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Abstract

The process of rehabilitation after cochlear implant surgery involves programming the psychophysical parameters
of the implant in a process called mapping. The audiology appointments involved in the mapping process are large
contributors to cost of implant rehabilitation. The map is defined as stable when there is little variation over time.
Once an implant map is stable there is reduced need for intensive rehabilitation and an increase in implant patient
satisfaction. A literature search was conducted using the terms “map cochlear implant”, “mapping cochlear implant”,
“psychophysical cochlear implant” with a date range from August 1957 to February 2016. A total of 560 articles were
identified and 29 articles were retrieved for detailed evaluation. The most important factor identified, that determines
map stability, is the patient’s subjective implant experience. Patient demographics and implant variables have not
been identified as significant. The second side implant in bilateral implantation has been shown to have significantly
less time to map stability. There is a need for further studies to examine relationships between preoperative
variables and the mapping process, rather than applying a “one size fits all approach”, which is the current standard
of care. This is of particular need in the setting of the second side in bilateral implantation.

Introduction
Hearing and speech perception for sensorineural hearing loss

sufferers have been improved significantly since the advent of cochlear
implantation [1]. Patients are required to perform audiological
rehabilitation post implantation in order to achieve the best hearing
outcomes. The process of rehabilitation and cochlear implant
programming involves a process called mapping.

Mapping involves the measurement of a patient’ physical responses
to audiological stimuli with the resultant psychophysical profile termed
the map. This involves generating a noise and asking patients whether
they can hear it and to what degree. The psychophysical parameters
that are measured include Threshold (T) scores, Comfort (C) scores
and the Dynamic Range (DR) [2].

The T score is the quietest sound detectable that always produces a
response by a given patient, the C score is the loudest sound that they
can tolerate without discomfort for a sustained period of time, and the
DR is the difference between these two values [2]. Psychophysical
parameters are measured for each portion of the cochlear implant
electrode array (the basal, medial and apical regions). This mapping
stage is known to be a period of high variability in audiological
responses, and requires close follow up by an audiologist with an
average of 6 visits in the first year, with some institutions advocating
for up to ten [3-5].

Map stability occurs when there is little variation in these
parameters over time, and is assessed through audiological graphing of
the data. Once a cochlear implant map is stable there is reduced need
for ongoing rehabilitation, reduced need for intensive monitoring and
an increase in implant satisfaction. Typically this period of variability
requires six weeks to six months to become stable [3,6-9].

Patient audiological benefits are often balanced with the costs
associated with cochlear implantation to justify the health economics,
many such analyses take into account the direct and indirect surgical
and device costs but do not directly evaluate the costs associated with
rehabilitation afterwards [10-13].

Literature examining the duration of audiological rehabilitation and
efficiency in cochlear implants have found the average duration of
audiological visit to be 93 minutes, and given the frequency of visits
post implantation, these costs are significant [14]. The time to achieve
map stability directly impacts the number of post implantation
audiological reviews and so it is important to identify what variables
influence this. An understanding of the factors that affect map stability
helps to inform decision making during the perioperative period and
may also provide some cost efficiency with regards to rehabilitation.

Methods
A pubmed search using terms “map cochlear implant”, “mapping

cochlear implant” and “psychophysical cochlear implant” was
performed with a date range of August 1957 to February 2016. A total
of 560 articles were identified. Articles were screened for title and
abstract only with a total of 29 articles retrieved for a more detailed
evaluation. Articles reviewed were limited to the English language.

Discussion
Most cochlear implant centers apply a “one size fits all approach” to

the mapping process [5]. This leads to a failure to identify, and
potentially address, outliers until they are failing to stabilize within the
usual time. Very few studies report on medium to long term
psychophysical characteristics of cochlear implant audiological
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rehabilitation which limits the ability to understand the true effect of
variables on the mapping process. Factors that have been examined in
the literature in relation to map stability include subjective patient
feedback, age, gender, etiology of deafness, duration of deafness, array
type, and sequence in bilateral sequential cochlear implantation.

Subjective patient feedback
Most centers rely mainly on the patient’s subjective feedback as a

basis for the mapping changes, which is interesting considering most
clinicians do not believe the patient’s subjective experience leads to
optimal cochlear implant performance [5]. In a global survey of
cochlear implant center mapping practices, it was found that the
average center schedules three sessions in the first three months, three
sessions in the following nine months, and another one annual session
thereafter [5]. The majority of time, in these appointments, is spent
with verification and adjustments to optimize loudness. Most centers
rarely spend time adjusting map parameters other than minimum and
maximum levels in follow up appointments. The most important factor
that determines map stability is the patient’s subjective implant
experience. This of course is difficult to quantify but there are a
number of potential factors discussed below that contribute to this.

Age
Age, as a predictor of cochlear implant audiological outcomes, is

reported in the literature with different effect. Some of the published
literature indicate that older age at implantation relates to poorer
audiological outcomes [15,16]. Most studies examining the specific
effect of age however have not shown any significant effect [4,17,18].
One study suggested a difference between adults and children in the
first six months, with comfort levels showing significant change but
beyond six months the levels were stable [19]. This did not change the
overall time to map stability and was thought to be due to the fitting
method used in children rather than actual psychophysical differences.
It is possible that the effect of age at implantation on audiological
outcomes in the studies mentioned above, may be in part reflecting a
longer duration of deafness rather than a pure effect of age on
outcome. From the information in the literature it seems that while age
may contribute to the audiological outcome of the cochlear implant, it
has little long term effect on the mapping process.

