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Introduction
In 2014 the Centers for Disease Control and Prevention reported 

that 29.1 million people in the United States have diabetes and 27.8% 
of them are undiagnosed [1]. Also, an estimated 86 million people in 
the United States age 20 or older are prediabetic. However, because 
few symptoms of prediabetes exist, most people recognize they have 
the disease only when it becomes serious. If diagnosed early, lifestyle 
changes could slow the progression of the disease and prevent damage 
to vital organs. Currently, consumers can check their glucose level for 
themselves with a urine test strip or a blood glucose meter but these 
readings are subject to error and are inconvenient to use on a regular 
basis. These methods are intrusive, cumbersome, require users to alter 
their habits in order to accommodate the tests and are thus unlikely to 
be used. There is a need for an automatic, unobtrusive (e.g., in-toilet) 
home health care system which can track and trend health indicators, 
such as urine glucose, for pre-screening of conditions such as Type II 
diabetes or prediabetes.

Urine glucose levels have been quantified with Near-infrared (NIR) 
spectroscopic measurements, using multivariate analysis to fit or extract 
(predict) the glucose level [2-4]. Spectroscopic measurements can even 
be made with instruments small enough to fit in a toilet. However, for 
low concentrations of glucose typical of a healthy population, NIR 
spectroscopic efforts to date have typically reported large errors or only 
a few data points. One reason glucose is hard to quantify is that the 
spectral signature of its O-H bond overlaps with the strong O-H bond 
absorption of water in urine. Near the water absorption bands, total 
transmission is low, which can push glucose absorption features into 
the measurement noise. Complex lab instrumentation can potentially 
achieve sufficient signal-to-noise ratios (SNR) for unambiguous low-
level glucose measurements. However, for ubiquitous (e.g., at-home) 

measurement, it is necessary to use more affordable and compact 
equipment providing only modest levels of signal to noise ratios. The 
key to solving the problem of measuring low concentrations of glucose 
with cost-effective equipment is reducing measurement noise. In this 
paper we introduce a novel scheme relying on measuring multiple 
samples over time to achieve a high accuracy trended measurement 
using low-cost equipment and data filtering techniques. Traditional 
methods, by contrast, rely on the expectation that each measurement 
result has sufficient accuracy for a diagnosis. This is because doctors 
have limited access to patients, sometimes getting only a single sample. 
However, when instruments are cost-effectively deployed in the user’s 
home or work environment, frequent repeated measurements can 
achieve high levels of accuracy by averaging the data to remove the 
random measurement noise. This concept of repeated measurement 
noise averaging, while readily used in the field of engineering, is rarely 
seen in the medical community. This paper shows how multiple sample 
data trending can reveal accurate glucose trends with SNR levels far 
below what is required for an accurate single-point measurement, 
which suggests a new strategy and opportunity for medical diagnosis, 
health tracking, and addressing the problem of undiagnosed disease 
and disease management.
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Abstract
Many over-the-counter glucose measurement systems currently exist but are not widely used by nondiabetic 

consumers because of the inconvenience. There exists a need for new methods of conveniently detecting early 
stages of diabetic or prediabetic conditions rather than waiting for the disease to progress to the point that symptoms 
indicative of physiological damage are present and a user requests medical care. Near-infrared (NIR) spectroscopic 
urinalysis has shown some promise for use as an unobtrusive measurement system for glucose levels but has 
required expensive equipment. This paper presents a method of combining a cost-effective, home-deployable NIR 
system with a non-traditional trend-based data analysis to extract representative glucose levels from patients. By 
taking multiple measurements over time with an unobtrusive, automatic, in-toilet urinalysis system, limited accuracy 
samples from each patient can be averaged to obtain an improved accuracy trended value. Data trending is able 
to predict glucose levels with sufficient accuracy to be clinically relevant in the detection of chronically high glucose 
conditions. The bandwidth, or averaging window, of the filters can be varied to achieve a target accuracy level, 
even when the error of individual measurements is large and variable. Urine spectra can be captured from an at-
home or at-work toilet with a urine capture slot and NIR spectrometer. A new data reporting strategy is proposed for 
trended measurements, whereby filtered data is reported with a known and acceptable post-filter variance, rather 
than reporting individual sample measurements. This is in contrast to traditional methods of single-point clinical tests, 
which may require expensive equipment to achieve sufficient single-point accuracy, be obtrusive or inconvenient, 
available only on demand, or susceptible to outliers.
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Methods
System description

Urine samples were captured in a 1-mm slot and held by capillary 
forces (Figure 1B). The slot could be installed in a toilet bowl just 
above the standing water level to capture a sample each time a user 
uses the toilet or as part of a laboratory benchtop apparatus to measure 
samples previously collected in a specimen cup. Data for this study 
were measured using a benchtop setup. A transmission spectrum was 
obtained by measuring light transmission through the 1-mm path 
length of the captured urine, with the light beam transverse to the slot 
direction. The light beam diameter is ~0.5 mm. The slot is held at a 
constant temperature of 36°C ± 0.5°C.

