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Abstract

Vasoactive Intestinal Peptide (VIP) and Pituitary Adenylate Cyclase-activating Polypeptide (PACAP) are two
neuropeptides acting through three common G-protein coupled receptors (VPAC1, VPAC2 and PAC1). Among their
pleiotropic actions within the organism, VIP and PACAP are known to exhibit immunomodulatory properties in both
the innate and adaptive immune axes. The fact that they inhibit inflammation in murine models of disease has
brought these peptides into the spotlight within the field of therapeutic discovery for autoimmune/inflammatory
diseases. Pharmacological tools and transgenic mice have been useful in order to investigate the involvement of
each of their three receptors in these actions. This review focuses on the relevance of the VPAC2 receptor on VIP
and PACAP modulation of immune responses, and discusses its potential as a target for the treatment of Th1-driven
inflammatory disorders.

VIP and PACAP
VIP (vasoactive intestinal peptide) and PACAP (pituitary adenylate

cyclase-activating polypeptide) belong to a superfamily of structurally
related peptides including secretin and glucagon. Whereas VIP is a 28
aminoacid peptide, PACAP can be found in two amidated forms of 27
(PACAP27) or 38 (PACAP38) aminoacids. Because these peptides
exhibit a high sequence and structural homology (i.e. 68% identity
between VIP and PACAP27), it has been proposed that their genes
derived from a common ancestral gene subjected to duplication and
divergence during the course of evolution [1-3]. VIP and PACAP were
originally isolated from the small intestine and the pituitary,
respectively, although it has been later demonstrated that they are
widely distributed in the organism [4,5]. The fact that their primary
structures have been well conserved in vertebrates suggest that they
play important physiological actions. In fact, they modulate multiple
processes of the digestive, respiratory, reproductive and cardiovascular
systems among others. VIP and PACAP act through three G-protein
coupled receptors (GPCRs) named VPAC1, VPAC2 and PAC1 [6].
Whereas VPAC1 and VPAC2 bind both VIP and PACAP with equal
high affinity, PAC1 exhibits 100 to 1000 times higher affinity for
PACAP than for VIP [1]. Their main signaling pathway involves
adenylate cyclase activation through accessory G-proteins and cyclic
AMP (cAMP) synthesis. Nevertheless, activation of other signaling
pathways involving phospholipase C (PLC) or phospholipase D (PLD)
or intracellular calcium increases has been also reported [7]. An
overview of the roles of one of the VIP and PACAP receptors, the
VPAC2 receptor within the immune system compartment is discussed
in the present review and is illustrated in the figure 1.

The VPAC2 Receptor
VPAC2 was first cloned by Lutz et al. [8] from rat olfactory bulb.

Mouse and human VPAC2 were subsequently cloned from insulin-
secreting beta-cell line MIN6 and SUP-T1 lymphoblast libraries,
respectively [9]. Its gene Vipr2 maps to the rat chromosome 4, the

mouse F2 region of chromosome 12 and human chromosomal region
7q36.3 [10,11]. Regarding its distribution, in the central nervous
system, its highest expression is found in the suprachiasmatic nuclei,
where it modulates circadian rhythms [12], but it is also present in the
thalamus, hypothalamus, midbrain and brainstem. In the periphery, a
systematic study in mice revealed its expression in the smooth muscle
of blood vessels and gastrointestinal and reproductive systems, lung,
colon, kidney, adrenal medulla, retina and pancreas [13].

Based on its protein structure, VPAC2 belongs to the class B GPCR
family receptors, which exhibit seven transmembrane domains and a
series of common features such as a large N-terminal (Nter)
ectodomain containing several N-glycosylation sites and six highly
conserved cysteine residues forming three disulfide bridges, and a
signal peptide for addressing the receptor towards the plasma
membrane. Multiple structure-activity relationship studies from
several research groups have shown that in all class B GPCRs, the large
Nter domain is critical for ligand recognition; mostly due to the
presence of a Sushi domain which is characterized by two antiparallel β
sheets and stabilized by three disulfide bonds and by a salt bridge
between acidic and basic residues.

