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Abstract

We classify, up to isomorphism, the 2-dimensional algebras over a field K. We focuse also on the case of
characteristic 2, identifying the matrices of GL(2, F,) with the elements of the symmetric group 3 ,. The classification is
then given by the study of the orbits of this group on a 3-dimensional plane, viewed as a Fano plane. As applications,
we establish classifications of Jordan algebras, algebras of Lie type or Hom-Associative algebras.
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Introduction

An algebra A over a field K is K-vector space equipped with a
product which corresponds to a bilinear map on A with values in A.
For a given dimension, one of the basic problems is the determination
up to linear isomorphism of all these algebras. Sub classes of algebras
where widely studied. These subclasses where often obtained setting a
quadratic relation on y. Among other examples of such classes are Lie
algebras (in this case y is skewsymmetric and satisfies Jacodi identity),
associative algebras, Lie-admissibles algebras, Pre-Lie algebras in
particular. In all these examples, classifications where established in a
general frame work, that is, with no other hypothesis on these classes and
only in very small dimensions. For example for Lie algebras, we know
the general classifications up to the dimension 6. In bigger dimension
we impose additional algebraic properties if we hope to continue this
classification. For example simple Lie algebras are fully classified since
the work of Killing and Cartan, in any dimension. Unfortunately it is
more and less the only solved case. If we consider complexe nilpotent
Lie algebras, the classification is known only up to the dimension 7.
It is the same for the associatives algebras. If we are only interested
in general algebras, the only known cases are the dimension 2 and 3.
It is true that the problem is equivalent to the classification of tensors
of type (2,1) on a finite dimensional vector space. We are then facing
to a basic multilinear algebra problem which is subject to a lack of
informations on the tensors.

Here we reconsider this problem from the beginning, that is in
dimension 2. This work is certainly not the first one of the subject.
There is for example the work of Petersson. Our approach is not similar.
We are not fully interested by the classification up to isomorphism
but by the determination of subclasses, minimal in a certain sense,
which are invariant up to isomorphism. The motivation comes from
the constatation of what happen in greater dimensions for nilpotent
Lie algebras for example In this case, the classification is established in
dimension 7 but quasi unusable in its present forme. This means that
if we have a precise example of nilpotent Lie algebra of this dimension,
it is long and fastidious to recognize it in the given list because most
of the time it is not adapted to the invariants used to established the
classification. Moreover the length of the list can be puzzling. In
greater dimensions, the number of isomorphy classes, the need to
write invariant parametrized families seems to be an unrealistic goal.
Hence the idea to reduce the classification problem to a determination
of invariant classes. This is the aim of this work. However we will
established the link with Petersson’s work. Our approach is quite

basic. In characteristic different from 2, we decompose a tensor y
as a skewsymmetric and symmetric one. Since the skewsymmetric
case is elementary, we classify those which are symmetric modulo
the automorphism group of the associated skeysymmetric law. In
characteristic 2, the problem is equivalent to the determination of the
orbits of the Fano plane modulo the symmetric group. Finally, we use
these results to describe or find again certain classes of algebras whose
a direct approach is rather difficult. In particular, we determine the
2-dimensional Jordan algebras and we find again the results of ref. [1],
the G-associative algebras and the Hom-associative algebras.

We have begun the study of the determination of general algebras
in ref. [2] which was specially an introduction to a more precise work
developed in this paper but with the same idea to describe "minimal"
families invariant by isomorphism rather than a precise list for which
the use is difficult. Recently, we were acquainted with the work of
Pertersson, based on an Kaplansky result which permits to describe
all the algebras from some unital algebras and to give isomorphism
criteria. We try in this paper to look our description in a Petersson
point of view. We note also a recent work, on the same subject of H.
Ahmed, U. Bekbaev and I. Rakhimov [3].

Generalities

Let K be a field whose characteristic will be precise later. An algebra
over a field K is a K -vector space V with a multiplication given by a
bilinear map

w:Vx VoV,

We denote by A=(V,u) a  K-algebra structure on V with
multiplication y. Throughout this paper we fix the vector space V.
Since we are interested by the 2-dimensional case we could assume that
V=K Two K-algebras A=(V,u) and A'=(V,u') are isomorphic if there
is a linear isomorphism,

*Corresponding author: Elisabeth Remm, Universite de Haute Alsace, LMIA, 4
rue des Freres Lumiere, 68093 Mulhouse, France, Tel: 03 89 33 66 52; Fax : 03 89
33 66 53; E-mail: elisabeth.remm@uha.fr

Received July 18, 2017; Accepted July 26, 2017; Published July 30, 2017

Citation: Remm E, Goze M (2017) 2-Dimensional Algebras Application to Jordan,
G-Associative and Hom-Associative Algebras. J Generalized Lie Theory Appl 11:
278. doi: 10.4172/1736-4337.1000278

Copyright: © 2017 Remm E, et al. This is an open-access article distributed under
the terms of the Creative Commons Attribution License, which permits unrestricted
use, distribution, and reproduction in any medium, provided the original author and
source are credited.

