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Abstract
Due to the potential risk of accidental exposure to gamma radiation, it’s critical to identify the biomarkers of 

radiation exposed creatures. In the present study, NMR based metabolomics combined with multivariate data analysis 
to evaluate the metabolites changed in the C57BL/6 mouse spleen after 4 days whole body exposure to 3.0 Gy and 
7.8 Gy gamma radiations. Principal component analysis (PCA) and orthogonal projection to latent structures analysis 
(OPLS) are employed for classification and identification potential biomarkers associated with gamma irradiation. Two 
different strategies for NMR spectral data reduction (i.e., spectral binning and spectral deconvolution) are combined with 
normalize to constant sum and unit weight before multivariate data analysis, respectively. The combination of spectral 
deconvolution and normalization to unit weight is the best way for identifying discriminatory metabolites between the 
irradiation and control groups.  Normalized to the constant sum may achieve some pseudo biomarkers. PCA and 
OPLS results shown that the exposed groups can be well separated from the control group. Leucine, 2-aminobutyrate, 
valine, lactate, arginine, glutathione, 2-oxoglutarate, creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myo-
inositol, glycerol and uracil are significantly elevated while ADP is decreased significantly. These significantly changed 
metabolites are associated with multiple metabolic pathways and may be potential biomarkers in the spleen exposed 
to gamma irradiation.

Keywords: 1H NMR metabolomics; Gamma radiation; Spleen; PCA; 
OPLS; Spectral deconvolution

Introduction
In our daily life, the potential risk of accidental exposure to ionized 

radiation is increasing [1]. For example, the nuclear energy landscape is 
expanding rapidly all over the world, and some of these nuclear energy 
plants are located in earthquake-prone zones or near seashores [2], like 
the Fukushima Daiichi nuclear power plant in Japan which suffered 
major damage from the earthquake and tsunami hit in 2011. Gamma 
radiation is a major component of ionized radiation from the nuclear 
accident. Understand the biological impact of gamma radiation to 
mammal is importance for developing medical counter measures to 
mitigate the damage from gamma radiation.  To achieve this goal, it’s 
critical to understand thoroughly the biological respond at molecular 
level, including identify potential biomarkers of radiation exposed 
creatures for accurate assessment. Gamma radiation disturbances have 
serious consequences on the whole immune system [3] and the spleen 
plays important roles in immune system. 

Metabolomics is a holistic systems approach capable quantitative 
measurement metabolic responses of a living system during exposure 
to external stimuli [4]. 1H NMR based metabolomics is a conventional 
method to explore systematic biochemistry due to almost all metabolites 
is hydrogen containing molecules [5] and the nature abundance of 1H 
is 99.985%. 

As an integrated part of metabolomics, multivariate statistical 
analysis methods are used for exploring the latent structures embedded 
within a set of complex data [6]. Generally, there are two pattern 
recognition methods have widely used in the field of metabolomics, 
e.g. principal component analysis (PCA) and orthogonal projections
to latent structures analysis (OPLS). As an unsupervised pattern
recognition method, PCA is the basis of all multivariate data analysis,
and the aim is to reduce the dimensionalities of the metadata so that
the linear latent variables are orthogonal to each other and keep
most information [7]. As an extension of partial least squares (PLS),

orthogonal projection to latent structures analysis (OPLS) has received 
more and more attention since it has been proposed due to its powerful 
capability in classification and interpretation [8]. In OPLS model, 
variables in X-matrix are separated into two parts, one is predictive to 
Y-matrix and the other is orthogonal to Y-matrix, therefore improve
the model interpretability of PLS by emphasizing the predictive
component [9], and eliminating orthogonal component that is often
related to systematic errors associated with, e.g. spectrometer drift,
sample storage and processing, etc. Based on OPLS model, a powerful
visualization and interpretation tool named S-plot was proposed
for multivariate classification model [10], enabling identifying and
extracting statistically and significant biomarkers from multivariable
data via correlation coefficients.

Usually, the pattern recognition methods in the field of NMR 
based metabolomics are constructed using a reduced variables dataset 
obtained by binning the original NMR spectra [11]. The method of 
spectral binning is very expeditious for large scale sample matrix and 
can be easily automated and pre-processed [12]. However, to identify 
biologically significant metabolites conventional 2D NMR spectra are 
needed to assign the signal peaks, a time consuming process for both 
spectra acquisition and interpretation [13,14]. 

Recently, mass spectrometry based metabolomics has been 
successfully utilized for assessing potential biomarkers in urine [15] 
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and plasma [16], meanwhile 1H NMR based metabolomics has been 
utilized for serum [17] from mice exposed to gamma radiation, and 
interesting results have been obtained.  Despite the attractive nature of 
non-invasive or minimal invasive, these earlier efforts are all reflections 
of whole system response. Efforts are still needed to assess individual 
organ or tissue damaged.  The reasoning behind is that different 
genes are active in different kinds of cells in the organism, and the 
metabolome is also depend on individual, organ and cell type [18]. In 
this study, the metabolic changed in mouse spleen after whole body 
exposure to different dosages of gamma irradiation is investigated via 
1H NMR based metabolomics. Specifically, 1H NMR spectroscopy was 
used to detect the hydrophilic metabolites extracted from the excised 
spleens of the control and exposed mice. Both spectral binning and 
spectral deconvolution methods are used for generating the data for 
multivariate data analysis. Two normalization strategies are used, 
one is the constant sum (i.e., the integration of a metabolite peak/
binned data point or peaks related to one metabolite divided the total 
spectral area) and the other one is unit weight of spleen tissue before 
extraction. Multivariate data analysis methods (both PCA and OPLS) 
are used for pattern recognition and identifying a series of metabolites 
that are statistically and significantly changed as a result of whole body 
exposure to gamma irradiation in the spleens. Based on these findings, 
the metabolites pathways that are affected by gamma irradiation are 
discussed. In addition, the advantages and disadvantages of different 
pre-process strategies of the NMR spectra and the different approaches 
of normalization are discussed.  

Materials and Method
Animal experiments and sample preparation

Groups of mice were exposed to radiation doses of 0 Gy, 3.0 Gy and 
7.8 Gy. The reasons for selecting these radiation doses are explained 
below. (i) Metabolomics has been successfully utilized for assessing 
potential biomarkers in urine [1], plasma [2] and serum [3] from mice 
exposed to 3 Gy gamma radiations, and interesting results have been 
obtained. (ii) The lethal dose for Balb/c mice is about 7.8 Gy [4], and in 
the case of an atomic bomb attack, survivors may expose to high dose 
radiation of 7.8 Gy or even higher.

It has been reported [1] that 24 h after exposure to high dose gamma 
radiation of 3 and 8 Gy, metabolites were found changed in urine. 
However, 3 days after exposed to the lethal dose gamma radiation, 
the level of metabolites in urine samples of nonhuman primates has 
some outliers when compared with controls [5], indicating significant 
biological variations. In the present study, our focus is on studying the 
metabolite changes in spleen tissue and we would like to investigate 
at a time point close to 3 day post exposure, and therefore 4 days post 
exposure was selected in the present study.”

