

International Journal of Research and Development in Pharmacy and Life Sciences Available online at http//www.ijrdpl.com August - September, 2012, Vol. 1, No.3, pp 151-155 ISSN: 2278-0238

Research Article

VALIDATION OF PREGABALIN IN HUMAN PLASMA BY LCMS METHOD

G.Uma³*, M.Manimala¹, M.Vasudevan¹, S.Karpagam² and Deecaraman²

1. Roxaane research pvt. Ltd., Chennai.

2. Dr.M.G.R.University, Chennai.

3. C.LBaid Metha College of Pharmacy, Chennai-600 097, India.

(Received: June 14, 2012; Accepted: July 20, 2012)

ABSTRACT

An accurate and precise developed LCMS method was validated for the determination of pregabalin in human plasma. Validation was carried out according to US FDA guidelines. Validation data showed were within the limits. No matrix effect was found in different sources of human plasma tested. Dilution integrity, Lower limit of quantitation were also within the limit. The Mean extraction recovery of pregabalin was satisfactory. Keywords: Pregabalin, dilution integrity, matrix effect, LC-MS-MS.

INTRODUCTION

Pregabalin is chemically (S)-3-aminomethyl-5methyl hexanoic acid, is a structural analogues of Gamma aminobutyric acid (GABA). The search for the reliable range of a method and continuous application of this knowledge is called validation. It can also be defined as the process of documenting that the method under consideration is suitable for its intended purpose.

Method validation¹⁻⁵ involves all the procedures required to demonstrate that a particular method for quantitative determination of the concentration of an analyte (or a series of analytes) in a particular biological matrix is reliable for the intended application. Validation is also a proof of the repeatability, specificity and suitability of the method. Bioanalytical methods must be validated if the results are used to support the registration of a new drug or a new formulation of an existing one. Validation is required to demonstrate the performance of the method and reliability of analytical results. If a bioanalytical method is claimed to be for quantitative biomedical application, then it is important to ensure that a minimum package of validation experiments has been conducted and yields satisfactory results. The guideline⁶⁻⁹ for industry by FDA states that the fundamental parameters of validation parameters for a bioanalytical method validation are accuracy, precision, selectivity, sensitivity, reproducibility and stability. Typical method development and establishment for bioanalytical method includes determination of (1) selectivity, (2) accuracy, (3) precision, (4) recovery, (5) calibration curve, and (6) stability. For a bioanalytical method to be considered valid, specific acceptance criteria should be set in advance and achieved for accuracy and precision for the validation of the QC samples.

EXPERIMENTAL

Recovery

Recovery of the developed method can be evaluated by analyzing six replicates of analyte along with internal standard by comparing the analytical results for extracted samples at three concentrations (equivalent to LQC, MQC and HQC) with unextracted samples that represent 100% recovery. The percentage recovery of analyte and internal standard (IS) were calculated using appropriate chromatographic conditions.

LOWER LIMIT OF QUANTIFICATION (LLOQ)/ SENSITIVITY

Sensitivity was determined by limit of quantification by analyzing six replicates of lower limit of quantification (LLOQ) that can be measured with acceptable accuracy and precision.

MATRIX EFFECT

It had been noted that co eluting, undetected endogenous matrix components might reduced the ion intensity of the analyte and adversely affect the reproducibility and accuracy of the LCMS/MS assay. In order to determine whether this effect (matrix effect) was present or not, 6 different plasma pools were extracted and then spiked with standard solution concentration equal to LQC (post extracted spiked sample). Samples were prepared at low quality control level (LQC) in different human plasma sources analysed with 3 replicates of comparison samples in a single run. Percentage nominal concentrations were calculated for each matrix.

DILUTION INTEGRITY

Dilution integrity test was done by taking **1.8** times more the ULOQ concentration in the ratio of **50:50 and 25:75** with matrix blank. This test was performed using 6 replicates. Concentration obtained was multiplied with dilution **factor 2** or **4** to get the actual concentration.

Results and Discussion

The assay was found to be linear for pregabalin concentrations in the range 50 to 10000 ng/mL. The precision and accuracy were studied satisfactory at four QC concentrations for pregabalin. The results of stability studies showed that no significant degradation was observed under the test conditions which indicate that compounds are highly stable in plasma. The values obtained for the stability studies are within the acceptance criteria. Recovery of Pregabalin was evaluated by comparing mean analyte responses of six processed samples of low (LQC), medium (MQC) and high (HQC) quality control samples to mean analyte responses of six appropriately diluted pure diluted solutions. Mean recovery values are 88.92, 88.25 and 84.81 % at low, medium and high quality control levels respectively. Mean recovery value for the internal standard was 89.43% and it is within the limit. The results of recovery studies were presented in Table 1. Sensitivity was determined by limit of quantification by analyzing six replicates of lower limit of quantification (LLOQ) that can be measured with acceptable accuracy and precision. A calibration curve standards and lower limit of quantification samples (LLOQ) were processed and analysed in a single run. At the time of analysis, the samples were removed from the deep freezer and kept in the room temperature and allowed to thaw. Lower limit of quantitation for Pregabalin coefficient of variation was 6.766 and a percentage of nominal concentration was 109.07% which is within the limit. Results are presented in Table 2. It had been noted that co eluting, undetected endogenous matrix components might reduced the ion intensity of the analyte and adversely affect the reproducibility and accuracy of the LCMS/MS assay. In order to determine whether this effect (matrix effect) was present or not, 6 different plasma pools were extracted and then spiked with standard solution concentration equal to LQC (post extracted spiked sample). Samples were prepared at low quality control level (LQC) in different human plasma sources analysed with 3 replicates of comparison samples in a single run. Percentage nominal concentrations were calculated for each matrix. The Matrix effect was found to be 104.84% for Pregabalin. The Results are presented in Table 3. The calculated concentrations of 50:50, 25:75, include the dilution factor, yielded coefficients of variation of 0.50% and 1.03% respectively for DQC. Percentages of nominal concentration are 99.72 and 99.77% respectively and it is within the limit. The Results are presented in Table 4.