J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

Volume 11 « Issue 2 + 1000278



Citation: Remm E, Goze M (2017) 2-Dimensional Algebras Application to Jordan, G-Associative and Hom-Associative Algebras. J Generalized Lie

Theory Appl 11: 278. doi: 10.4172/1736-4337.1000278

Page 2 of 11

V>V
such as;

SpX1)=p' (), AY)),

for all X,YeV. The classification of 2-dimensional K-algebras is
then equivalent to the classification of bilinear maps on V=K? with
values in V. Let {e,,e,} be a fixed basis of V. A general bilinear map y has
the following expression:

(el,e,) ae + fe,,
,u(el,ez) e + Bhe,,
y(ez,el) e + Biey,
ule.e,)=ae +pe,

and it is defined by 8 parameters. Let fbe a linear isomorphism of V. In
the given basis, its matrix M is non degenerate. If we put:

M’l—ld -b
A\l—c a

with A=ad—bc#0. The isomorphic multiplication.

H=fTouo(fxf)

Satisfies,
(e,,el) a'e + e,
(el, 2) a'e + f,e,,
(ez, ]) a'e + fle,,
(ez,ez) a'e + fLe,
With,

o' = (azcx, +aca, +aca, + czaA)%—(azﬂl +acp, +acp, +czﬂ4)£
B = (a o, +aca, +aco, + ¢ 0!4) (a B, +acP, +acp, +c ﬂ4)
o', =(aba, + ada, + bea; + cdzxA)% —(abp, +ad B, + b, + CdﬂA)X

B, =—(aba, +ada, + bea, +cda, )i +(abp, +adp, +bcp, + cdﬂA)%

(1)
o'y =(aba, + bea, + ada + cdaA)% —(abp, +bcp, + ad B + cdﬁA)%
B, =—(aba, +bea, + ada, + ca’m)i +(abp, +bep, +adp, + cdﬂ4)%

o, =(Ve, +bda, + bda, + d2a4)£ ~ (B, +bdp, +bdp,+d* B, )ﬁ

B.=—(b’e, +bda, +bda, +d” a4) +(b°B, +bd, +bd B, +d ﬂA)

These formulae describe an action of the linear group GL(2, K)
on K?* parameterized by the structure constants (oci, /5,')’ i=1,2,3,4 and
the problem of classification consists in describing an element of each
orbit.

Algebras Over a Field of Characteristic Different from 2

We assume in this section that char(K)#2. We consider the bilinear
map y and y_given by:

H(XY) - u(Y,X)
2

w(X,Y)+u(Y,X)

'un(X’Y)z 2

. ou(XY)=

for all X,Ye V. The multiplication y_ is skew-symmetric and it is a
Lie multiplication (any skew-symmetric bilinear application in K* is a
Lie bracket). It is isomorphic to one of the following:

1. ,ulll (el,ez) =e,
2. 12 =0.
In fact, if p_ is not trivial, thus , (e,e,) = ae, + fe, . If a0, we

consider the change of basis:
U v ]
e\ =ae + fe,, e,=a e,

We have 4, (e.¢,)=pu, (ae, + ﬁez,a"ez) =u,(e.6,)=ae + Pe,=¢,.

If a=0, thus =0 and we take:
=—fe.

This gives 1, (€).€’)= 4, (ez, ﬂ el) B Pe,=e, =€, In any
case, if y #0, then it is 1somorph1c to 9.

(. ]
€,1=6, €,

Case 4,(e.e,)=e¢,

Anautomorphism of the Lie algebra (A, H, ) isalinear isomorphism
/€GL(2,K) such that:

F( (X)) = (£(x).£ (1))

for every X,YeA. The set of automorphisms of this Lie algebra is
denoted by Aut( y;) .