A total of 17 seven-week-old C57BL/6 female mice were purchased 
from the Jackson Laboratory (Bar Harbor, ME). After acclimation for 
one week at the animal facility of Pacific Northwest National Laboratory 
(PNNL), they were randomly grouped before whole body gamma 
irradiation using a high activity gamma source (1250 keV 60Co). The 
linear energy transfer (LET) associated with these fields is in the range 
of 0.2-2 keV/μm. For the whole body gamma radiation, the animals 
were isolated to the corner of their polymer cages, placed at a minimum 
of 100 cm from the collimated 6000 Ci 60Co source, and then irradiated 
to the proposed dosage. After irradiation the isolation barrier was 
removed and animals transferred to PNNL animal facility. The 60Co 
radiation field at the position of mice was measured beforehand using 
a reference class ionization chamber that was calibrated at the National 

Institute of Standards and Technology. The resulting absorbed dose rate 
at approximately 600 mg/cm2 depth was 0.83 Gy/min relative to tissue. 
Groups of mice were exposed to radiation doses of 0 Gy (control, n=8), 
3.0 Gy (n=5) and 7.8 Gy (n=4, lethal radiation doses [19]). After 4 days 
post exposure, mice were sacrificed with 70/30 CO2/O2 and the spleen 
from each mouse was excised and cut the same part immediately for 
each spleen, snap-frozen in liquid nitrogen, then weighted and stored 
at -80 °C freezer until NMR analysis. All animal work was approved by 
the Institutional Animal Care and Use Committee (IACUC) at PNNL. 

Hydrophilic metabolites were extracted from spleen tissue using 
a modified Folch method by following the established protocol [20], 
which was recognized as being able to generate the highest yields under 
mild extraction conditions [21,22]. It has been generally accepted that 
about 95% or more of tissue lipids are extracted during the first step 
[23]. The extraction procedures are briefly described as below:

Step 1: Weight each intact frozen spleen tissue sample about 
10 mg. Add 0.25 ml methanol, 0.053 ml deionized water and 0.125 
ml chloroform for each tissue sample. All solvents/water used for 
extraction were placed inside ice bath. Homogenize the mixture while 
the glass vial was placed inside ice bath using the Tissue Tearor (Model 
985-370, BioSpec Products, Inc.). Follow by vortexing for 2 minutes. 
Step 2: Add 0.125 ml chloroform and 0.125 ml deionized water into the 
sample then vortex again for 2 minutes. Leave glass vial containing the 
mixture on ice for 15 minutes, followed by centrifuging at 6,000 rpm 
for 16 minutes at 4°C. Transfer the lipid and the water soluble layers 
into glass vials separately with syringes.  Finally, the solvents for the 
water soluble, i.e., the MeOH/H2O layer (hydrophilic metabolites) were 
removed by lyophilizer. And the extracts were stored at -80°C freezer 
before NMR measurements.
1H NMR spectroscopy

The hydrophilic metabolites were reconstituted in 500 μl of D2O 
containing 0.05 mM 4, 4-dimethyl-4-silapentane-1-sulfonic acid (DSS) 
as chemical shift reference and internal concentration standard, and 
0.2 % sodium azide as bacteriostatic agent to prevent biodegradation. 
About 450 μl of the prepared sample was loaded into a standard 5 mm 
NMR tube (Wilmad, Vineland, NJ, USA). All 1H NMR spectra were 
acquired on a Varian 600 MHz NMR spectrometer equipped with a 
Z axis-gradient 5mm HCN probe at 20°C. One-dimension 1H NMR 
spectra were acquired from each sample using the standard Varian 
PRESAT pulse sequence with a single pulse excitation and 1s low 
power presaturation at the water peak position to suppress the residual 
water signal. The acquisition time and recycle delay (RD) of a single 
scan was 3 s and 1 s, respectively, and the spectral width was 7200 Hz. 
A total of 20 k transients were accumulated, corresponding a total 
measuring time of about 22 hours for each sample, to ensure that a 
high quality 1H spectrum was obtained with sufficient signal to noise 
ratio for metabolites with concentration as low as about 0.5 μM or even 
lower in the NMR tube (Table S1).

NMR data processing and multivariate data analysis
All free induction decays (FIDs) were multiplied by an exponential 

function with a line broadening factor of 0.5 Hz. Prior to Fourier 
transformation (FT), all FIDs was zero-filled to 128 k data points. Then 
all 1H NMR spectra were phased and baseline corrected manually using 
the Processor module of Chenomx (NMR suite 8.1, Professional) and 
referenced to the chemical shift of DSS (CH3 peak) at 0 ppm (Figure 
S1). Two strategies were used to reduce the original spectral data 
points, i.e., spectral binning and spectral deconvolution. For each 
approach, two different normalization methods were employed prior 
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Key Metabolites δ 1H (ppm) and multiplicity* Concentration (µM/mg) Estimates of absolute concentrations 
in tissue (mM)

Mean ± SD Mean  ±  SD
Control 3 Gy 7.8 Gy Control 3 Gy 7.8 Gy

1 Leucine 0.94 (t), 0.99 (d), 1.27 (m), 1.46 (m), 
1.95 (m), 3.64 (d) 1.83 ± 0.30 2.78 ± 0.22 4.44 ± 1.02 0.96 ± 0.16 1.46 ± 0.12 2.34 ±0.54

2 2-Aminobutyrate 0.96 (t), 1.91 (m), 3.68 (t) 1.48 ± 0.06 2.23 ± 0.20 2.37 ± 0.45 0.78 ± 0.03 1.17 ± 0.11 1.25 ± 0.24
3 Valine 0.97 (d), 1.02 (d), 2.27 (m), 3.6 (d) 1.37 ± 0.17 2.38 ± 0.20 4.21 ± 0.71 0.72 ± 0.09 1.25 ± 0.11 2.21 ± 0.37
4 Isobutyrate 1.05 (d), 2.38 (m) 0.22 ± 0.04 0.17 ± 0.01 0.22 ± 0.02 0.12 ± 0.02 0.09 ± 0.01 0.12 ± 0.01
5 3-Hydroxyisobutyrate 1.08 (d), 2.48 (m), 3.53 (m), 3.69 (m) 0.27 ± 0.05 0.19 ± 0.02 0.31 ± 0.05 0.14 ± 0.03 0.10 ± 0.01 0.16 ± 0.03
6 3-Hydroxybutyrate 1.2 (d), 2.3 (dd), 2.39 (dd), 4.14 (dd) 2.60 ± 0.32 2.66 ± 0.32 1.41 ± 0.11 1.37 ± 0.17 1.40 ± 0.17 0.74 ± 0.06