Based on (1) photoaffinity experiments which identified four
physical interaction sites between VIP and the Nter domain of VPAC1
receptor, (2) the NMR structure of the ligand VIP which revealed
mostly an alpha helical structure, and (3) the 3D model of the VPAC1
N terminal domain comprising a Sushi domain [14,15], an accurate 3D
model illustrating the interaction between the VIP molecule and the
Nter domain of the VPAC1 receptor has been created. This model
suggested that the C-terminal and central α-helical parts of the VIP
peptide interact with the VPAC1 Sushi domain [14-17]. Consistent
with a two-site binding model, it has been speculated that this may
bring the N-terminus of the peptide into the appropriate position to
contact the transmembrane region of the receptor leading to its
subsequent activation.
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Figure 1: Roles of one of the VIP and PACAP receptors, the VPAC2 receptor within the immune system.

Several VIP analogs with highly specific binding to VPAC2 have
been generated. Among them, Ro 25-1392 and Ro 25-1553, are two
cyclic derivatives of VIP [18-20]. Although these have been useful to
identify VIP-VPAC2 mediated actions in various experimental
settings, the presence of N-terminal acylation, cyclization from Lys-21
to Asp-25, C-terminal amidation, and O-Me-Tyr-10 or Nle-17 on these
analogs imposes a big challenge for their synthesis, which may hamper
their potential use as therapeutic drugs. These difficulties have been
bypassed by the generation of a peptidic VPAC2 specific agonist with a
simpler structure, BAY 55-9837, which was developed by Tsutsumi et
al. through site-directed mutagenesis based on sequence alignments of
PACAP, VIP, and related analogs [21]. Substitution of a valine in the
aminoacid position 5 by a Cα-methylated valine in Ro 25-1553, and
substitution of asparagines in positions 9 and 28 followed by site-
specific cysteine conjugation with a 22- or 43-kDa polyethylene glycol
(PEG) for BAY 55-9837, have improved the stability of these agonists
[22, 23]. Recently, the use of chitosan-decorated selenium
nanoparticles (CS-SeNPs) as protein carriers of BAY 55-9837
prolonged its half-life in vivo [24]. Due to a potential use of VPAC2
activation for the treatment of diabetes and asthma, most of the efforts
have focused on developing VPAC2 agonists. However, a highly
specific antagonist for this receptor was generated by myristoylation of
the amino-terminus of [K(12)]VIP(1-26) extended carboxyl-
terminally with a five aminoacid sequence of Ro 25-1553 [25]. This
may be a useful tool in studies to dissect specific roles played by
VPAC2.

VPAC2 Expression by Immune Cells
The expression of VIP and PACAP receptors in immune cell types

has been described with different patterns. In resting lymphocytes,
VPAC1 has been found to be constitutively expressed, and VPAC2 is
absent or expressed at very low levels [26-28]. Nevertheless, upon in
vitro activation of the CD3/TCR complex, VPAC1 is downregulated, at
least transiently, and VPAC2 upregulated [26-28]. This has led to the
hypothesis that VPAC2 may be the main receptor modulating the
functionality of activated T cells, and it may become more relevant
than other VIP and PACAP receptors in pathogenic situations that
lead to T cell activation. Interestingly, VPAC2 has been reported to be
upregulated in T CD4+ cells from HIV patients, which was not
associated to the viral load but was suggested to reflect a repetitive
exposure to antigens [29]. In another study, a higher VPAC2/VPAC1
ratio was found in memory T helper (Th) cells from early rheumatoid
patients compared to healthy subjects, although in this case, this was
mostly due to a strong decrease in VPAC1 expression, rather than a
strong up regulation of VPAC2 [30].

In addition to wild type (WT) full length VPAC2, splice variants of
VPAC2 have been identified by PCR in murine and human
lymphocytes [31,32]. In mice lymphocytes, a variant with a 14
aminoacid deletion in the carboxyl-terminal end of the seventh
transmembrane domain has been identified, which has the same
affinity for VIP as the WT receptor, but does not induce cAMP upon
binding [31,32]. In human lymphocytes, a variant with a 114
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aminoacid deletion beginning with the carboxyl-terminal end of the
third cytoplasmic loop variant was found, with reduced affinity for VIP
and multiple functional differences with the WT receptor [32].
Nevertheless, the significance of these variants in vivo has not been
further investigated.