Lemma 1: We have:

Aut(/l;)z{M:[g f), a,bek, aiO}-

Proof. In fact, assume that M _[a ZJ is the matrix of the
c

automorphism fin the given basis {e,,e,} . Then,
f(,ul (el,ez)) = f(el) =ae, +ce,,
and,
u (f(el),f(e2 )) = u, (ae, +ce,,be, +de,) = (ad —bc)e,
Then,
=0, a=ad.
But detM=ad#0 so a=ad implies that d=1 This gives the lemma.

Let p be a general multiplication of 2-dimensional K-algebra such

that y_is isomorphic to 4, . Tt is isomorphic to a the bilinear map
(always denoted by y) whose structural constants are given by:

,u(el,el) =ae + fe,,
,u(el,ez) (a2+1)el+ﬁzez,
y(ez,el) ( )e1 + e,
u(eye)=a,e + Bie,.

The classification, up to isomorphism, of the Lie algebras (V,u)
such that y_is isomorphic to 4, is equivalent to the classification
up an isomorphism belonging to Am( ,U;) of the abelian algebras
isomorphic to:

Ius(el’el)z ae + Be,,
fus(el’el) = ,us(ez,el) =, +/Bzez,

M (ez’ez) =a,e + fie,
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In this case (1) is reduced to:

—abp,

p=dp,

ay=a',=ba, +a,-bp

By =Py =abf+ap,,
=(Pa, +2bat, + a, ~ b’ B, - 26° B, —bﬂ4)%,

A= bzﬂl +2bp, + ;.
1. Assume that 8 0.

v
a'| =aaq,

—bp,,
2

e Suppose that K is algebraically closed and consider the

B
isomorphism I RE The isomorphic algebra is such that

0 1
a', =0 and f' =1. We deduce that in this case _is isomorphic to:

ﬂx(el’el):eza
ﬂs(evez) = xus(ez’el) =a,e + fe,
:Us(ezaez) =a,e + fe,.

Then y is isomorphic to:

ﬂl;,/g,au,/& (el’el ) = 62’

’u‘llz’ﬁz»lla.ﬁza ( ) (az + l)el +ﬂ262’

'utlzz,ﬂz,a«/h (62’81) = (az - l)el +pe,
(ee2)=

1
‘uabﬁz’am/fa €6 a6 +ﬂ482’

with (xz,ﬁz,(xA,[SAEK.

. If K is not algebraically closed (for example if K is a finite
field), let K be the multiplicative subgroup of elements a’> with
aeK. In this case y is isomorphic to a Lie bracket belonging to the 4
parameters family:

with a,8,a,8,cK and 1 e K/K"
Ae{-1,1}.

2. Assume f3,=0, 3,#0. In this case (1) is reduced to:

. For example, if K=R, then

lual QY (ewe])
/Ua‘ . (el’ 2) (az +1)el +é,,
le a0, (eZ’el) (0‘2 )el +é,

ﬂ“hazm (ez,ez) =a,e,.

lel’

3. Assume now that S, = f3, =0,a, # 0 . In this case (1) is reduced to:

a\=a
B =p,=0
o', =ba, + , 4

o, =(Pey +2ba, +a, —b,@;)l
a
ﬂ'4 = ﬂ4'

and taking b=—a /&, and a = ¢, ', we obtain @', =0 and o', =1. In this
case, y is isomorphic to:

I CR R

w5 (e.e))=e,

e, 4 (ere)=—¢,

4 (ee)) = e + Be,.

4. Assume now that S, =4, =0,, =0,2a, — S, # 0. In this case,
considering p = —¢ Y ( 2a, - ﬂ4) the Lie bracket y is isomorphic to:

Ha, 5, (€1:6) =0
,um 4(e‘l,ez) (a2+1)e,,
Hy, g, (€200)) = (= 1)e;,
5 (er.0,) = Piey,

5. Assume now that f =4,=0,0,=0,2a, — 3, =0,a, #0. The

Lie bracket H is isomorphic to:
Ha, (€.6) =0,
1w, (e.e,)=(a, +1)e,
ﬂ; (eve)=(e—1)e,