7 Fucose 1.2 (m), 3.4 (dd), 3.63 (dd), 3.8 (m), 4 
(m), 4.19 (m), 4.55 (d), 5.22 (m) 1.20 ± 0.17 1.46 ± 0.24 1.68 ± 0.43 0.63 ± 0.09 0.77 ± 0.13 0.88 ± 0.23

8 Threonine 1.33 (d), 3.58 (d), 4.26 (m) 4.69 ± 0.51 7.05 ± 0.91 6.97 ± 0.97 2.47 ± 0.27 3.71 ± 0.48 3.67 ± 0.51
9 Lactate 1.33 (d), 4.11(q) 10.89 ± 1.24 18.7 ± 1.97 24.51 ± 1.57 5.73 ± 0.65 9.84 ± 1.04 12.9 ± 0.83

10 Lysine 1.43 (m), 1.51 (m), 1.72 (m), 1.89 (m), 
1.91 (m), 3.03  (t),3.75 (t), 1.13 ± 0.20 1.54 ± 0.08 1.61 ± 0.19 0.59 ± 0.10 0.81 ± 0.04 0.85 ± 0.10

11 Alanine 1.48 (d), 3.78 (q)
3.55 ± 0.52 4.66 ± 0.76 7.06 ± 1.15 1.87 ± 0.27 2.45 ± 0.4 3.71 ± 0.61

12 Arginine 1.65 (m), 1.74 (m), 1.9 (m), 1.92  (m), 
3.23 (t), 3.77 (t) 2.04 ± 0.21 3.04 ± 0.40 3.58 ± 0.28 1.07 ± 0.11 1.60 ± 0.21 1.88 ± 0.15

13 γ-Glutamylphenylalanine
1.97  (m),2.34 (m),2.89 (dd),3.21 
(dd),3.57 (t),4.46 (m),7.27 (t),7.35 
(t),7.91 (d)

0.23 ± 0.02 0.25 ± 0.03 0.33 ± 0.03 0.12 ± 0.01 0.13 ± 0.01 0.17 ± 0.01

14 Glutamate 2.05 (m), 2.14 (m), 2.34 (m), 2.37 (m), 
3.76 (dd) 21.34 ± 3.37 21.65 ± 1.30 18.44 ± 1.52 11.23 ± 1.77 11.4 ± 0.69 9.71 ± 0.80

15 Glutathione
2.16 (m), 2.18  (m), 2.52 (m), 2.57 (m), 
2.95 (dd), 2.98 (dd), 3.74 (d), 3.77 (m), 
4.58 (m)

1.92 ± 0.15 2.65 ± 0.36 3.27 ± 0.54 1.01 ± 0.08 1.40 ± 0.19 1.72 ± 0.29

16 Malate 2.36 (dd), 2.67 (dd), 4.3 (m) 2.18 ± 0.14 2.79 ± 0.27 2.67 ± 0.44 1.14 ± 0.07 1.47 ± 0.14 1.40 ± 0.23
17 Succinate 2.39 (s) 1.13 ± 0.28 1.10 ± 0.09 0.91 ± 0.22 0.60 ± 0.15 0.58 ± 0.05 0.48 ± 0.12
18 2-Oxoglutarate 2.44 (t), 2.99 (t) 1.53 ± 0.11 2.06 ± 0.24 2.83 ± 0.38 0.81 ± 0.06 1.08 ± 0.12 1.49 ± 0.20
19 Isocitrate 2.49 (m), 2.57 (m), 2.99 (m), 4.06 (d) 3.02 ± 0.53 2.83 ± 0.25 3.98 ± 0.38 1.59 ± 0.28 1.49 ± 0.13 2.10 ± 0.20
20 β-Alanine 2.53 (t), 3.20 (t) 1.73 ± 0.18 2.23 ± 0.61 2.41 ± 0.13 0.91 ± 0.09 1.17 ± 0.32 1.27 ± 0.07
21 Citrate 2.54 (d), 2.68 (d) 0.19 ± 0.08 0.28 ± 0.04 0.28 ± 0.04 0.10 ± 0.04 0.15 ± 0.02 0.15 ± 0.02
22 Aspartate 2.67 (dd), 2.82 (dd), 3.9 (dd) 10.22 ± 1.49 10.77 ± 1.17 11.16 ± 1.25 5.38 ± 0.78 5.67 ± 0.61 5.87 ± 0.66
23 Trimethylamine 2.88 (s) 0.15 ± 0.03 0.15 ± 0.02 0.15 ± 0.01 0.08 ± 0.02 0.08 ± 0.01 0.08 ± 0.01
24 Tyramine 2.92  (t), 3.23 (t), 6.9 (m), 7.2  (m) 0.05 ± 0.01 0.07 ± 0.01 0.20 ± 0.06 0.02 ± 0.01 0.03 ± 0 0.11 ± 0.03
25 Creatine phosphate 3.01 (s), 3.94 (s) 0.57 ± 0.11 0.61 ± 0.07 0.84 ± 0.06 0.30 ± 0.06 0.32 ± 0.04 0.44 ± 0.03
26 Creatine 3.04 (s), 3.91 (s) 0.76 ± 0.12 1.67 ± 0.17 1.81 ± 0.15 0.40 ± 0.06 0.88 ± 0.09 0.95 ± 0.08
27 Creatinine 3.04 (s), 3.98 (s) 0.63 ± 0.11 0.64 ± 0.05 1.25 ± 0.08 0.33 ± 0.06 0.34 ± 0.03 0.66 ± 0.04

28 Tyrosine 3.06 (dd), 3.2 (dd), 3.93 (dd), 6.9  (m), 
7.2 (m) 0.35 ± 0.04 0.65 ± 0.11 1.04 ± 0.10 0.18 ± 0.02 0.34 ± 0.06 0.54 ± 0.05

29 Phenylalanine 3.11 (dd), 3.27 (dd), 3.99 (dd), 7.33 
(m), 7.38 (m), 7.43 (m) 0.41 ± 0.08 0.74 ± 0.11 1.36 ± 0.33 0.22 ± 0.04 0.39 ± 0.06 0.72 ± 0.18

30 Histidine 3.14 (dd), 3.24 (dd), 3.98  (dd), 7.06 
(s), 7.79 (s) 0.21 ± 0.05 0.17 ± 0.04 0.27 ± 0.02 0.11 ± 0.02 0.09 ± 0.02 0.14 ± 0.01

31 Ethanolamine 3.14 (m), 3.82 (m) 2.54 ± 0.41 2.31 ± 0.42 2.65 ± 0.58 1.34 ± 0.21 1.21 ± 0.22 1.39 ± 0.31
32 Choline 3.21 (s), 3.52 (m), 4.07 (m) 2.18 ± 0.39 1.35 ± 0.19 2.43 ± 0.27 1.15 ± 0.21 0.71 ± 0.10 1.28 ± 0.14