Some studies have investigated the expression of VPAC2 expression
in thymocytes. It has been reported that VPAC2 is the main VIP-
PACAP receptor expressed in human thymocytes [33]. However,
different results were published in two studies in mice. Delgado et al.
found a constitutive expression of VPAC1 and lack of VPAC2, which
was induced by PMA and an anti CD3 antibody [27]. On the other
hand, Vomhof-DeKrey et al. reported the presence of both VPAC1 and
VPAC2 receptors in thymocytes, with a relative expression that varies
along maturation: a predominant expression of VPAC1 in earliest
thymic progenitor (ETP) and CD4 and CD8 double negative (DN) 1
cells, a switch to VPAC2 in DN2 and DN3 stages, and then back to
VPAC1 in DN4 and subsequent double positive (DP) and single
positive (SP) stages [34]. Species-specific differences in gene expression
may explain the discrepancy between the profile of expression in
human and mice thymocytes. In any case, because VPAC2 deficient
mice do not exhibit alterations in the frequency of different thymocyte
populations, the relevance of VPAC2 expression during thymocyte
maturation remains to be elucidated.

In addition to lymphocytes, other immune cell populations have
been reported to express VPAC2. For example, it is expressed in
peritoneal macrophages and the macrophage cell line Raw 264.7 with a
similar pattern to that in lymphocytes: VPAC2 has been reported to be
absent or expressed at low levels in unstimulated cells, but is induced
upon activation in vitro with gram-positive (toll like receptor (TLR)2
ligands) and gram-negative bacteria wall constituents (TLR4 ligands)
[35-37]. Moreover, the TLR7 synthetic ligand imiquimod induced
VPAC2 mRNA expression. The expression of VPAC2 has been also
reported to be low in monocytes from healthy human subjects, but to
be elevated in monocytes from patients with Sjogren’s syndrome [38].
Other studies, suggest that the inducible nature of VPAC2 expression
on macrophages may be tissue specific. For example, a study reported a
constitutive expression of VPAC2 in human lung macrophages [39].
Moreover, it has been shown that murine primary microglial cells,
which are considered as the resident macrophages of the brain, do not
express VPAC2, even after exposure to lipopolysaccharide (LPS), a
TLR4 ligand [40]. Other cells, such as murine bone marrow-derived
dendritic cells, murine Langerhans cells and human plasmacytoid
dendritic cells have been found to express VPAC2 constitutively
[41-43]. VPAC2 has been also reported to be expressed on human skin
mast cells and in the human mast cell lines HMC1 and LAD2 [44, 45].
In LAD2 cells, VPAC2 became upregulated through IgE/anti-IgE
activation.

VIP and PACAP Immunomodulatory Roles
Multiple actions of VIP and PACAP in the immune system have

been described [46]. One of the most relevant from a therapeutic
standpoint is their ability to inhibit at multiple levels innate and
adaptive inflammatory responses [47]. Regarding the innate immune
axis, the VIP and PACAP inhibition of chemokine and
proinflammatory cytokine production by macrophages has a central
role [48,49]. Contributing to its ability to abrogate inflammation, VIP
has been shown to down regulate the expression of the pathogen
associated molecular pattern receptors of innate immunity toll-like
receptors 2 and 4 (TLR2 and TLR4), which was found in vivo in tissues