Sample Name	Extracted sample Response	Un extracted sample Response	% Recovery	
	6912	7680		
	7765	8533		
LQC	7903	8815		
	8181	9037		
	7508	8763	88.92 %	
	7949	9149		
Mean	7703	8663		
SD	446.44	527.81		
%CV	0.602	6.092		
	250914	285486		
	283355	314839		
MQC	234636	272928		
	280869	323712		
	264981	287898	88.25 %	
	265775	305946		
Mean	263421	298468		
SD	18410.72	19461.52		
%CV	6.989	6.520		
	611211	712699		
	657090	782436		
HQC	645259	799875		
	647679	731593		
	569744	702434	84.81 %	
	605876	676956		
Mean	622809	734332		
SD	33271.13	47738.47		
%CV	5.342	6.500		

Table: 1 Recovery of Pregabalin

 Table: 2
 Lower Limit of Quantitation (LLOQ)

S. No	Cal. Concentration (2.001 ng/mL)	Accuracy		
1	47.132	94.25		
2	55.523	111.03		
3	57.082	114.15		
4	55.150	110.29		
5	55.913	111.81		
6	56.415	112.82		
Mean	54.535			
SD	3.6899			
%CV	6.766			
% Nominal	109.07			

Table: 3	Matrix	Effect	of	Pregabalin
----------	--------	--------	----	------------

		LQC	Matrix factor	
Matrix ID	Response of standard	Response of Post Extracted		
	solution	sample		
	9158	8733	104.87	
MT-110/09	9346	8875	105.31	
·	9417	9037	104.20	
	9170	8733	105.00	
MT-114/09	91 <i>57</i>	8875	103.18	
	9977	9037	110.40	
MT-115/09	8870	8733	101.57	
	9284	8875	104.61	
·	9551	9037	105.69	
	9293	8733	106.41	
MT-124/09	9351	8875	105.36	
1	10111	9037	111.88	
	9334	8733	106.88	
MT-123/09	9600	8875	108.17	
	9922	9037	109.79	
MT-125/09	8863	8733	101.49	
	9473	8875	106.74	
	9478	9037	104.88	

Table: 4 Dilution Integrity

50:50 Dilutions (18002.5776 ng/mL)			25:75 Dilutions (18002.5776 ng/mL)					
SI. No	Obtained conc. (ng/mL)	Dilution factor	Final conc. (ng/mL)	Accuracy	Obtained conc. (ng/mL)	Dilution factor	Final conc. (ng/mL)	Accuracy
1	8886.821	2	17773.642	98.728	4453.467	4	17813.868	98.95176
2	8985.286	2	17970.572	99.822	4552.963	4	18211.852	101.1625
3	9011.21	2	18022.420	100.110	4468.687	4	17874.748	99.28994
4	8982.745	2	17965.490	99.794	4525.634	4	18102.536	100.5552
5	8994.28	2	17988.560	99.922	4432.242	4	17728.968	98.48016
6	9001.259	2	18002.518	100.000	4511.274	4	18045.096	100.2362
Mean	8976.934		17953.867		4490.711		17962.845	
SD	45.368		90.736		46.494		185.977	
%CV	0.50538497		0.505385		1.035		1.035	
% Nominal	99.729		99.72942		99.779		99.779	

REFERENCES

- Onal A and Olcay S, "Spectrophotometric and spectrofluorimetric methods for the determination of pregabalin in bulk and pharmaceutical preparation", Spectrochimica Acta, 2009, 72, 68.
- Jadhav A S, Pathare D B and Shingare M S, "Validated enantioselective LC method, with precolumn derivatization with Marfey's reagent, for analysis of the antiepileptic drug pregabalin in bulk drug samples", Chromatographia, 2007, 6, 253.
- Rajinder S G, Manirul Haque S K and Sanjeev K, "A novel method for the determination of pregabalin in bulk pharmaceutical formulations and human urine samples", African Journal of Pharmacy and Pharmacology, 3 (2009) 327-334.1.
- Vikas V V, Santosh M Y, Shikha M N R, Noel A G and Santosh S J, "LC-MS-MS determination of Pregabalin in human plasma", Chromatographia, 2007,66, 925 – 928.
- Kannapan N, Nayak S P, Venkatachalam T and Prabhakaran V, "Analytical RP-HPLC Method for Development and Validation of Pregabalin and Methylcobalamine in Combined Capsule Formulation", Journal of Applied Chemical Research, 2010,13, 85-89.

- Rasha A and Aziz S, "Spectrofluorimetric and Spectrophotometric determination of pregabalin in capsules and urine samples", International journal of biomedical science, 2010, 6, 260 – 267.
- Kasawar D B and Farooqui M N, "Development and Validation of HPLC method for the determination of pregabalin in capsules", Indian Journal of pharmaceutical sciences, 2010,72, 517-519.
- Ashu M, Parmar S K, Nagarajan and Vijendra S, "Development and validation of rapid HPLC method for determination of Pregabalin in bulk drug and capsule dosage forms", Der pharma Chemica, 2011, 3, 482-489.
- Dousa M, Gibala P and Lemr K, "Liquid chromatographic separation of pregabalin and its possible impurities with fluorescence detection after post column derivatization with ophthaldialdehyde", Journal of Pharmaceutical and Biomedical analysis, 2010,53, 717-722.