A constant-power incandescent light source (Avantes, Broomfield, 
CO) was used to illuminate the sample, and compact NIR spectrometers 
from Neospectra (Si-Ware Systems, Cairo, Egypt) were used to measure 
the transmission spectrum (Figure 1). Figure 2 shows how the urine 
capture slot, light source and spectrometer are deployed in a toilet. The 
wavelength range was 1300 nm to 2500 nm, and the FFT spectrum in 
wavenumbers (cm-1) is converted to wavelength and re-interpolated 
at 16 nm resolution. A reference scan was obtained every two hours by 
measuring the transmission of filtered water. The sample scan was then 
divided by the reference scans to obtain a normalized transmission 
spectrum. Unscrambler X (CAMO, Oslo, Norway) was used for the 
multivariate data analysis.

Experiment method and algorithm development

Multiple urine samples were collected from approximately 890 
users. Of the 1376 total samples measured, about 500 samples were 
collected from 20 users, and the remaining were collected from 
one-time donors. Of the total samples, 1036 samples were used as a 
training set to develop a predictive model and 340 samples were used 
for validation. Several of the samples were spiked with glucose from 
Sigma-Aldrich (Sigma-Aldrich, St. Louis, MO) to increase the diversity 
of glucose concentrations because not many samples have naturally 

high glucose. A sample was never spiked multiple times, only once or 
not at all, and the exact glucose concentrations were measured by a 
medical lab instrument, (AU480, Beckman Coulter, Brea, CA) which 
has a measurement repeatability specification of ± 2%. A Partial Least 
Square (PLS) regression method in Unscrambler was used to build a 
calibration model and predict validation data, and filters were applied 
on the predicted data to remove noise. The correlation coefficient of the 
PLS model was 0.92.

Results and Discussion
Most of the 340 samples validated with the PLS model were at 

low glucose levels, in the normal range (~20 mg/dl) [5]. Our research 
is mainly focused on detecting changes in the glucose concentration 
of normal users and observing any significant increase over time. 
Figure 3A compares predicted glucose to a reference measurement 
from the commercial AU480 color change chemistry-based analysis 
instrument. The error at low concentrations is larger than is reported 
in other papers because the compact spectrometer used in this study is 
not a high-end scientific-grade instrument, and our toilet-deployable 
setup was exposed to external variables such as ambient light, slight 
temperature variation, and evaporation of trace amounts of samples 
in the urine capture slot [2-4]. For high levels of glucose, the spectral 
signature of glucose rises out of the spectral noise, and the accuracy of 
the prediction improves. Since the error window is large in the normal 
range, it is difficult to predict if the user’s glucose level is in the normal 
level with only a single data point. Therefore, digital filters are employed 
to remove noise by filtering the predicted data from a sequence of user 
samples collected over many days. Digital filtering is possible due to 
the random nature of the measurement error. In practice, averaging 
could be done by measuring a single sample repeatedly. However, the 
purpose of this study is to demonstrate the efficacy of data filtering a 
sample sequence to obtain a trended result within a specified error 
bound.

It is not clinically practical/ethical to ask a person to generate 
an extended sequence of upward trending glucose levels, and so a 
simulation was created for proof of concept. This simulation was 
created by arranging the 340 validation data points in order of 
ascending glucose concentration (as measured by the AU480) and the 
data series cut and spliced to generate 4 regions of interest: 

(1) normal glucose concentration, 

(2) a step in glucose concentration, 

(3) a ramp, and 

(4) a return to normal levels (as seen in Figure 3B). 

The step increase occurred at about the 170th sample and ramped 
up after that. This may be similar to a situation in which a medicated 
user stops medication. After the 280th sample, the glucose level 
decreased back to the normal range, which may be typical of a user 
beginning an effective therapy. As shown in Figure 3, high glucose 
levels are estimated from single point measurements with clinically 
relevant accuracy. However, at low concentrations, time sequence 
filtering is needed to improve the SNR. Two filters were applied to the 
predicted data: Kalman and Gaussian (See Figure 4). The size of the 
error band at the low glucose level in Figure 4 is significantly smaller 
than that in Figure 3. The root mean squared error of prediction 
(RMSEP) and standard deviation (STDEV) were calculated in Table 1 
for a comparison of the predicted data to the reference data.

RMSEP was calculated by

(A) (B)(B) (B)

Figure 1: Diagram of the test set up, showing (A) the compact spectrometer, 
(B) the urine capture slot, and (C) the light source.

(A) (B)

Figure 2: Deployed urine capture slot. (A) Picture of the urine capture slot 
in a toilet. (B) The front cut view of toilet that shows where light source, 
spectrometer, and urine capture slot are located. The light source and the 
spectrometer are located inside of the toilet and they are invisible from the 
outside.
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where N,  �̅�𝑖 and 𝑦𝑖,𝑟𝑒𝑓 represent the total number of samples, the 
predicted glucose level, and the reference glucose level, respectively. 
RMSEP2 in Table 1 represents RMSEP, selecting only reference data 
under 20 mg/dl, which is the normal concentration of urine glucose 
[5]. The RMSEP of the filtered data is significantly lower than that of the 
unfiltered data (Gaussian was 58% lower, and Kalman was 70% lower). 
In Table 1, STDEV represents the standard deviation of the first 150 
samples chosen from low glucose levels. The STDEV of the filtered data 
was approximately three times smaller than that of the unfiltered data. 
For comparison, simple averaging of 10 samples with random error 
produces an expected improved SNR of √10 ≅ 3.16, which indicates 
that the majority of the measurement noise is random.