undergoing inflammation, but also in vitro in isolated peritoneal
macrophages and the macrophage cell line Raw 264.7 [50-53]. In
addition, VIP and PACAP induce anti-inflammatory mediators such as
IL-10 [54]. The actions on a wide variety of inflammatory mediators
are possible because downstream of their receptors they modulate
several key transduction pathways and factors controlling the
expression of a wide range of target genes with immunoregulatory
roles (thoroughly reviewed in [55]). This includes the inhibition of one
of the most important pathways involved in inflammation, the NF-kB
pathway, through inhibition of IkB phosphorylation and subsequent
degradation. The involvement of cAMP in this effect is not clear, and
seems to vary in different myeloid cell types studied (i.e. peritoneal
macrophages, macrophage and monocyte cell lines and microglia), and
has been postulated to depend on the cellular differentiation state.
Moreover, VIP and PACAP receptors lead to CREB phosphorylation
implicated in the synthesis of IL-10 and inhibition of the MAP kinase
pathways MEKK1/MEK3/MEK6/p38 and MEKK1/MEK4/JNK,
involved in the expression of proinflammatory cytokines. The effects
on these pathways contribute to VIP and PACAP down regulation of
genes downstream of LPS-TLR4. On the other hand, it was shown that
in both macrophages and microglia, VIP blocks IFNγ signal
transduction by suppressing Jak1 and Jak2 phosphorylation and
therefore STAT1 phosphorylation. This is particularly relevant in
chronic inflammation driven by Th1 cells, of which IFNγ, a potent
activator of macrophages, is a hallmark cytokine.

Besides their effects on innate immunity, VIP and PACAP modulate
adaptive immune responses. In this sense, a well-recognized action for
these neuropeptides is their ability to promote Th2 cell differentiation,
critically involved in type-2 cell responses. These have a protective role
against helminth infection, although in certain circumstances they can
be deleterious and lead to chronic allergic diseases. Eosinophils,
basophils and mast cells are the ultimate effector cells in these
responses, driven by IL-4, IL-5, IL-9 and IL-13 cytokines, all of which
are known to be produced by Th2 cells. It has been shown that VIP
promotes Th2 polarization in vitro and in vivo through multiple non-
exclusive mechanisms. In this sense, a series of data has shown that
VIP modifies the co-stimulatory molecule expression profile and
cytokine and chemokine secretion profile in macrophage and dendritic
cells, in a manner that promotes Th2 responses [36,56,57]. Moreover,
in vivo, VIP or PACAP administrations protected certain CD4 Th2
cells from apoptosis and allow the survival of Th2 effectors and the
generation of long-lived memory cells [58,59].

The anti-inflammatory properties of VIP and PACAP led to
promising therapeutic activities in murine models of acute
inflammatory disorders such as septic shock and chronic inflammatory
autoimmune diseases such as rheumatoid arthritis, Crohn’s disease and
multiple sclerosis [49,60-63]. The latter belong to a group of diseases
with common pathogenic traits: local inflammation (in different target
tissues, such as joints, colon and central nervous system, respectively),
driven by autoreactive Th1 cells. Therefore, the fact that VIP and
PACAP favor Th2 at expense of Th1 responses played a critical role in
their therapeutic effects. In these studies, the peptides were
administered intraperitoneally, and the treatments, at doses between 1
to 10 n moles per injection, were most efficient when started at early
stages of the disease. VIP and PACAP abrogated the inflammatory
response, and switched the T cell phenotype from Th1 to Th2, leading
to an amelioration of the clinical symptoms of these diseases.
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VPAC2-mediated actions in the immune system
Pharmacological studies with specific receptor agonists have