33 π-Methylhistidine 3.22 (dd), 3.3 (dd), 3.73 (s), 3.95 (dd), 
6.8 (s), 8 (s) 0.18 ± 0.02 0.29 ± 0.08 0.42 ± 0.09 0.09 ± 0.01 0.15 ± 0.04 0.22 ± 0.05

34 O-Phosphoethanolamine 3.22 (m), 3.98 (m) 18.22 ± 1.18 15.93 ± 1.33 13.69 ± 1.38 9.59 ± 0.62 8.39 ± 0.70 7.21 ± 0.73

35 Glucose
3.23 (m), 3.4 (m), 3.5 (m), 3.53 (dd), 
3.7 (dd), 3.72 (dd),3.78 (m), 3.83 (m), 
3.84 (m), 3.94 (dd), 4.65 (d), 5.23 (d)

1.49 ± 0.31 1.49 ± 0.32 2.84 ± 0.80 0.78 ± 0.17 0.79 ± 0.17 1.50 ± 0.42

36 Trimethylamine N-oxide 3.23 (s) 0.95 ± 0.15 0.74 ± 0.17 0.98 ± 0.15 0.50 ± 0.08 0.39 ± 0.09 0.51 ± 0.08

37 sn-Glycero-3-
phosphocholine

3.23 (s), 3.6 (dd), 3.67 (m), 3.68 (dd), 
3.86 (m), 3.92 (m),3.95 (m), 4.32 (m) 5.49 ± 0.73 7.41 ± 0.98 7.71 ± 1.38 2.89 ± 0.38 3.90 ± 0.52 4.06 ± 0.72

38 Taurine 3.26 (t), 3.43 (t) 39.14 ± 1.12 44.86 ± 1.26 53.7 ± 4.46 20.6 ± 0.59 23.61 ± 
0.66 28.26 ± 2.35

39 Betaine 3.27 (s), 3.91 (s) 1.71 ± 0.38 1.04 ± 0.37 1.07 ± 0.22 0.90 ± 0.20 0.55 ± 0.19 0.56 ± 0.12

40 myo-Inositol 3.28 (t), 3.53 (dd), 3.62 (t), 4.06 (m) 7.03 ± 0.69 12.3 ± 1.39 18.98 ± 3.24 3.70 ± 0.36 6.48 ± 0.73 9.99 ± 1.70
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41 Tryptophan 3.3 (dd), 3.48 (dd), 4.05 (dd), 7.2 (dd), 
7.29 (dd), 7.32 (s),7.54 (d), 7.74 (d), 0.16 ± 0.03 0.28 ± 0.02 0.33 ± 0.06 0.08 ± 0.02 0.15 ± 0.01 0.17 ± 0.03

42 UDP-glucose
3.51 (dd), 3.58 (m), 3.78 (dd), 4.13 (d), 
4.17 (m), 4.23 (m), 4.27 (m), 4.36 (m), 
5.61 (dd), 5.97 (d), 5.99 (d),7.97 (d)

1.08 ± 0.12 0.86 ± 0.01 0.78 ± 0.09 0.57 ± 0.06 0.45 ± 0.01 0.41 ± 0.05

43 UDP-glucuronate

3.51 (dd), 3.58 (m), 3.78 (dd), 4.13 
(d),4.17 (m),4.23 (m), 4.27 (m), 4.36 
(m), 5.61 (dd), 5.97 (d), 5.99 (d),7.97 
(d)

0.34 ± 0.02 0.29 ± 0.06 0.26 ± 0.03 0.18 ± 0.01 0.15 ± 0.03 0.14 ± 0.02

44 Glycerol 3.56 (dd), 3.65 (dd), 3.78 (m) 1.81 ± 0.18 2.58 ± 0.23 3.52 ± 0.41 0.95 ± 0.10 1.36 ± 0.12 1.85 ± 0.21
45 Glycine 3.56 (s) 3.76 ± 0.85 5.99 ± 0.88 4.25 ± 0.97 1.98 ± 0.45 3.16 ± 0.46 2.23 ± 0.51

46 UDP-galactose

3.72 (dd), 3.75 (dd), 3.81 (m), 3.91 
(dd), 4 (d), 4.16 (m),4.19 (m), 4.24 (m), 
4.28 (m), 4.37 (m), 5.63 (dd), 5.98 (m), 
7.95 (d)

0.27 ± 0.04 0.29 ± 0.06 0.29 ± 0.03 0.14 ± 0.02 0.15 ± 0.03 0.15 ± 0.02

47 Ascorbate 3.73 (m),4.00 (t),4.50 (d) 9.00 ± 1.13 7.98 ± 0.71 6.32 ± 2.49 4.74 ± 0.59 4.20 ± 0.38 3.33 ± 1.31

48 Uridine 3.8 (dd), 3.89 (dd), 4.13 (m), 4.23 (t), 
4.36  (t), 5.9  (d),5.92  (d), 7.88 (d), 0.57 ± 0.17 0.70 ± 0.11 0.56 ± 0.05 0.30 ± 0.09 0.37 ± 0.06 0.29 ± 0.02

49 Cytidine 3.81 (dd), 3.92 (dd), 4.12 (m), 4.19 (t), 
4.3 (m), 5.89 (d),6.06 (d), 7.81(d) 0.33 ± 0.07 0.26 ± 0.03 0.26 ± 0.04 0.17 ± 0.04 0.14 ± 0.02 0.14 ± 0.02

50 Adenosine
3.83 (dd), 3.91 (dd), 4.29 (m), 4.42 
(dd), 4.79 (dd), 6.05 (d), 8.24 (s), 8.34 
(s)

0.75 ± 0.18 0.67 ± 0.15 0.42 ± 0.07 0.39 ± 0.09 0.36 ± 0.08 0.22 ± 0.04

51 Inosine 3.84 (dd), 3.92 (dd), 4.27 (m), 4.44 (m), 
4.76 (t), 6.11 (d),8.23 (s), 8.35 (s) 0.71 ± 0.39 0.27 ± 0.08 0.31 ± 0.21 0.37 ± 0.20 0.14 ± 0.04 0.16 ± 0.11

52 Serine 3.84 (dd), 3.95 (dd), 3.99 (dd) 6.75 ± 1.23 7.21 ± 0.65 8.96 ± 0.41 3.55 ± 0.65 3.80 ± 0.34 4.72 ± 0.22

53 AMP 4.01 (m), 4.36 (m), 4.49 (m), 4.78 (dd), 
6.11 (d), 8.24 (s),8.62 (s) 1.30 ± 0.41 1.16 ± 0.17 1.07 ± 0.16 0.69 ± 0.22 0.61 ± 0.09 0.56 ± 0.08

54 ADP 4.2 (m), 4.37 (m), 4.57  (dd), 4.74 (dd), 
6.13 (dd), 8.27 (s),8.58 (s) 0.69 ± 0.08 0.37 ± 0.02 0.41 ± 0.05 0.36 ± 0.04 0.19 ± 0.01 0.22 ± 0.03

