmonis 
has also been confirmed in other salmonid species such as Atlantic 
salmon. González Vecino et al. reported increased protection against P. 
salmonis when Atlantic salmon were fed diets containing a combination 
of dietary nucleotides with a bacterial cell-wall extract (Sanictum®, 
Chemoforma, Augst, Switzerland)[135]. Thus, a synergistic effect of 
the combination of nucleotides and Sanictum® was observed since 
survival was significantly better than feeding nucleotides or bacterial 
cell-wall extract separately. 

Dietary nucleotides in broodstock diets

Fish reproduction, and egg and larval quality are affected by 
broodstock nutrition. Nucleotides, the building blocks of nucleic acids, 
are now considered as semiessential nutrients during periods of food 
deficiency, stress, rapid growth and immunological stress. González 
Vecino reported that since oogenesis is a process of intensive cell 
division with high nucleic acid formation and a concomitant high 
requirement for nucleotides, supplementation of broodstock diets 
with nucleotides was beneficial for fish[136]. The results showed 
that Atlantic halibut (Hippoglossus hippoglossus L.) and haddock 
(Melanogrammus aeglefinus L.), two cold water species with different 
life histories, had improved fecundity, egg quality, larval quality and 
survival when broodstock diets were supplemented with nucleotides. 
In addition it was observed that haddock larvae from broodfish fed 
nucleotides had a significantly better developed gut and first feeding 
success that those from broodstock fed diets not supplemented with 
nucleotides. Similar beneficial effects have been observed in salmon 
broodstock diets supplemented with nucleotides (González Vecino, 
unpublished data).

Dietary nucleotides against sea lice

Immune modulation of salmon can significantly affect the 
infection intensity of sea lice both Caligus spp. and Lepeophtheirus 
salmonis. Salmon with reduced or compromised immunity have higher 
infection with sea lice [137-139]. In addition it is known that during 
the attachment period sea lice release immunosupressive compounds, 
including prostaglandin E2 (PGE2) and leukotriene B4 (LTB4) 
(cytokines) creating a local immunosuppression at the infestation 
site allowing the lice to attach unhindered [139-144]. Salmon with 

enhanced immunity have lower infection with sea lice, thus a range of 
products such as alginates, ß-glucans and nucleotides have shown to 
reduce sea lice infections. Burrells et al. [5] reported a 38% reduction 
in sea lice (L. salmonis) infestation on 60g Atlantic salmon fed diets 
containing nucleotides for three weeks. This was in agreement with 
reports of 38% reduction on attached stages of L. salmonis on 700g 
Atlantic salmon after feeding nucleotides for 3 weeks [145]. In the 
same study Burrells et al. demonstrated that the combination of dietary 
nucleotides with anti-sea lice bath treatments increased the efficacy 
of the treatment by 53% [145]. Later work on Caligus rogercresseyi 
also reported increased efficacy of deltamethrin (bath treatment) and 
emamectin benzoate (oral treatment) when applied in combination 
with diets containing nucleotides Optimûn and bacterial cell-wall 
extract Sanictum® (Chemoforma, August, Switzerland) [146].

Sea lice are well adapted to develop resistance against medicines. 
Even within a fully sensitive population a number of sea lice will survive 
treatment. Wadsworth et al. reported that the use of pyrethroids at the 
recommended dose showed a survival of 20% of attached stages in a 
naïve population [147]. Although these lice survived the sub-lethal 
toxicity of the compound and were able to complete their life cycle, 
the pyrethroid still had a significant, negative effect upon the rate of 
development, dramatically increasing the time required to reach pre 
adult I stage. Increasing the time the lice takes to reach pre adults will 
expose them to the host immunity during this extended period. In 
their weakened state, it is unlikely the lice are deploying the full range 
of immune suppressive compounds as effectively as untreated lice. 
Therefore, it is recommended that immune modulating compounds 
such as dietary nucleotides are deployed against lice during treatments 
with anti-sea lice medicines. It is essential that attached lice surviving 
treatments are targeted to prevent the development of resistant 
populations. 