demonstrated that both VPAC1 is the main receptor involved on VIP
and PACAP anti-inflammatory actions in vitro and in vivo, and
VPAC2 has a partial role [49,60-62,64]. Likewise, VIP and PACAP
effects on Th2 polarization through accessory cells have been suggested
to be largely dependent on VPAC1. Nevertheless, other studies have
involved VPAC2 in the ability of VIP to induce Th2 responses directly
on T cells. In this sense, lymphocytes from mice that were genetically
modified to express human VPAC2 constitutively in T CD4+ cells
(VPAC2 TG) exhibit a Th2 phenotype with production of IL-4 and
IL-5 in response to TCR stimulation [65]. These mice were found to be
naturally in an allergic state with elevated IgE, IgG1 and eosinophils in
blood. Moreover, these mice exhibited reduced hapten-induced
delayed-type hyper sensibility (DTH), due to a higher Th1/Th2 ratio.
In a complementary study, the same team showed that mice with a
global deletion of VPAC2 (knock-out mice (KO)) [12], developed the
opposite phenotype. Although different from the VPAC2 TG mice,
VPAC2 KO seem normal in a resting state, as expected, these mice
exhibited enhanced DTH in response to hapten [66]. Conversely, these
mice developed reduced immediate-type hyper sensibility allergic
responses to hapten, with diminished blood IgE levels and cutaneous
anaphilactic responses. Regarding the mechanisms of action by which
VIP/VPAC2 induce the cells to become Th2, it was found that this is
mediated by an up regulation of certain Th2-related transcription
factors (i.e. c-Maf and JunB, but not GATA-3), which consequently
enhanced IL-4 and IL-5 production [67].

The fact that DTH is exacerbated in VPAC2 KO mice, with
enhanced Th1 vs. Th2 cytokines, suggest that this receptor may play a
protective role against Th1-driven diseases. Recently, we subjected
VPAC2 KO mice to experimental autoimmune encephalomyelitis
(EAE), a model of multiple sclerosis (MS) [68]. MS is a chronic
inflammatory disease of the CNS thought to be driven by auto reactive
T cells against myelin peptides. A role of Th1 and Th17 cells in the
pathogenesis of the disease has been implied by multiple studies. We
found that VPAC2 KO mice exhibited exacerbated clinical EAE, with
increased immune cell infiltration and demyelination compared to WT
mice. This phenotype was associated to elevated Th1 and Th7 cell but
reduced Th2 responses. In addition, these mice exhibited a striking
deficiency in the number of regulatory T cells (Tregs) (identified as
CD4+CD25+Foxp3+) in the CNS, lymph nodes and thymus. The latter
has been suggested to be the main source for Tregs during EAE [69].
This is in agreement with multiple publications supporting that VIP
promotes Treg generation and functionality (reviewed in [70]). A
similar response to EAE induction was found in PACAP KO mice
[71,72], implying that VPAC2 mediates the anti-inflammatory actions
of PACAP. PACAP/VPAC2 signaling could contribute to the
maintenance and expansion of Tregs directly, as we found that VPAC2
is expressed in these cells. Supporting this possibility, we found that the
expansion of Tregs isolated from VPAC2 KO mice with anti-CD3/
CD28 beads and IL-2 in vitro was diminished compared to that of WT
Tregs. Moreover, the in vitro suggests that PACAP/VPAC2 pathway is
critical to maintain normal Treg expansion and activity.

In another study, Yadav et al. [73] demonstrated that VPAC2 KO
mice exhibited greater weight loss and intestinal histopathology than
WT mice in the model of dextran sodium sulfate (DSS)-induced
colitis. Probably contributing to this exacerbated response, the levels of
certain proinflammatory mediators (IL-6, IL-1β and MMP-9) were
higher in VPAC2 KO vs. WT mice. This phenotype could be related to

an immunosuppressive role for this receptor. Nevertheless, the authors
suggested that it might reflect proinflammatory actions of a VIP/
VPAC1 signaling axis, which could be responsible for the reduced
DSS-pathology they observed in VPAC1 KO mice. In fact, the same
team previously demonstrated that VIP through VPAC1 lead to the
differentiation of T lymphocytes into Th17 cells [74]. The fact that VIP
could promote immune responses is also supported by previous data
reporting stimulatory actions on IL-6 secretion and a role in chemo
taxis. Nevertheless, further investigations are required to dissect the
dual roles of VIP in immunity.