55 ATP 4.2 (m), 4.4 (m), 4.57  (dd), 4.74 (dd), 
6.15 (d), 8.23  (s),8.38 (s) 0.39 ± 0.18 0.24 ± 0.04 0.56 ± 0.07 0.21 ± 0.10 0.13 ± 0.02 0.29 ± 0.04

56 GTP 4.24 (m), 4.35 (m), 4.55  (m), 4.74 (dd), 
5.94 (d), 8.12 (s) 0.64 ± 0.11 0.61 ± 0.15 0.41 ± 0.06 0.34 ± 0.06 0.32 ± 0.08 0.22 ± 0.03

57 Uracil 5.8 (d), 7.53 (d) 0.06 ± 0.01 0.14 ± 0.02 0.22 ± 0.06 0.03 ± 0.01 0.07 ± 0.01 0.11 ± 0.03
58 Fumarate 6.52 (s) 0.08 ± 0.02 0.08 ± 0.02 0.08 ± 0.02 0.04 ± 0.01 0.04 ± 0.01 0.04 ± 0.01
59 Niacinamide 7.6 (dd), 8.26 (m), 8.71 (m), 8.94 (d) 0.31 ± 0.09 0.34 ± 0.04 0.42 ± 0.05 0.16 ± 0.05 0.18 ± 0.02 0.22 ± 0.03
60 Oxypurinol 8.19 (s) 19.09 ± 2.98 10.28 ± 1.49 20.43 ± 0.90 10.05 ± 1.57 5.41 ± 0.78 10.75 ± 0.47
61 Hypoxanthine 8.19 (s), 8.21 (s) 0.50 ± 0.07 0.59 ± 0.20 0.68 ± 0.06 0.26 ± 0.04 0.31 ± 0.10 0.36 ± 0.03

s: singlet; d: doublet; t: triplet; q: quartet; m: multiplet; dd: doublet of doublet 

Abbreviations: UDP-Glucuronate: Uridine Diphosphate Glucoronate; UDP-Galactose: Uridine Diphosphate Galactose; AMP: Adenosine Triphosphate; ADP: Adenosine 
Diphosphate; GTP: Guanosine-5'-Triphosphate

Table 1: Hydrophilic metabolites peak assignments and concentrations

to multivariate statistical analysis, i.e., normalization to constant sum 
[24] and normalization to unit weight of each tissue that was used for 
extraction [25].

Spectral binning

NMR-based metabolomics data contain multidimensional 
metadata points. In particular, the number of data points associated 
with the spectral dimension is large (i.e., 64 k or more). To analysis large 
number of spectra by statistics, the method of metadata point reduction 
such as spectral binning is often used to reduce the number of variables 
that must be considered [26]. As a conventional data pre-processing 
method in metabolomics, spectral binning is a rapid and consistent 
method to produce a reduced set of variables for modeling purpose, 
where the effect of binning width in a 1H spectra of bio-samples to the 
statistical outcomes was extensively investigated previously [9]. Due to 
its tremendous advantage of fast automation with short response time, 
spectral binning has been successfully applied in metabolic profiling 
in clinical settings to access the disease status of a patient [27]. As a 
representative bin width, 0.04 ppm is frequently used or recommended 
for 1H spectra owing to it’s a good balance between resolution and 

the chemical shift influenced by the pH and ionic strength of samples 
[12]. In the present study, for the hydrophilic extracts of spleen the 
spectral regions at 0.5-9.0 ppm are segmented into discrete bins with 
equal width of 0.04 ppm using the Profiler module of Chenomx (NMR 
suite 8.1, Professional).  Spectral regions at δ 0.60-0.66, 1.72-1.80, and 
2.88-2.94 (internal standard DSS), 3.28-3.42 (residual methanol) and 
4.6-5.15 (residual water), are discarded.  

In the present study, we compare two normalization methods for 
spectral binning data, i.e. relative bin area percent (normalization to 
constant sum of entire spectrum) and absolute bin areas (normalization 
to unit weight of spleen tissue before extraction). The relative bin 
area for each bin data point (i.e., normalization to constant sum) is 
calculated by dividing each bin area by the total summed bin area in 
the spectrum. This method is a conventional method when the detailed 
bio-sample information (i.e., bio-fluids volumes or tissues weight) is 
not known or ambiguous and credible statistical results can still be 
achieved as reported previously [28,29]. However, it is not known 
whether the decrease or increase of the signal intensities of the relative 
bins is true reflections of the biological pathway modulation. On the 
other hand, the absolute bin area is calculated by normalizing the bin 
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area to per unit weight of spleen tissue before extraction.  As NMR 
is quantitative, it is expected that the up or down regulate of the bins 
are true reflections of biological pathway modulations. The normalized 
NMR spectral bins based on both the absolute and the relative bins 
are imported into SIMCA (Version 13.0.3, Umetrics, Sweden) for 
multivariate data analysis (i.e., PCA and OPLS), respectively. One 
task of the present study is to clarify the advantages or disadvantages 
of the absolute and the relative bins that has not yet been discussed 
in literatures so far. Considering every variable of equal importance 
for statistical analysis, prior to PCA spectral binning data associated 
with the two normalization strategies discussed above are further 
mean-centered and unit-variance scaled [30]. PCA is firstly performed 
to obtain an overview of the data and detect the potential outliers. 
Subsequently, OPLS is conducted using the auto-scaled data as 
X-matrix (each row represent a sample, each column represent a 
variable) and class information as Y-matrix (e.g. 0 for control and 1 for 
treatment) to find statistically significant variables, i.e., chemical shift 
integral regions, responsible for the discrimination of the two different 
classes. The number of principal components obtained from PCA 
and OPLS analysis is determined by the seven-fold cross-validation. 
Model quality can be assessed by the parameters R2 and Q2 that reveal 
the interpretability of the model and indicate the predictability of the 
model, respectively. The correlation coefficient plot (i.e., the S-line plot 
in SIMCA-13) is tailor-made for NMR spectroscopy data based on 
OPLS model. It visualizes the loading colored according to the absolute 
value of the correlation coefficient, and can obtain a list of potential 
variables (spectral bins) that are statistically significant. To obtain 
the bins that are statistically significant, the cutoff value (Pearson 
correlation coefficient) depending on the degree of freedom and the 
discrimination significance (i.e., 95% confidence level, p<0.05) plays 
a critical role. And the diagnostic tool CV-ANOVA (cross validation 
analysis of variance) test is further used to evaluate the reliability of the 
OPLS model (p<0.05) (Table S2).

