A Rare Cause of Intestinal Perforation in a Patient on Continuous Ambulatory Peritoneal Dialysis Therapy: Abdominal Cocoon Syndrome

Berhan Genç1,* , Seyhan Yalaz2, Atilla Çökmez2, Ayınur Solak1 and Erkan Yılmaz1
1Şifa University School of Medicine, Department of Radiology, İzmir, Turkey
2Şifa University School of Medicine, Department of General Surgery, İzmir, Turkey
*Corresponding author: Dr. Berhan Genç, Department of Radiology, Şifa University, İzmir, Turkey Fevzipaşa Boulevard, No: 172/2 Basmane 35240, İzmir/Türkiye, Tel: +90- 232- 4460880/+90-533-5441328; Fax: +902324460770; E-mail: berhangenc@gmail.com
Received date: 3 February, 2014, Accepted date: 21 February, 2014, Published date: 26 February, 2014

Abstract

Abdominal Cocoon Syndrome (ACS) or sclerosing encapsulating peritonitis is characterized by intestinal obstruction and ileus as a result of encasement of small intestines totally or partially by a thick fibrous sac. We herein present a patient undergoing Continuous Ambulatory Peritoneal Dialysis (CAPD) therapy for chronic renal failure for 3 years who developed intestinal obstruction and perforation and was subsequently diagnosed with abdominal cocoon syndrome. Abdominal cocoon should be remembered in patients on CAPD therapy. One should also be aware that clinical signs of peritonitis may not become evident in the case of intestinal perforation in patients with ACS. In such cases, computed tomography has an important role in making the diagnosis.

Keywords: Abdominal cocoon syndrome; Computed Tomography; Continuous ambulatory peritoneal dialysis

Introduction

Abdominal cocoon or sclerosing encapsulating peritonitis is a rare cause of small intestinal obstruction caused by encasement of small intestines by a thick fibrotic capsule at varying lengths [1-3]. Its exact cause is not known. It has two types as primary and secondary. The primary form is seen in pubertal girls in tropical or subtropical countries. The secondary form is more common than the primary form. Although many factors are held responsible from the secondary form, it is most commonly seen in patients with chronic renal failure undergoing continuous ambulatory peritoneal dialysis (CAPD) treatment [1]. Cessation of CAPD by diagnosing ACS early will prevent further complications associated with this syndrome. An early diagnosis coupled with adequate treatment avoids the need of future surgical therapies including intestinal resection [4,5]. However, the diagnosis of the ACS is challenging owing to its nonspecific symptoms. Computed tomography is beneficial for diagnosis. We herein present a patient undergoing CAPD therapy for chronic renal failure for 3 years who developed intestinal obstruction and perforation and was subsequently diagnosed with ACS.

Case Report

A 52-year-old male patient presented with colic abdominal pain, nausea and vomiting for 1 week. He told that he had similar episodes in the preceding months. He, however, did not receive a specific therapy since his symptoms abated spontaneously. His past history was remarkable for CAPD therapy for chronic renal failure for the last 3 years. However, he began to undergo hemodialysis treatment owing to ineffective CAPD sessions for the past 2 months due to recurrent attacks of peritonitis. He had no history of a previous abdominal surgery. Abdominal examination was notable for upper quadrant pain. His laboratory tests revealed normal electrolytes, a mild anemia, hypoalbuminemia, and mildly increased C-reactive protein level. BUN and creatinine levels were high, consistent with end-stage renal failure. Abdominal ultrasonography demonstrated cholelithiasis and thickening of the gallbladder wall. Considering the recurrent peritonitis attacks, cholecystectomy was performed from a mini subcostal incision. Gallbladder was severely edematous. Due to diffuse and severe adhesions, abdominal cavity could not be explored. The patient was discharged with full recovery 2 days later. However, he admitted to the hospital 2 days after discharge with abdominal pain, nausea, and vomiting. On physical examination a mild abdominal distention and increased bowel sounds were noted. An abdominal Computed Tomography (CT) with contrast revealed mildly dilated, conglomerated small intestinal loops encased by a membrane as well as moderate amount of ascites surrounding the intestinal loops (Figures 1a and b). Under the light of these findings a provisional diagnosis of abdominal cocoon was made. The patient began to be monitored with the diagnosis of sub-ileus and oral feeding was stopped. At the second hospital day he developed respiratory distress and thoracic and abdominal CTs were obtained, which showed signs of intestinal perforation. An emergency laparotomy was performed. During the operation it was noted that all intestinal segments were encased by a hard fibrous sac. That fibrous structure encased the entire abdominal cavity that contained about five liters intestinal contents and gas (Figures 2a and b). Intestinal contents oozed through a point on the fibrous sac. The sac was opened and all intestinal loops were exposed by resecting some loops. A perforation was noted 15 cm proximal to the ileocecal valve. The ileum was resected for approximately 1 meter and an end ileotomy was performed. The patient developed postoperative sepsis and died 12 days later from multi-organ failure.
Abdominal cocoon syndrome is a rare and late complication of peritoneal dialysis. CAPD is one of the most common causes of secondary ACS. Our case is the first case in which CAPD-induced ACS was diagnosed and spontaneous perforation developed during follow-up. In fact, the possibility of free perforation appears unlikely because intestinal loops are encased by a fibrous membrane. We considered that perforation took place as a result of impaired microcirculation of intestinal loops. Abdominal cocoon syndrome is seen in approximately 1% of patients on CAPD therapy; its prevalence increases with longer treatment duration and at 8th year it may be present in 20% of patients [16]. Its etiology is not exactly known; however, a CAPD duration of more than a several years, type of the disease. Therefore, it was considered as a secondary ACS case.