In addition to the cell types mentioned above, group 2 innate
lymphoid cells (ILC2) have been more recently identified as effectors of
type 2 responses [75]. ILCs are a population of lineage-negative (Lin−,
i.e. lacking surface markers for T, B, NK and monocytes/macrophage
lineages) lymphocyte-like cells which offer critical first-line immune
responses against pathogens. Despite their lack of T cell and B cell
antigen receptors (TCRs and BCRs), they can produce effector
cytokines comparable to those produced by CD4+ Th cell subsets.
Among all ILCs, ILC2 cells were initially identified in mice as MHC
class IIhigh, CD11null and Lin− cells, which amplified type 2 immune
responses upon treatment with IL-25, a Th2-produced cytokine [76].
In mice, the existence of two ILC2 populations, natural (nILC2) vs.
inflammatory (iILC2), has been proposed [77]. These are different in
that whereas the former can be found in homeostatic conditions and
respond to IL-33, the latter rapidly expands in response to N.
brasiliensis infection or IL-25 but not IL-33 administration. ILC2 have
been later identified in several locations in humans, including lung,
intestine and skin [78-81]. Recently, VIP has been suggested to
modulate the activity of ILC2s through its VPAC2 receptor [82]. In this
study, it was found that VPAC1 and VPAC2 are expressed in both gut
and lung ILC2s. In addition, it was shown that VIP, as well as a VPAC2
agonist stimulated at similar levels the production of IL-5 by isolated
intestinal Lin−CD45+KLRG1+ ILC2 cells in the presence of IL-7.
Because VIP-innervation is rich in the intestine and lung, where these
cells are abundant, this could be a natural regulator factor of ILC2s. In
addition, it has been shown by using TCR transgenic mice that Th2
cells produce VIP, suggesting that in fact this neuropeptide could act as
a Th2 cytokine, and suggesting a potential new mechanism by which
Th2 cells may modulate the activity of ILC2s [83].

VPAC2 perspectives as a therapeutic target
Although there are very few studies investigating the effects of VIP

or PACAP administration to patients with inflammatory pathologies,
these have provided encouraging results. For example, the effect of
synthetic VIP (aviptadil) administration by inhalation to patients with
sarcoidosis, an inflammatory Th1-driven systemic disease
characterized by granuloma formation mainly in the lung, has been
investigated. In this study, the patients exhibited an amelioration of the
symptoms, with no adverse side effects [84]. This effect was associated
with a reduction in the levels of TNFα but an increase of Tregs in
bronchoalveolar lavage. In another study, inhaled aviptadil ameliorated
pulmonary hypertension due to its action as a vasodilator [85].
Promising preclinical studies by the team of Pr. Gomariz have tested
the actions of VIP in cultures of synovial fibroblasts and peripheral T
cells from rheumatoid arthritis patients, and support the anti-
inflammatory potential of this peptide [30,53,86-89]. In vitro studies
using samples from patients suffering inflammatory human diseases
(as it has been done for arthritis), or animal models of disease, seem to
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be the most suitable approaches to dissect which VIP/PACAP receptor
mediates their beneficial actions, and should precede clinical trials.

Studies comparing the outcomes of an administration of VIP and
PACAP receptor agonists in the murine models of LPS-induced
endotoxemia, collagen-induced arthritis and multiple sclerosis have
shown a superior efficacy of VPAC1 vs. VPAC2 and PAC1 agonists.
Nevertheless, the fact that VPAC2 KO mice exhibited exacerbated
EAE, strongly support the antiinflammatory potential of this receptor.
Thus, perhaps the idea of targeting VPAC2 for the treatment of those
diseases in humans should not be completely abandoned. In fact,
different factors such as the time (i.e. of highest upregulation in
immune cells), route or length of administration of a VPAC2 agonist
may improve its beneficial effects. Moreover, targeting VPAC2 may
contribute to reduce potential VIP or PACAP secondary effects driven
by VPAC1. In this sense, in a study testing the efficiency of a VPAC2
agonist for the treatment for asthma based on the bronchodilatory
effects of VIP, Ro 25-1553 given by inhalation did not cause adverse
effects, at least at short term [90]. Finally, although the studies in mice
support the use of a VPAC1 vs. VPAC2 agonist for inflammatory
disorders, this remains to be proven in humans, where due to
differences in receptor expression among species or in the mechanisms
implicated in human disorders vs. their animal models, this may not
be true. Future studies will be required to further approach the use of
VPAC2 in the clinic.
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