Spectral deconvolution
The spectral binning is a powerful and fast method for pre-

processing an NMR spectral data set as it can be fully automated. 
However, spectral binning requires acquiring high quality NMR 
spectra with each of the spectra having exactly the same residual water 
peak, baseline and peak shifts for each metabolite that are often very 
difficult to achieve experimentally [31]. Another even more serious 
drawback related to spectral binning is that no established technology 
exists for dealing with overlapping peaks from different metabolites. 
Therefor a novel method based on spectral deconvolution by using 
standard spectra on a library of known metabolites has been proposed 
for mixture analysis, and is defined as “targeted profiling”. The 
advantages of spectral deconvolution technique are validated against 
the traditional spectral binning analysis on the basis of sensitivity 
to water suppression and baseline shift [32]. To avoid the puzzler 
related to overlapping peaks, in the present study we decide to apply 
targeted profiling (i.e. the spectral deconvolution). We will compare 
the results obtained from spectral deconvolution with those obtained 
from spectral binning method. The method of spectral deconvolution 
not only assigns spectral peaks with chemical identity but is also 
able of identifying metabolites with concentrations higher than the 
detection limits, i.e. 0.3 µM in the NMR tube. By taking advantages of 
the spectral peak features from resolved peaks of various metabolites, 
the overlapped signal peaks can be adequately deconvoluted. In this 
way, the chemical identities associated with the statistically significant 
metabolites rather than the abstract chemical shift regions are obtained.  
Similar to the spectral binning data, two normalization strategies (i.e., 
normalization to constant sum and normalization to unit weight) are 
used before multivariate data analysis. 

The strategy of spectral deconvolution offers us the advantage of 
determining the estimated absolute concentration of each metabolite 
in the tissue. In general, achieve the assignments of spectral peaks are 
cross validated using a suit of conventional 2D NMR spectra such 
as 1H-1H correlation spectroscopy (COSY), 1H-1H total correlation 
spectroscopy (TCOSY), 1H J-resolved spectroscopy (JRES), 1H-13C 
heteronuclear single quantum correlation spectroscopy (HSQC) and 
1H-13C heteronuclear multiple bond correlation spectroscopy (HMBC) 
as previously reported [33,34]. In the present study the procedures 
described below.  First, the NMR spectrum is deconvoluted and the 
concentration of each metabolite is determined by the well-established 
method provided by Chenomx (NMR suite 8.1, professional) using 
the known concentration of DSS as internal standard. The spectral 
deconvolution is performed on the Profiler module of Chenomx with 
database containing more than 330 common metabolites associated 
with mammals and bacteria. Secondly, the concentration of each 
metabolite is further normalized to per milligram of spleen tissue 
before extraction. In parallel, a second data set with normalization to 
constant sum is obtained using a simple calculation, i.e., dividing the 
concentration of each metabolite by the sum of the concentrations of 
all metabolites.  Multivariate data analysis (e.g. PCA and OPLS) are 
carried out in exactly the same way as described earlier for spectral 
binning data.

Results and Discussion
NMR spectra of metabolites from spleen tissue extracts

Examples of typical 1H NMR spectra of hydrophilic extracts 
obtained from a control mouse, mice exposed to 3 Gy and 7.8 Gy 
whole body gamma irradiation are shown in Figure 1. In the plot, the 

Key Metabolites
������������

3 Gy 7.8 Gy
1 Leucine 0.867 0.92
2 2-Aminobutyrate 0.962 0.898
3 Valine 0.953 0.958
8 Threonine 0.877 0.870*

9 Lactate 0.973 0.985
11 Alanine 0.768* 0.937
12 Arginine 0.936 0.955
13 γ-Glutamylphenylalanine 0.448* 0.906
15 Glutathione 0.839 0.911
16 Malate 0.875 0.726*

18 2-Oxoglutarate 0.872 0.941
20 β-Alanine 0.563* 0.894
24 Tyramine 0.782* 0.945
26 Creatine 0.969 0.967
27 Creatinine 0.084* 0.956
28 Tyrosine 0.951 0.99
29 Phenylalanine 0.913 0.943
33 π-Methylhistidine 0.813 0.928
38 Taurine 0.949 0.922
40 myo-Inositol 0.95 0.961
41 Tryptophan 0.923 0.873*

44 Glycerol 0.871 0.936
45 Glycine 0.851 0.253*

54 3-Hydroxybutyrate 0.019* -0.913
54 ADP -0.914 -0.899
57 Uracil 0.939 0.937
60 Oxypurinol -0.863 0.276*

Table 2: Gamma radiation induced metabolic changes in spleen tissue extracts.
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peak intensities are normalized to unit weight of spleen tissue before 
extraction, so the peak intensities in the spectra of radiation group and 
those of the control group can be directly compared visually.

A total of 61 metabolites are assigned with good confidence according 
to the literature reports [35,36] and the database of Chenomx.  These 
assignments are further confirmed by 2D NMR spectra (e.g. COSY and 
JRES, Figures S2 and S3). The peaks assignment and basic statistical 
parameters associated with each detecTable metabolite from spectral 
deconvolution are listed in Table 1, including the mean concentrations 
and standard deviation. A variety of amino acids, carbohydrates, 
glycolysis and citrate acid cycle intermediates are detected. And other 
metabolites include choline metabolites, ethanolamine metabolites, 
organic bases were observed. Visual inspection of the 1H NMR 
spectra indicates apparent metabolism alterations induced by gamma 
irradiation. For example, the radiation exposure mice have higher 
level of leucine, 2-aminobutyrate, threonine, valine, lactate, alanine, 
arginine, myo-inositol, malate, taurine, 2-oxoglutarate, glycerol and 
glutathione in the radiation groups (3Gy and 7.8Gy) in Figure 1, 
while the bottom trace spectrum (control) shows evidently higher 
level of isocitrate, o-phosphoethanolamine, betaine, UDP-glucose, 
ascorbate and inosine. To discern statistically and significantly changed 
metabolites, PCA and OPLS statistical analyses on the entire spectral 
sets containing a total of 17 mice from both control and gamma-
irradiated groups are performed.

Statistical results based on spectral binning

Data sets consisting of relative bin area (normalization to constant 
sum) and absolute bin area (normalization to unit weight) are subjected 
to multivariate data analysis (e.g. PCA and OPLS).  The PCA scores 
plot shown that the three groups (control, 3 Gy and 7.8 Gy) are clearly 
separated without any outliers based on relative bin area (Figure 2b). 
In order to maximize the correlation between X-matrix (the integral 
area of spectral bins) and Y-matrix (the class information) as well as 
the variation in X-matrix, OPLS is performed to evaluate and identify 
discriminatory variables responsible for separation between different 
groups. The variables shown significance difference between control 
and treatment groups are extracted from the correlation coefficients-
coded loadings plot of the OPLS model constructed. The parameters 
R2X and Q2 shown good quality of the generated OPLS model, and CV-
ANOVA results further confirm the model validity (p<0.05) (Figure 
3). Obviously, spectral binning is a rapid and easily automated data 
reduction strategy, especially for large scale of samples. It is applicable 
in evaluating changes between two groups where decisions have to be 
made within a shortly time. And the results of statistical perform on 
the relative bin area percent is better than the absolute bin, primarily 
because the integral area is prone to the influence by the inconsistent 
baseline shifts between samples. In addition, there is an inherent 
drawback related to spectral binning. As shown in S-plot (Figure 3), 
the significant variables are chemical shift values (the small chemical 
shift regions) rather than the chemical identities of specific metabolites. 
The corresponding “bins” that cannot be assigned to the specific 
metabolites are from bins related to spectral peaks with heavy overlap 
from different metabolites. 