Furthermore a sea lice infestation represents a substantial stress 
to the infected animal. An anti-sea lice bath treatment is in its nature 
a severe multi stress event including starvation, handling, crowding, 
hypoxia and exposure to a toxic pharmaceutical all within a short 
period of time. Even a presumably soft action such as feeding diets 
containing emamectin benzoate has been shown to trigger stress. 
Thus, Olsvik and co-authors reported that dietary treatment with 
Slice® (Schering-Plough Animal Health, Boxmeer, The Netherlands) in 
salmon triggers the expression of stress coding genes in the fish due 
to sheer metabolisation and degrading of emamectin benzoate in the 
liver [148]. Since dietary nucleotides have been shown to reduce levels 
of cortisol its use could also be suggested with emamectin benzoate 
treatment.

The use of dietary nucleotides as an immune modulating tool 
against sea lice should be utilised in an integrated pest management 
programme with rotation of compounds, resistance monitoring, co-
ordinated treatments, cleaner fish as well as effective monitoring and 
control of other diseases.

Conclusions and Recommendations
Immunostimulants

It is generally accepted that immunostimulants used in fish 
experiments induce beneficial effects such as disease protection due to 
increased cellular and humoral responses. However, precautions have 
to be taken regarding issues such as tolerance, non-wanted side effects 
such as immunosuppression using too high doses of immunostimulants 
or non-desirable effects caused by a prolonged use of such compounds. 

0.5

0.55

0.6

0.65

0.7

0.75

0.0% 0.1% 0.2% 0.3% 0.4% 0.5%

Nucleotide dose

SG
R

1.4

1.45

1.5

1.55

1.6

1.65

1.7

1.75

1.8

FC
R

SGR

FCR

Poly.
(FCR)
Poly.
(SGR)

Figure 1: Growth and FCR data of rainbow trout fed diets with increasing 
doses of nucleotides. Adaption of data reported by Adamek et al. [135].
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In future, it is hoped that following the development of genomic 
and proteomic tools for several fish species, many issues with special 
attention to immune response polarisation after receptor binding of 
immunostimulants will be unveiled.

Possible effect of immunostimulants on potential probiotics ability 
to adhere to intestinal mucus should be given high priority in future 
studies. New and vital information on this topic is needed as the 
gastrointestinal tract is a potential port of entry for pathogenic bacteria.

Both prebiotics Bio-MOS® and β-1.3 glucan are two commercially 
available products, derived from the cell wall of S.cerevisiae, in which 
the use of Bio-MOS® in aquaculture has increased during the last years 
[149]. However, as less information per se in available on the effect of 
Bio-MOS® and β-1.3 glucan in aquatic animals [150], this topic should 
be given high priority in future studies. 

Nucleotides

Based on available knowledge and experience within nucleotides, 
demonstrating that nucleotide supplementation improves the 
composition of the gut microbiota in formula-fed infants should 
encourage bacteriologists working with fish to investigate interaction 
between nucleotides and gut microbiota. Furthermore, we recommend 
that the following topics should be given high priority in future; (1) 
in broodstock during oogenesis to improve fecundity, egg and larval 
quality, (2) during sea water transfer: feeding pre- and post- seawater 
transfer provides fish with a better osmoregulation and adaptation 
to marine environment, (3) combination with vaccines: feeding 
nucleotides during (pre- and post-) the vaccination period modulates 
the immune response and reduces the negative side effects caused by 
vaccines (e.g. growth suppression), (4) improved immune response and 
protection against pathogens such as; V. anguillarum, A. salmonicida, 
IPN, ISA, rickettsia-like bacteria, Flavobacterium, Moritella viscosus 
and (5) protection against sea lice and improved (higher) efficacy of 
pyrethroids when used combined with nucleotide feed. 
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