5 —
H, (er.er)=e +2ase,,

a\ =aa,, 6.1f g =p,=0,a,=0,2a, -, =0,a, =0, then y is isomorphic
) 4 .
B =0, to 4, , with f=2a,
a'y=ba, +a,-bp,, . . .
' (3) Theorem 2: Any 2-dimensional non commutative algebras
Br=ap,, isomorphic to one of the following algebras:
1
a'y = (b2a1 +2ba, +a, —2b° B, — b@);, « If K is algebraically closed:
ﬁ'z; = Zbﬂz + ﬁ4~ /‘/lxz Bo sty Jy (e € ): € /‘;,az,m (el’el) =ae,
, +1)e, + pre,, 2 , +1)e +e,,
and taking b=—p,/2f8, and a = B,", we see that y_is isomorphic to: Hor s (@) = (@4 D)et ity | My (e002) (1) +ey
2
ﬂa Pots S (ezael) ( )el+ﬂ262? Hey vy, aA(ez’ 1) (0{2 )el+ez>
/ls (el’el) = alel’ 'ua Basay Py ( ez) a,e +ﬂ4ez /ua, ay,a, (62,82) a,e.
. (e,e)=pu (e,e)=a.e +e,,
( ! 2) ( 2 1) ok 2 /um/i,(el el):el ﬂ23ﬁ4(elae1):0 lu.'sx:(el’el):o’
:u‘v(ez’ez):a‘iel' ,uib/,‘ (ene))=e, /‘21 5 (ene,)=(a,+1)e, yiz (e.e,)=(a,+1)e,
’ e)=-e, 4 e)=(a, -1e, |1 (ey,¢)=(ct, ~1)e,,
We obtain the following multiplication, K being algebraically 'u:"‘” (ene)=—e ﬂ:”” (ene)=(=1)e #; (er) =(a 1)
ClOSGd or not: /u;x,m (62 ez) =ae + ﬂ4ez~ He, p, (ezaez) = ﬁ4eza He, (ezaez) =e+ 2azez
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with «, ﬁieK.
« If K is not algebraically closed:

gotlzvj/fzm.m (ere)= ey,

4"(11'5/12,@,/& (81782) (0!2 + 1)81 +pe,
(pflzjﬁzm,/i. (ez,e]) ( 1)61 + B, ﬂ;,az,% > ,U;m , ,Ll;‘[z’ﬁ4 s ,u; s
Ol s, (€)= e + B,

a,B eK,AecK/(K) .

Let us make the link with the results of Petersson [4]. The main idea
of this work is to construct algebras from unital algebra. Recall that
an algebra A=(V,u) is called unital if there exists 1€V such that pu(1,
X)=u(X,1)=X for any Xe V for any XeV.

Lemma 3: If U, is not trivial, then A is not unital.
Proof. Assume that there exists 1 satisfying (1, X)=u(X,1)=X, then:
0= ,u(l,X)—,u(X,l) = #a (I,X)—ya (X,l) = 2,ua (l,X)

for any Xe V. Then g (1,X)=0 for any X and 1 is in the center of A =(V,
). But if y_is not trivial, the center of A_is reduce to {0}. The algebra
A cannot be unital.

The algebra A=(V,u) is called regular if there exists U,T€V such
that the linear applications:

Ly:X - u(U,X), R:X— u(X,T)

are linear isomorphisms. From ref. [5], for any regular algebra A=(V,u)

there exist a unique, up an isomorphism, unital algebra B=(V,u ) and
two linear isomorphisms f, g of V such that:

w(X.Y)=p,(f(X).g(Y)

for any X, YeV. The algebra B is called the unital heart of A. To
compare Theorem 2 with the Petersson results, we have to determine
the regular algebras. Let us consider the first family. The application
L, is not regular for any U if and only if its determinant is identically
null that is:

a,=-1, a,=-2p,, B, :,Bzz

Likewise R is not regular for any T if and only if its determinant is
identically null that is:

a, =1, a,=2p, :th:ﬂzz-
We deduce that any algebra Aa By = (V ym Faan ) is regular

except the algebras given by:
1

o pyap e (@00) = e H g g2 (G00) =6
ﬂm R (],62):/3262, ‘ullﬁ 25,8 2(81’62) 2e +ﬂzez’
25y (62’61):_231 +Be,, ,Ul/, 2p (32761) B.e,
:( N

2 2
ul/}2 28,2 62’e2) 2B+ Be,. 'ulﬁz 28,12 ezaez)zzﬂzel"'ﬂzez'

1 Let us note that Ail, s, 2p 2 18 left-singular but right-regular and
LA 25

and right singular is called bi-singular. We can summarize the results
in the following array:

is right-singular and left-regular. An algebra which is left

1. 4

1
s ooty and 4

regular except 4’
& P 1.8, 28, 5

LBy 20

2. A] 2,2 18 left-singular and right-regular,

3. All g isright-singular and left-regular,

4. A

a),a,,04

is regular,
3 3
5. A, 4, isregularexcept 4, ,,

3 . ..
. 4, , is bisingular.