Our patient also underwent peritoneal dialysis for end-stage renal disease. Therefore, it was considered as a secondary ACS case. Abdominal cocoon syndrome is a rare and late complication of peritoneal dialysis. CAPD is one of the most common causes of secondary ACS. Our case is the first case in which CAPD-induced ACS was diagnosed and spontaneous perforation developed during follow-up. In fact, the possibility of free perforation appears unlikely because intestinal loops are encased by a fibrous membrane. We considered that perforation took place as a result of impaired microcirculation of intestinal loops. Abdominal cocoon syndrome is seen in approximately 1% of patients on CAPD therapy; its prevalence increases with longer treatment duration and at 8th year it may be present in 20% of patients [16]. Its etiology is not exactly known; however, a CAPD duration of more than a several years, type of the disease. Therefore, it was considered as a secondary ACS case.

Abdominal cocoon syndrome is a rare and late complication of peritoneal dialysis. CAPD is one of the most common causes of secondary ACS. Our case is the first case in which CAPD-induced ACS was diagnosed and spontaneous perforation developed during follow-up. In fact, the possibility of free perforation appears unlikely because intestinal loops are encased by a fibrous membrane. We considered that perforation took place as a result of impaired microcirculation of intestinal loops. Abdominal cocoon syndrome is seen in approximately 1% of patients on CAPD therapy; its prevalence increases with longer treatment duration and at 8th year it may be present in 20% of patients [16]. Its etiology is not exactly known; however, a CAPD duration of more than a several years, type of the disease. Therefore, it was considered as a secondary ACS case.

The clinical features of abdominal cocoon include abdominal pain, nausea, vomiting, weight loss, a non-tender palpable mass lesion, and signs and symptoms of intestinal obstruction. The laboratory findings are nonspecific and may include a mildly elevated white blood cells or C-reactive protein, hypoalbuminemia, and anemia [9].

Majority of cases are incidentally diagnosed during laparotomy performed against obstructive symptoms. A high degree of suspicion is required for preoperative diagnosis of abdominal cocoon syndrome [14]. Imaging modalities have an important role in the diagnosis; there are well-defined radiological clues that guide diagnostic process. On upright plain abdominal film air-fluid levels may be apparent or it may be totally normal. Barium studies demonstrate dilated, small intestinal loops in addition to a delayed transit time.

Ultrasonography shows dilated intestinal loops, free fluid, and, if thickened enough, a fibrotic membrane encasing intestinal loops. However, it may not be always possible to put the diagnosis with plain film and ultrasonography. CT is considered gold standard for diagnosis of ACS. The classical finding on a CT scan is presence of ascites between small intestinal loops swept to a side or the accumulation of small intestines at midline, which is encased by an envelope having soft-tissue density [9]. Other CT findings include ascites or loculated fluid collections, peritoneal thickening and contrast uptake, peritoneal calcification particularly in patients with end-stage renal disease, intestinal mural thickening, and tethering or fixation of bowel loops. Thanks to coronal and sagittal reformatted images, multidetector CT is superior to helical CT with respect to not only delineation of the disease extent and its indistinct radiologic findings, but also preoperative planning for surgery.