For example, in Figure 3, variables with δ around 1.3 and 4.1 
are considered significant because the absolute values of their 
corresponding correlation coefficients are large than the Pearson 
correlation coefficient, and they can be easily identified as lactate due 
to no overlap with other high intensity peaks. However, in spectral 
regions such as variables with δ 2.4-2.5 (glutathione, isocitrate and 
β-alanine with metabolites key 15, 19 and 20, respectively, in Table 1), 

and variables with δ 4.2-4.3 (threonine and malate with metabolites 
key 8 and 16, respectively, in Table 1), many metabolites contribute 
to the same peak. Obviously, these variables cannot be assigned to 
any individual metabolite due to severe metabolites peaks overlapped 
(Table S3).  

Statistical results based on spectral deconvolution

Considering the inherent disadvantage related to the spectral 
binning, spectral deconvolution is further to identify specific 
metabolites responsible for separating the gamma-radiation exposed 
groups from the control group. Multivariate data analysis methods (e.g. 
PCA and OPLS) are performed directly on the absolute concentrations 
of metabolites that are normalized to per milligram of tissue before 
extraction and relative concentration percent that normalized 
to constant sum of all metabolites concentration, respectively.  
Multivariate data analyses are carried out in exactly the same way 
as mentioned before in spectral binning section. PCA scores plots 
(Figures 2c and 2d) has shown clear classification of the control and 
treatment groups based on both absolute and relative concentrations. 

Since no outliers are detected by PCA, all 17 samples are kept for 
OPLS model analysis. In the PCA scores plot (Figure 2), the control, 
3 Gy and 7.8 Gy groups are better separated than those of spectral 
binning results. The OPLS model statistical analysis parameters, 
i.e. the R2X explains the variance in X-matrix and Q2 explains the 
predictive performance, both also show better statistical performance 
than the corresponding spectral binning results (Table S4 in support 
information). Moreover, the p-values (<0.05) from CV-ANOVA 
show that the OPLS models are valid using either multivariate data 
normalization strategy. Based on these statistical parameters, we 
conclude that spectral deconvolution is better than spectral binning 
for dealing with overlapping spectral peaks and for identifying the 
chemical identities of discriminatory metabolites between the control 
and the treatment groups in addition to better separating them.  

The method of normalization to estimated absolute tissue 
concentration is the common method in the field of biology and also 
in metabolomics applications [37,38]. The use of relative concentration 
(i.e., normalization to constant sum) for multivariate data analysis is 
the conventional way when the weight of tissue before extraction is not 
known [39]. However, the relative concentration is prone to take the 
risk of achieving pseudo biomarkers. We will emphasize this pitfall late 
by using the known metabolite concentrations given in Table 1.   

With normalization to constant sum, there are 16 metabolites 
found statistically and significantly different between the 3 Gy exposed 
and the control group (Table S4) while there are 21 metabolites 
found statistically different when the method of normalization to unit 
weight is used on the same data set. Although there are 14 metabolites 
found statistically significant regardless of the normalization method 
used, there are metabolites with no statistical importance associated 
with one method become statistically important with the other 
method. For example, taurine, a high concentration metabolite (with 
metabolite key of 38 in Table 1) is of high statistical significance when 
normalization to unit tissue weight is used but shows no statistical 
importance when normalization to constant sum is used.  The same 
finding applies to 2-oxoglutarate, glutathione, glycerol, glycine, 
malate, and π-methylhistidine with metabolite concentration across 
a wide range. In contrast, o-phosphoethanolamine and sn-glycero-3-
phosphocholine are not statistically significant with normalization to 
unit weight but become statistically important with normalization to 
constant sum.  Similar observations are found for the 7.8 Gy data shown 
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Figure 1: 600 MHz liquid state 1H NMR metabolites spectra of the hydrophilic extracts of spleens excised from the control and the radiation exposure mice. The 
peak intensities were normalized to per unit weight of spleen before extraction. In this plot, spectral regions between different chemical shifts are vertically expanded 
by different times to highlight the peaks of varied spectral intensities. Black: control, red: 3 Gy, blue: 7.8 Gy.

Figure 2: PCA scores plots of spleen tissue extracts from the control (green dots), 3 Gy (blue dots) and 7.8 Gy (red dots) irradiation groups: 

(a) binning results of 1H NMR spectra with normalization to unit weight,

(b) binning results of 1H NMR spectra with normalization to constant sum,

(c) metabolites concentrations obtained by spectral deconvolution and normalization to unit weight,

(d) metabolites concentrations obtained by spectral deconvolution and normalization to constant sum.
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in Table S5, where there are 15 statistically important metabolites with 
normalization to constant sum while there are 22 metabolites with 
normalization to unit tissue weight.  Considering normalization to unit 
weight tissue mass is the gold standard for traditional biology, using 
the method of normalization to constant sum should be very careful 
due to the following potential shortcomings. (i) Metabolites that are 
statistically important by natural may be overlooked or missing; (ii) 
There may be pseudo biomarkers mistaken as up or down regulated in 
biological pathways. Therefore, in the following we will use the method 
of normalization to unit weight of tissue mass to discuss the statistically 
important metabolites and relate them to the biological pathways.  Also 
to simplify the discussion, only the metabolites that are statistically 

important to both the 3.0 Gy and 7.8 Gy groups when compared with 
the controls are discussed below. 

It can conclude from the Table 1 and Table 2 based on the estimated 
absolute metabolite concentrations in tissues that compared with the 
control group, in the radiation groups the concentrations of ADP is 
decreased statistically and significantly, while the concentrations 
of leucine, 2-aminobutyrate, valine, lactate, arginine, glutathione, 
2-oxoglutarate, creatine, tyrosine, phenylalanine, π-methylhistidine, 
taurine, myo-inositol, glycerol and uracil are increased statistically 
and significantly. All these statistically significant changed metabolites 
can be considered as potential biomarkers of metabolism disturbance 
induced by gamma radiation in spleen. 

Figure 3: OPLS scores (left) and coefficients-coded loading plot (right) of the model discriminating the control (green dots) and the radiation 
(blue dots) groups. 

(a) Data derived from binning results of control and 3 Gy and normalization to unit weight,  

(b) Data derived from binning results of control and 7.8 Gy and normalization to unit weight,

(c) Data derived from binning results of control and 3 Gy and normalization to constant sum,

(d) Data derived from binning results of control and 7.8 Gy and normalization to constant sum.