A4

. 4 4 4
. 5, is regular except 4, o, 44,47 4,

. A;‘Z'U is bisingular,

A 5, s left-singular and right-regular as soon as f8,#0,
10. A%, is left-regular and right-singular as soon as 8 70,
11. AZZ is regular except for «,=0, 1 or -1,

12. 4 is bisingular,

13. 4 is left-singular and right-regular as soon as §,#0,

14. 4’| is left-regular and right-singular as soon as 3 #0,

We deduce.

Proposition 4: We consider the following algebras,

LA oy with (@.8u008) #(-18.28,.4) or (1,d,,24,,6),
20 A s

3. 4; , with (2. 8,) #(@,,0) or (1,8,) or (-1, 8,),

4. A; with &, # 0,1,~1.

For anyone of these algebras A, there exists an unital K
algebra B,=(V, y ) and linear endomorphisms f,, g, such that the
multiplication of A is given by:

w(XY) =, (f (X)(Y)).

This unital algebra B, is called the unital heart of A. Since B, is
unital, then [5] it is an etale algebra, thatis B ' ® K = K?* where K is
the algebraic closure of A, or B, is isomorphic to the dual algebra defined
by uy(e.e)=uy(e.e)=e, l—l 2 and u,(e,,e,)=0. To find this
heart algebra we use the Kaplansky’s Trick. If A is regular, we consider
Uand Vsuch that L and R, are non singularand /' =L;,g=R;'.The

multiplication p of the heart Bis 4, (X,Y) = y(g(X),f(Y) and the
identity of Bis 1, = u(U,T).

1. Let be A(]l o S
singular. In fact,

[0 az+1j (0 a2—1j
Le, = , Re. =
LB LA

Thus,

-1 (B -a,-1 -1 (B -—a,+1
r=—L e

a,+1\-1 0 a,-1\-1 0

Then the identity element of B, is e, and,

1 2
IUB(el’el) = :UA(g(e])g(el)) = ﬁ(ﬂzel —-e)

and B, is etale. If a,=—1, then we can take U=e, and T=e, as soon as
a,B, %28, If not we take U=e, +e, and T=e,. We have the same calcul
for a=1.

. If a#1 or —1 then L, and R, are not

2.Letbe 4, , . .Thisalgebra is regular. If a #0, then L, and R,

are not smgular and B, is etale.
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Case 4,(¢,¢,)=0 ule.e)=e,
The multiplicatio y n is symmetric. The group of automorphisms of (el ,e 2) e+ pe,,
4, is GL(2,K). Moreover the multiplication writes: ( u(e, ez) ae,.
H(e.e)=ae + fe,, Equation (6) simplifies as:
Hlee,)=ane + ey, y (4ﬂ2a4)+4ﬂ2y+172,32=0. (8)
Hlena)=ae + fre, If we assume that K is algebraically closed, then this equation has
,u(ez,ez) =ae + e, in general two roots. It has no root if $,=0 which is excluded. Then to

We assume that there exists two independent idempotent vectors.
If e and e, are these vectors, then:

u(ene)=e, ule,e)=e,.

We obtain the following algebras:
Hy, p, (e00)) =ei,
/1;’2,/,2 (el,ez) =a,e + e,
/122,/,2 (e.0,)=¢,

Remark that if any element is

u(ee,)=p(e,,e)=0.1In fact:

idempotent,  thus

,U(el tee te)=ete, = ﬂ(elsel)+ ,U(ez,ez)+2/1(el,ez)
In the general case, if ael+be2 is an idempotent with ab=0, then a
and b satisty the system:
a’ +2aba, =a
b’ +2abp, =b
If 4a2ﬁ2:1, then the system has solutions as soon as &, =, =—
this case we obtain the multiplication 4!, and for any a, the vectors
272
ae,+(1-a)e, are idempotent. If 4a 8,#1, the vector:
1-2 1-2
aZ el 4 ﬂZ
1-4a,p, 1-4«, ﬂz

is an idempotent and the only idempotents are e, e, and v. The changes
of basis {e;,v} or {e,, v} do not simplify the number of independent
parameters.

