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Autism spectrum disorder (ASD) is a behaviorally defined, 
neurodevelopmental disorder with increasing reported prevalence 
worldwide [1,2]. ASD is a serious debilitating mental illness affecting 
approximately 1-2% of the general population [3-5]. Individuals with 
ASD display a wide range of symptoms, including difficulty with social 
interaction and communication skills, restricted activities and interests, 
and repetitive behavior [6,7]. ASD is a polygenic disorder with multiple 
genetic determinants and candidate genes [3]. More than 200 autism 
susceptibility genes have been identified to date, and complex patterns 
of inheritance, such as oligogenic heterozygosity, appear to contribute 
to the etiopathgenesis of autism [8]. Although genetics plays a crucial 
role in ASD, evidence suggests that environmental chemicals are 
consistently associated with increased risk of ASD [9]. 

Environmental chemicals exposure, especially during pregnancy, 
are increasingly being recognized as potential risk factor for ASD, 
and the possibility that the prenatal environment affects fetal 
programming is a promising direction for research [10]. Prenatal 
environment includes maternal use of medication, maternal infection 
and inflammations, and exposure to various substances such as alcohol 
and heavy smoking during pregnancy [11]. The contamination of 
water resources has important repercussions for the environment and 
human health [12,13]. There are many toxic substances in the water 
soluble fraction of crude oil (WSF), for example, polycyclic aromatic 
hydrocarbons, phenol, and heterocyclic compound [14]. Heavy metals, 
such as lead (Pb) are also important environmental contaminants, 
which can reach aquatic systems via the effluents of industrial, urban 
and mining sources [15]. Humans may be exposed to heavy metals 
via food and water contamination, as well as air pollution caused by 
industrial emissions [16]. Many cellular processes are affected by 
expose to mercury and lead and the correct function of central nervous 
system can be impaired by neurochemical changes [17].

Animal models of brain disorders are an indispensable tool for 
dissecting the pathogenic mechanisms of brain disorders, and the 
zebrafish (Danio rerio) is emerging as a model organism for the study 
of neuropharmacology and behavior [18]. Zebrafish have highly 
conserved neural architecture that facilitates comparisons to other, 
more commonly used species [19]. This model is widely considered to 
offer numerous logistical and economic advantages over mammalian 
models as zebrafish spawn overnight, hatch in 2-3 days post fertilization, 
develop complex behavior within the first week of life, and reach sexual 
maturity in 2-3 months [19]. Zebrafish have been proposed as a model 
of Alzheimer´s disease [20,21], schizophrenia [22], drug abuse [23], 
and other brain disorders [24,25]. The utility of both adult and larval 
zebrafish in neuroscience has grown markedly in the past decades 
because it is a vertebrate species with high physiological and genetic 
homology to humans (69% of zebrafish genes have human orthologs 
meaning that it is frequently possible to study human disease-related 
genes in fish), and also because of the ease of genetic manipulation, fully 
characterized genome [24,26-31]. The use of zebrafish to model ASD is 
supported by several lines of evidence [24]. Various models relevant 
to ASD-related social deficits (e.g. social interaction, social preference) 
have been adapted from rodent studies, and successfully applied to 

zebrafish paradigms [3]. Because of the genetic tools developed for the 
zebrafish, this species is expected to be a useful model organism for 
ASD. In zebrafish, knock-down met, which has been linked to greater 
autism risk in humans, impairs cerebellar development and facial motor 
neuron migration. Because these genes are important for zebrafish 
brain development, and ASD is believed to be a disorder of neural 
development, these findings are probably relevant to ASD pathogenesis, 
and suggest strong translational relevance of zebrafish models [24].

Zebrafish models are fully capable of displaying both hallmark 
behavioral symptoms of ASD-social deficits and behavioral 
perseverations, indicating high translational potential of zebrafish 
models for ASD-related states. In the zebrafish social preference test, a 
target fish given a choice between staying close to the conspecific area. In 
other modifications of this model, zebrafish typically spend more time 
near a group of zebrafish, also showing kin recognition/preference and 
spending more time during social investigation of novel (unfamiliar) 
zebrafish [3]. Zebrafish circling behavior can be induced by selected 
psychotropic drugs, such as glutamatergic antagonists MK-801, PCP 
or ketamine [32]. Acute exposure of adult zebrafish to substances like 
ethanol, nicotine, fluoxetine or diazepam results in anxiolytic effects. 
In addition to alcohol, the effects of drugs of abuse including cocaine, 
amphetamine, and morphine have also been studied in zebrafish [33]. 
The disruption of retinoic acid and valproic acid on social responding 
is pronounced and not likely due to motoric or visual impairment 
because all zebrafish fled the predator image similarly on the escape/
avoidance assay [19]. In the shoaling test, zebrafish spent most of their 
time swimming in dynamic groups (schools), characterized by short 
interfish distance, smaller zebrafish group area size/diameter, as well as 
relative polarizations [3]. Different strains of zebrafish have been found 
to show differences in response to a zebrafish shoal and predator while 
undergoing alcohol withdrawal and this is correlated with differences 
in neurochemical (including dopamine) responses [33,34].

The key clinical features of ASD and related symptoms are 
social deficits, repetitive behavior, language impairment, cognitive 
deficits and anxiety, mood, and activity [3]. In our study, isolated and 
combined WSF/Pb alters the behavioral pattern of fish swimming. 
WSF significantly increases anxiety and locomotor activity, decreases 
repetitive behavior in the open field test, and reduces the level 
of serotonin [35]. Many studies prove that maternal exposure to 
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neurotoxic environmental contaminants, such as chlorpyrifos, nickel 
chloride, and arsenic impair the movement activity of zebrafish larvae 
[36-38]. However, co-exposure to WSF/Pb decreased behavioral 
activity and shoaling behavior and increased cycle swimming and edge 
preference. Significant changes in the expression level of the multiple 
genes potentially critical for regulating environmental factor induced 
autism-like behavior are found [35].

Zebrafish xenotransplantation is an emerging technique that can be 
used to model disease rapidly for the purpose of drug screening, as well 
as to evaluate and validate candidate drugs identified through other 
screening methodologies [39]. Human experimental neurobiology is 
mostly limited to non-invasive and indirect methods of investigation. 
An animal model gives us the opportunity to study how genetic and 
environmental factors can lead to the neuropsychiatric disorder by 
allowing us to manipulate molecules and confirm their role in the disease 
process [33]. Biological research in autism has attempted to improve our 
understanding of the neurobiological mechanisms possibly involved in 
autistic disorder; studies have been conducted in domains as diverse 
as genetics, neuroanatomy, brain imaging, and neuroimmunology 
[9]. Rapid progress in ASD gene discovery, integrated with multiple 
complementary genomic data sets, has identified clear points of 
convergence in ASD neurobiology [40]. A variety of morphological and 
functional changes have been demonstrated in the brain of children or 
adults with ASD [10]. Zebrafish is a viable model system for future 
exploration of the underlying molecular and cellular mechanisms 
of autism [33]. Experimental evidence shows that zebrafish display 
complex affective, social and cognitive responses which are similar 
to those observed in rodents and humans; however, in the case of a 
complex multi-faceted brain disorder such as ASD, it is impossible 
to model them fully in fish [3]. More research is needed to unravel 
environmental contribution to the genetic etiology of ASD [11]. The 
environmental modulation of autism-like behavior in zebrafish has not 
yet been thoroughly investigated, and further studies of environmental 
effects on zebrafish phenotypes relevant to ASD may be important [3].
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