CV-ANOVA results gave p values of 0.095, 0.046, 0.02 and 0.005 for models (a), (b), (c) and (d), respectively. 
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Discussion
It is known that gamma irradiation damages DNA via double strand 

break, induces oxidative stress [40] and increases protein turnover [41] 
(Table S6). The genes in DNA encode protein molecules that are the 
"workhorses" of all cells, carrying out all the functions necessary for life. 
Such as almost all enzymes, including those that metabolize nutrients 
and synthesize new cellular constituents, are proteins [42]. The 
metabolites are the end or intermediate products of cellular regulatory 
processes and most of biochemistry reaction catalyzed by enzyme [43]. 
So the gamma radiation damaged the DNA double strand and induced 
the metabolic disturbed.

In this study, it is shown that the 3 Gy and 7.8 Gy irradiation groups 
are separated from the control group based on PCA analysis. Sixteen 
metabolites have been found statistically different between the control 
and the treatment groups. Up-regulated metabolites included leucine, 
2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, 
creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myo-
inositol, glycerol and uracil. Down regulated metabolite is ADP. 

Clearly, many of the statistically significant metabolites in spleen 
arising from gamma-radiation damage belong to the amino acid 
family, including leucine, valine, arginine, tyrosine, phenylalanine, 
π-methylhistidine and taurine, etc.  The up regulation of leucine, valine, 
arginine, tyrosine, and phenylalanine have been previously attributed 
to the result of DNA double strand break and double strand break 
induced mutation in codon [44], and the increased protein turnover 
will release of these amino acids [45].  The carbon skeletons of leucine 
and tyrosine are degraded to produce acetyl-CoA that enters into the 
critic acid cycle. It has been reported that leucine is capable of protecting 
animals against oxidative stress [46]. Tyrosine can be used as an 
effective radio protector against protein damage [47]. The unmodified 
tyrosine could protect DNA against radiation induced strand breaks 
[48]. Phenylalanine is a precursor for tyrosine that yields fumarate into 
the citric acid cycle by a specific organic catalyst called phenylalanine 
hydroxylase. A genetic defect in phenylalanine hydroxylase has been 
reported as the most common cause of elevated levels of phenylalanine 
[49]. The carbon skeletons of valine can be combined with other amino 
acids to yield succinyl-CoA, an intermediate of the citric acid cycle. The 
increase of valine level reflects radiation induced valine-rich protein 
breakdown and inactivate some enzymes, regulating pathway that 
produce succinyl-CoA [50].  Arginine plays an important role in cell 
division, removing ammonia from body and immune function; the 
radiation can induced immune dysfunction [51]. The carbon skeletons 
of arginine enter the citric acid cycle as 2-oxoglutarate. Taurine is an 
organic acid widely distributed in animal tissues and the regulation of 
oxidative stress [52]. Glutathione is the major endogenous antioxidant 
in animal cells, and can be used in metabolic and biochemical reactions 
such as DNA synthesis and repair [53]. Creatine is an important 
substrate of creatine kinase that constitutes a complex cellular energy 
buffer. The administration of creatine stabilizes the mitochondrial 
creatine kinase and prohibits opening of the mitochondrial transition 
pores [54]. It has been reported that the administration of creatine can 
protect radiation exposed mice from increasing in biochemical indices 
of oxidative stress [55]. Therefore, creatine has been suggested as a 
new therapeutic drug for treating gamma radiation. Oxidative stress 
can induce tryptophan metabolism disturbance and the increased 
tryptophan level could attenuate the oxidative stress of the spleen [56]. 

Other metabolites that show statistically and significant differences 
between the control and the gamma-radiation exposed groups are 
related to the energy metabolism of the citrate acid cycle, including 

2-aminobutyrate, 2-oxoglutarate and lactate with all of them found 
up-regulated.  The increased 2-aminobutyrate indicates that the cells 
suffer oxidative stress [57]. 2-oxoglutarate plays a critical role in DNA 
double strand break synthesis that damaged by the irradiation. A kind 
of DNA repair enzyme is a 2-oxoglutarate dependent Fe2+ binding 
dioxygenase that removes methyl lesions from DNA. Formation of a 
fully folded and the catalytically competent enzyme only occurs when 
both 2-oxoglutarate and Fe2+ are bound [58]. Gamma radiation induces 
energy metabolism disturbance, resulting in high levels of lactate 
production. Lactate is then transferred from these glycolytic fibroblasts 
to adjacent cells and be used as fuel for oxidative mitochondrial 
metabolism [59].

Oxidative stress causes the inactivation of several key enzymes 
so that the inhibition of glycolysis and beta-oxidation leads to the 
metabolism towards glycerol production [60]. Irradiation induces 
damage to DNA via double-strand breaks, oxidative base lesions in 
DNA are mainly repaired by base excision [61]. Uracil is the main 
substrate of uracil-DNA glycosylases. The increased uracil is the 
result of DNA repair [61]. Myo-inositol is a versatile compound 
and plays an important role in generating diversified derivatives 
upon phosphorylation. Phosphatidylinositol form one such group 
of myo-inositol derivatives that act both as membrane structural 
lipid molecules and as signals. The increased myo-inositol indicates 
synthetized cell membrane that is damaged by irradiation. The energy 
metabolism disturbance and the DNA damage repair need more ATP, 
resulting in a decreased ADP level [62].   

Conclusion
We have shown that the combined application of 1H NMR 

metabolomics and multivariate data analysis (e.g. PCA and OPLS) is 
a powerful tool for exploring gamma irradiation induced metabolites 
changed in mouse spleen (Figure 4). Both PCA and OPLS shown that 
the groups exposed to whole body 3.0 and 7.8 Gy radiation at 4 days 
post exposure are well separated from the control group. A total of 61 
metabolites with estimated absolute concentration in spleen tissues 
ranged from 20 μM to 28.26 mM are identified in the hydrophilic 
extracts of spleen. Various data pre-process methods are investigated, 
including spectral analysis involving spectral binning and spectral 
deconvolution, and normalization methods involving normalize to 
constant sum or normalize to unit weight. It is found that spectral 
deconvolution offers better statistical results than spectral binning 
for identifying the potential biomarkers in mouse exposed to gamma-
radiation. While the method of normalization to tissue weight (i.e., 
the estimated absolute concentration) generate more metabolites that 
are statistically important than those the constant sum. Normalization 
to constant sum is also demonstrated at the risk of achieving pseudo 
biomarkers that could be mistaken as up or down regulated metabolites 
in biological pathway analysis. Using the combination of spectral 
deconvolution and normalization to unit tissue weight, it is found 
that gamma radiation induced metabolic changes in mouse spleen 
tissue, resulting in statistically and significantly up regulated leucine, 
2-aminobutyrate, valine, lactate, arginine, glutathione, 2-oxoglutarate, 
creatine, tyrosine, phenylalanine, π-methylhistidine, taurine, myo-
inositol, glycerol and uracil, and statistically and significantly down 
regulated ADP. These statistically significant changed metabolites may 
be potential biomarkers for gamma radiation creature in spleen.      
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