We assume that there exists only one idempotent vector. If e, is
this vector, thus u(e,, e )=e,. If we consider a vector v=xe +ye, such that
u(v,v)=v, then x and y have to satisfy:

{xz +2xya, + y'a, =x, 5)

298, +y*Bi=»

If we assume that y#0, the second equation gives as soon as f3,20,
x=122P4 and thus:
2B

2
V(B -4 B, +4Ba, ) + y (4., + 2B, B, —28,) +1-2,=0.  (6)
Let us consider a change of basis which preserves e that is,
e =e,
. (7)
€', =be +de,,
with d#0. Since in this new basis we have B, =2bB,+dp,, we can
find b such that f', =0 . Then we can assume that 8,=0.

If moreover «, 70, taking d = az’l, we obtain @', =1 and we have
the algebra:

have only one idempotent, 0 must be the only root which is equivalent
to a,=0 and f3,=1/2. We obtain the following algebra:

1u7(el5el):el5
1
,U7(elsez):el +562’

1 (ey,e,)=0.
If K is not algebraically closed, then we have no idempotent other

than 0 if &,=0 and 3,=1/2 and we obtain the previous algebra 4’ or if
2 (4,322054) +4p,y+1-2, is irreducible in K. We obtain:

/‘; (el’el) =é,
/4; (el’ez) =+ fe,

,u; (ez’ez) =a,6;,

with 3’ (4,322054 ) +4p,y+1-2p, irreducible in K (so a #0).

If «,=0 and if K is algebraically closed, we consider in the change of

basis (7) defined above, b=0 and d = \/Z if o 20:
(el,e,) e,

,u(el,e ) Bse,,
u(eye)=e.

There exits only one idempotent if and only if §,=1/2. We obtain
the following algebra:

=

tug(el’el):el’

1
ﬂs(ewez) = 5623

1 (ey.e,)=e,.
If a,=a,=0, we have only one idempotent if and only if 28,#1. We
obtain:
@ (e.e)=e,
o (el,ez) = Be,, (ﬂz # 1/2)
1’ (ey,e,)=0.
Assume K not algebraically closed and «,=0. If the equation d’a,

has a root in K, we find y®. If not, let )LZG]K/(]K')2 such that d2a4:/12.
In this case we have only one idempotent if and only if (28,=1) or

(1_2ﬁ2 ¢ (K‘)z) . We obtain:
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i (ene)=e, 1 (e.e)=e,

1 (eney) = Brer, 1-25, 2 (K'), 1" (ee,) =0,

1y (e,,e,) = A 1" (e,,6,)=0.

Assume now that 8,=0. Then (5) implies y°B,=. If =0, then y=0 If ¢, #0 and y = (2a, )" then x satisfies the equation:

and we have: 5 |

x2+[2}c=0 ©)
ﬂ(epe]):ela a, 2a2

ﬂ(elaez) =058,
,u(ez’ez) =6

The change of basis ¢, =¢,¢', =be, +de, gives @', =da,,a, =d"a,.
We obtain:

1 (ee,)=a,e.

if «,#0. Assume now that « =0 and & #0. If K is algebraically close, we
obtain:

u'(e.e)=e,
y”(el,ez)—O,
u'(eye)=e,
,u}el(el,e]):el,
}el(el,ez):o,
1y (er6,) = Aoe,

with A, e K(K")% If «,=0,

ﬂlz(ewel):el’
/112 (el,ez) =0,
u” (ez,ez) =0

No vector is idempotent. If there exists v with u(v,v)=0, thus we can
consider that pt(el,el):e2 that is,

lu(el’el) =6,
:u(el’ez) = :u(eZ’el ) =ae + e,
u(eye)=a,e + e,

1. If a,=0, that is u(e,e,)=B,e, then the vector ¢, =p,"e, is
idempotent as soon as 8,#0. Then the hypothesis implies 8,=0. Let be
v=xe +ye,. The equation u(v,v)=v is equivalent to:

x’e, + 2)6)/(0526l + ,Bzez) =2xya,e + (xz + 2xyﬂz)e2 = xe, + ye,.

that is,

2xya, =x, X*+2xyB, = y.

If a,=0, then x=y=0, and no elements are idempotent. We obtain
the algebras, corresponding to 3,#0 or 3,=0

/113(31=el) =6,
/‘13(31=ez) =6,
/t”(ez,ez) =0.