Digital filters reduce the effect of measurement noise on the 
individual measurements, resulting in trended glucose levels that are 
responsive to simulated changes in levels. The STDEV of the filtered 
data provides an estimate of the error of the filtered (trended) data. 
A schema such as this makes it possible to tune the filter, as needed, 
to obtain a trended measurement within a target error bound. For 
instance, if the STDEV is too large, the filter window size can be 
increased. In this schema, individual measurements are not reported, 
only the filtered trend. This is a change from the way data have been 
traditionally reported and analyzed in the health care field, where 
individual measurements have to have sufficient accuracy to stand 
alone. By reversing this assumption, it is possible to acquire relevant 
medical diagnoses with (1) bounded confidence and (2) resilience to 
potential outliers by filtering a sequence of measurements with high, 
random measurement error. Traditional single-sample methods have a 
higher sensitivity to outliers, which may come from sample variation, 
instrument error, environmental effects, or sample handling. One 
downside of trended data is that averaging reduces the time resolution. 
A potential solution is to use an adaptive filtering scheme to extract 
changes in the underlying sample trend from measurement errors. 
For the extreme situation considered in Figure 3B, basic Kalman 
and Gaussian filters were sufficient to obtain acceptable accuracy to 
categorize glucose in the normal range, adapt to step changes, and 
follow sharp rises and falls.

Figure 5A shows the standard error between the unfiltered predicted 
and the filtered predicted data. The largest error occurs around the high 
peak, about the 230th sample. This is due to the filter response which 
is unable to accurately resolve sharp peaks or rapid changes in trends. 
Figure 5B shows the Gaussian filtered data with different window sizes. 
A window size of five samples can easily follow the sharp peak, but is 
noisy at low concentrations. In contrast, a window size of fifty samples 
significantly decreased the error at the low concentrations, but could 
not accurately follow the sharp peak. Adaptive filters can be tuned to 
achieve the desired characteristics, and diagnostic algorithms should 
likely analyze the results of multiple filters simultaneously. Methods 
described in the literature will serve as starting points for future 
research.

Conclusion
NIR spectroscopy promises in-toilet urinalysis, providing more 

ubiquitous and unobtrusively obtained information than semi-
quantitative colorimetric assay urine tests. While the compact NIR 
instrumentation used for this study lacks the sensitivity and stability 
to detect normal levels of urine glucose with a single measurement, 
by averaging data from sequential urine samples, an accurate glucose 

 (A) (B)

Figure 3: Predicted results before filtering. (A) Comparison of predicted and 
actual (reference) urine glucose levels. (B) Simulation of a user’s urinalysis 
over time. The red line is the actual glucose level (as measured with the 
AU480), and the green line is the predicted glucose level obtained from 
multivariate analysis of the urine transmission spectrum.

(A) (B)

Figure 4: Predicted results after filtering. (A) Comparison of predicted and 
actual (reference) urine glucose levels after filtering. (B) Simulation of a 
user’s urinalysis over time, with Kalman and Gaussian filters applied to the 
predictions. The time-centered window size of the filters was 10 samples, 
which represents about 2-3 days of toilet use for a typical user.

(A) (B)

Figure 5: Comparison of error and window size. (A) Standard error of 
predicted and filtered data with window size of 10. (B) Gaussian filter with 
different window sizes: 5, 15, 30, and 50 samples.

Unfiltered Kalman Gaussian
RMSEP 133.45 88.43 80.94

RMSEP2 94.04 28.18 39.15
STDEV 121.60 30.37 42.34

Table 1: Root Mean Squared Error of Prediction and Standard Deviation of 
Predicted and Filtered Data.

level trend can be obtained. This scheme for averaging many samples 
to achieve an improved SNR is a completely different approach 
from traditional diagnoses that rely on presumed accurate single 
measurements. Significantly, the variance of the filtered data can be 
monitored and the filter bandwidth adjusted such that the trended 
result meets a desired level of accuracy even when the individual sample 
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measurements cannot. This departure from single-point measurement 
reporting to trended data reporting enables remote preventative care 
and unobtrusive patient monitoring and is especially useful for health 
trends which change slowly. Notably, the filter performance can be 
optimized to provide sufficient averaging to achieve a target accuracy 
level or optimized to follow sharp trends in the data. The trended 
measurements of multiple samples over time may provide a better 
overall picture of a user’s medical progress than isolated lab samples 
that are not robust against outlier data. Medical diagnostics using 
trended data with validated and tunable accuracy can expand the role 
of health tracking and disease management to a new level of usefulness 
and cost efficacy. This paper has focused on trended glucose levels but 
the concept of data trending over sequential measurements could also 
be applied to a variety of medical pre-screening. Several other analytes 
have been measured by the authors with the same spectrometer setup 
described in this paper and may be discussed in future papers.
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