Gender
From examining the few studies that have examined the

relationship between gender and audiological outcomes,
psychophysical parameters and stability duration, there is no
significant effect of gender [4,17].

Etiology of deafness
Establishing an effect of etiology of deafness and psychophysical

parameters and stability is often challenging, given that frequently the
cause of deafness is unknown. Because of the lack of most studies to
differentiate etiology, there is yet to be any identified conditions that
definitively have a significant effect [3,4,20]. A few specific conditions
have been identified as likely having particular effects on elements of
the psychophysical parameters. The T score has been associated with
the presence and type of tissue present within the cochlear, with
pathological tissue growth within the cochlear being associated with
increased T scores and a reduced DR score [21,22]. Conditions
associated with ganglion cell survival may show a relationship between

number of surviving neurons and improved C scores [20]. The degree
to which pathological tissue or nerve cell survival impacts on duration
to stability however has not been assessed.

Duration of deafness
It is well established that the longer the duration of deafness the

poorer the audiological outcomes with cochlear implantation
[16,17,23-25]. Prolonged auditory deprivation has been considered to
be a significant factor in reducing the benefit potentially received by
cochlear implantation, and is the foundation for the recommendation
of preoperative hearing aids [26]. Dynamic ranges have been found to
be reduced with deafness greater than 10 years, which may influence
satisfaction with the implant [20]. Duration of deafness has not been
shown as a significant variable for time to map stability [4].

Array type
One small study compared perimodiolar arrays to straight electrode

arrays in the same individuals who had bilateral implantation first with
one and then another electrode array type. As might be expected,
compound action potential thresholds, T levels and C levels were lower
in perimodiolar arrays but there was not any significant difference in
dynamic range [27]. This study did not follow patients for long enough
to comment on timing for stability, but given the lack of difference in
dynamic range between array types, it would be unlikely to be an
important variable for map stability.

The second side in bilateral cochlear implantation
In the current health economic climate of first world countries,

many researchers are investigating to justify the cost effectiveness of
bilateral cochlear implantation. Bilateral implantation have added
benefits (over unilateral) to recipients with bilateral profound hearing
loss including improved sound localization and speech perception in
noise [28,29]. This follows on to provide improved quality of life in a
way that can be measured as a positive over the economic cost [10-13].
A randomized control trial on cost utility of bilateral implants
concluded that bilateral implants is cost effective if the patient has a life
expectancy of five to ten years or longer [30]. Interestingly, the
majority of cost analyses of bilateral implantation are yet to
incorporate the costs associated with implant rehabilitation and
mapping. When examined as a primary outcome, the time for map
stability has been defined as significantly shorter on the second side
[4]. There was a reduced time to achieve stability on average by 36 days
in the second implant (87 days for first implant and 51 days for the
second implant) [4]. Potential explanations for faster duration to
achieve stability include faster neural pathways and neuroplasticity
resulting from prior experience and practice relating to the first
implant mapping process. Prior learning has been shown to be
fundamental in the development of new neural pathways [31]. Other
proposed mechanisms include patients being more familiar with the
process and what auditory stimuli sound like. It is recognized that
initial auditory stimuli is often labelled as uncomfortable or not
tolerable relating to inexperience and unfamiliarity with tones, and
that with experience these tones become recognized as acceptable [32].
All these potential explanations tie back to the patient’s subjective
experience being the most likely factor affecting time of map stability.
Despite this significantly reduced duration and the costs associated
with audiology follow up, many institutions do not alter the mapping
process for the second side in bilateral implantation.
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With consideration to mapping, a unique issue to the second
implanted side is that of the user needing to fuse the information of
both implants into a single sound stimuli. Failure to do this by the
patient leads to sounds seeming unbalanced with a single sound source
being perceived as separate [33]. Balancing not only involves loudness
but also localization of the sound source. Fusion of the sound
information can take time, although how long is needed is undefined.
There has been a suggestion that new mapping procedures and signal
processing strategies are needed, for the second implant in bilateral
implantation, to allow for better fusion between them [33-35]. Another
potential for delay in the second side is that electrodes mapped to the
same frequency range in each ear may stimulate different locations in
each cochlea due to an insertion depth difference of each electrode
array. This also can account for poor sound image fusion [36]. It is
recognized that the timing of the second implant, particularly in pre
lingual children, is important for outcomes including central
processing and language development [37]. It has not been reported
whether this translates into comparably longer mapping times for the
second implant. If these factors where adapted into a mapping process
designed for the second side in bilateral implantation, the time for map
stability could even be potentially shorter.

As described above, since the patient’s subjective feedback is the
major tool in an audiology mapping session, it seems plausible why
only limited variables have been directly linked to timing for map
stability and that in the case of the second implant a patient benefits
from having already experienced a first implant [4].

Other potential variables
A number of other factors have been identified as effecting the

audiological outcomes of cochlear implantation including pre-lingual
compared to post-lingual deafness, the presence of residual hearing,
the coding strategy used and the implant manufacturer [38-39]. These
have yet to be examined with regards to mapping and would benefit
from being investigated in future research.

Conclusion
The time it takes to map stability contributes greatly to the cost of

post-operative rehabilitation in cochlear implantation. The greatest
factor in determining map stability is the patient’s subjective
experience. Because this is difficult to quantify, there is a need for
further studies to examine relationships between preoperative
variables and the mapping process so that these can be factored into
the mapping planning, rather than applying a “one size fits all
approach”, which is the current standard of care. This is of particular
need in the setting of the second side in bilateral implantation.
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