If K is algebraically closed, such equation admits a non trivial
solution. This is not compatible with our hypothesis. Assume that K
is not algebraically closed. If 8,0, the change of basis ¢, = S,"¢, and

€', = 3, e, permits to consider B,=1 and the (9) becomes,
xz +LX_L:(X+L)Z _%
a, 2a, 2a, 4a;
This equation has a non solution if 1+2d, ¢ (K)* where
(K)*={A%AK}. We obtain the algebras:
e (el’el) =6,

! (el’ez) = +e, 2a,+1¢(K),

ﬂIR“ (ezvez) =0,

and,

'u}1?4,2 (el’el) =6,

:ulle“ (el’ez) =me 20,¢ (K)Za
w’ (ez,ez) =0.

2. If a#0 the vector v=xe +ye, is idempotent if and only if:

2xya, + y'a, = X,
X2y, + ¥ =y

2
Then x=—2-%
1-2ya,

implies y*a,=0 that is y=0 and in this case x=0 and v=0 . We deduce
that y is a root of the equation:

. Let us note that 1-2ya #0 because 1-2ya,=0

‘a ‘a
|
1-2ya, 1-2ya,
that is:

-1+ y(4a, + ﬂA) + y2(2a4ﬂ2 —dai - 4azﬁ4) +y° (aj —da,a,p, + 40{22ﬂ4) =0.

If K is algebraically closed, this equation admits always a solution
except if:

4a,+ f, =0,
2a,f3, —4a; —da, B, =0,
a; —da,a,p, +4a B, = 0.

Then g, =—4a,.a,, =—6a;,0a; =-8a; . We note that 8,=0 implies,
if the characteristic of K is not 3, a,=a,=0. From hypothesis, we can
assume that 8,#0 and the change of basis ¢ =ke,,¢', = k’e, which
preserves the condition e e =e, changes f3, in kf3, and we can take f3,=3.
Then g, =-202,a? =4a} =—8a} » then a,=—2 and «,=4, §,=8 and we
obtain the algebra:

ue (elrel) =6,
u” (el,ez) =-2e, +3e,,
u” (ez,ez) =8¢, +8e,.

J Generalized Lie Theory Appl, an open access journal
ISSN: 1736-4337

Volume 11 « Issue 2 + 1000278



Citation: Remm E, Goze M (2017) 2-Dimensional Algebras Application to Jordan, G-Associative and Hom-Associative Algebras. J Generalized Lie

Theory Appl 11: 278. doi: 10.4172/1736-4337.1000278

Page 7 of 11

Let us note that if the characteristic of K is 3, then aﬁ2=0 and
,=0. This gives a,(a,+f,)=0 and af + 40522ﬂ4 =0 . Since a,=0 implies
a,=0 and 4,+f,=a,+f,=0 we obtain f,=2a, and «; =2a,, =, .Bya
change of basis we can take a,=1 and we obtain the algebra:

15

1u(3)(el’el) =6,
3

15

H )(61762) =é
,u(];) (ez,ez) =e¢ +2e,.
which correspond to y,, in characteristic 3.

If K is not algebraically closed, we have to consider all the algebras
for which the polynomial:

Py () =1+ y(4a, + B,)+ (20,8, - 403 —4a, B, ) + V' (o] —de, B, + 42 3,) (10)

has no root this is equivalent to say that P, is irreducible. If we
consider the coefficient of y*, that is ¢, (A) =a; —4aa,p, +4alp,, it
is equal to the discriminant of the determinant of the endomorphism
L, that is g,(A)=Disc(det(L,)). We deduce:

Proposition 5: The algebra A is regular if and only if P, (y) is strictly
of degree 3.

It remains to examine the case y(v,v)=0 for any v. That is:

u(e,e)=0,
/1(61762) =a,e + Be,,
y(ez,ez)zo.

If & 8,#0 we can find some idempotents. In all the others cases, we
have no idempotent. We obtain:

,Um(elael) =0,
y”’(el,ez) =é,
ue (ez’ez) =0,

and
u" (el,el) =0,
u’ (elaez) =0,
" (ez,ez) =0.

Theorem 6: Any commutative 2-dimensional algebra over an
algebraically closed field is isomorphic to one of the following:

D I e
/‘6(61’62):a261+ﬁ262a /u7(el’ez):el+562’ /‘S(elaez)zgep
6 —

H(ee)=ex i (e,,6,)=0. 1 (ey0)=e,.
,ug(el,el)fel, :u]O(el’el):el’ /’lll(el’el):el?
ﬂg(elaez):ﬂzez’ (ﬂ2¢1/2), ylo(el,ez):e], #H(el’ez =0,
ﬂg(ezsez)zo ,um(ez,ez):%el ;zll(ez,e'2 =¢
ﬂlz(el’el):el’ luw(el’el)_eZ’ :L‘M(elsel) €
ylz(el,ez):o, B ,u”(el,ez):ez, ,u”(e,,ez):O,
ylz(ez,ez):o ,u”(ez,ez):O ,u”(ez,ez):O.