Surgical resection of the membrane and the adhesions is the best treatment option. Recently, cases successfully treated with laparoscopic technique have been reported [14,15]. In mildly symptomatic patients total parenteral nutrition and nasogastric decompression are the treatment modalities of choice. In addition to these, colchicine, corticosteroids, and immunosuppressive agents (mycophenolate mofetil, azathioprine) may be used in mild disease. Lafrance et al. [15] successfully treated 2 cases with ACS secondary to peritoneal dialysis and Solak A and Solak I [3] one case with primary ACS with mycophenolate mofetil and corticosteroid.

Our patient also underwent peritoneal dialysis for end-stage renal disease. Therefore, it was considered as a secondary ACS case. Abdominal cocoon syndrome is a rare and late complication of peritoneal dialysis. CAPD is one of the most common causes of secondary ACS. Our case is the first case in which CAPD-induced ACS was diagnosed and spontaneous perforation developed during follow-up. In fact, the possibility of free perforation appears unlikely because intestinal loops are encased by a fibrous membrane. We considered that perforation took place as a result of impaired microcirculation of intestinal loops. Abdominal cocoon syndrome is seen in approximately 1% of patients on CAPD therapy; its prevalence increases with longer treatment duration and at 8th year it may be present in 20% of patients [16]. Its etiology is not exactly known; however, a CAPD duration of more than a several years, type of the disease. Therefore, it was considered as a secondary ACS case.

The clinical features of abdominal cocoon include abdominal pain, nausea, vomiting, weight loss, a non-tender palpable mass lesion, and signs and symptoms of intestinal obstruction. The laboratory findings are nonspecific and may include a mildly elevated white blood cells or C-reactive protein, hypoalbuminemia, and anemia [9].

Majority of cases are incidentally diagnosed during laparotomy performed against obstructive symptoms. A high degree of suspicion is required for preoperative diagnosis of abdominal cocoon syndrome [14]. Imaging modalities have an important role in the diagnosis; there are well-defined radiological clues that guide diagnostic process. On upright plain abdominal film air-fluid levels may be apparent or it may be totally normal. Barium studies demonstrate dilated, small intestinal loops in addition to a delayed transit time.

Ultrasonography shows dilated intestinal loops, free fluid, and, if thickened enough, a fibrotic membrane encasing intestinal loops. However, it may not be always possible to put the diagnosis with plain film and ultrasonography. CT is considered gold standard for diagnosis of ACS. The classical finding on a CT scan is presence of ascites between small intestinal loops swept to a side or the accumulation of small intestines at midline, which is encased by an envelope having soft-tissue density [9]. Other CT findings include ascites or loculated fluid collections, peritoneal thickening and contrast uptake, peritoneal calcification particularly in patients with end-stage renal disease, intestinal mural thickening, and tethering or fixation of bowel loops. Thanks to coronal and sagittal reformatted images, multidetector CT is superior to helical CT with respect to not only delineation of the disease extent and its indistinct radiologic findings, but also preoperative planning for surgery.

Surgical resection of the membrane and the adhesions is the best treatment option. Recently, cases successfully treated with laparoscopic technique have been reported [14,15]. In mildly symptomatic patients total parenteral nutrition and nasogastric decompression are the treatment modalities of choice. In addition to these, colchicine, corticosteroids, and immunosuppressive agents (mycophenolate mofetil, azathioprine) may be used in mild disease. Lafrance et al. [15] successfully treated 2 cases with ACS secondary to peritoneal dialysis and Solak A and Solak I [3] one case with primary ACS with mycophenolate mofetil and corticosteroid.
Conclusion

Abdominal cocoon should be remembered in patients on CAPD therapy, especially when CAPD loses its functions after recurrent attacks of peritonitis. One should also be aware that clinical signs of peritonitis may not become evident in the case of intestinal perforation in patients with ACS. In such cases, CT has an important role in making the diagnosis.

References