1’ (e.e)=e, 1 (e,e)=0, [u"(e.e)=0,
y's(el,ez)=—2e1+3ez, Y7, (el,ez)zel, /117(6‘1,62):0,
ﬂ15(€2,€2)=—8€1+862 ,u“’(ez,ez)=0 /117(62,62)20

If K is not algebraically closed, we have also the following algebras
where A, e K/(K")*

”z'l(el’e‘):e;’ 42 (809 e, € S )=
ﬂfe"(épeze)¥5€2, i (ene)=poeys 1-28, (K%, ¢ (' (1 5)=0,
l‘;l(ez,ez):ﬂ"zel- 'M;J(éﬂeg)%ﬂﬁel‘ e }el( 25 2):2'2 1
ﬂ/l;'»l(el’el):ez’ ﬂr’z (elﬂel):ega

y;;” (el,ez) =ae +e, 2a,+1¢ K?, y,':’z (el,ez) =ae 2a,+1¢ K?,
He"'(€:,€,) =0 i (e,6,) =0.

5 (e],ez —a,e, +ﬂzez’PA(y) without roots

15,1 _
Hp (ez’ez) =a,e + fe,.

Let us examine the property of regularity for these algebras. Since
they are commutative, the left and right regularity are equivalent
notions. Computing directly the determinant of the operator Lxe, +ye,
we deduce in the case K algebraically closed:

1. The algebras 4°=(V,u,), 4 =(V,u,), 4*=(V, 1), A° =(V, 1), A* =(V. 15
are regular,
2. & =(V,py) is regular if B #0,

3. The algebras 4" =(V,u,), 4% =(V,u,), 4° = (V. 11,), A =(V,p1,), 4° = (V. 1)
and A" =(V, ) are bisingular.

Algebras Over a Field of Characteristic 2

Let I be a field of characteristic 2. Assume that F=F,. If A is a
2-dimensional F-algebra and if {el, ez} is a basis of A, then the values of
the different products belong to {el, €, el+e2}. If f is an isomorphism of
A, it is represented in the basis {el, ez} by one of the following matrices:

10 0 1 10
M, = , M, = , M, =

0 1 10 Tl
[P N (I O
lo 1) 7l 1) Lo

Each of these matrices corresponds to a permutation of the finite
set {el, e, e3:el+ez}. If fact we have the correspondance:

GL(A4) O,
M, 1d
MZ T]Z
M, T3
M, To3
M, c

M, ?

N

where _ is the transposition between i and j and c the cycle {231}. In
fact, the matrix M, corresponds to the linear transformation fz(el):ez,
fle,)=¢, and in the set (e,, e,, e,) we have the transformation whose image
is (el, e, e3) that is the transposition T, The matrix M, corresponds to
the linear transformation f,(e,)=e, +e,, f(e,)=e, which corresponds to the
permutation (e3, e, 61) that is 7,,. For all other matrices we have similar
results. We deduce:

Theorem 7: There is a one-to-one correspondance between the
change of F-basis in Aand the group ...

If we want to classify all these products of A, we have to consider
all the possible results of these products and to determine the orbits of

the action of 2. More precisely the product t(eye) is in values in the
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set (e, e,, e,=e +e,). If we write u(e, ej):ael+be2+ces, thus the matrix (a,
b, ¢) is one of the following:

R, = (0,0,0) =0,R = (1,0,0), R, = (0,1,0), R, = (0,0,1)
Let us consider the following sequence:
ﬂ(elael)’/l(elsez)’/l(ezﬂel)’ﬂ(ez=ez)~/4(e|=ez)s/‘(ez:ez)u”(ezael):/”(epez)uu(epez))

As ﬂ(€1,€3)=y(€|,€|+€2), if ,u(el,el):R‘. and lu(el’ez):Rj
u(e.e)=R +R ; with the relations:

R+R =0, R+R =R,

then

for i, j, k all different and non zero. Thus the four first terms of this
sequence determine all the other terms. More precisely, such a sequence
writes:

(R.R.R,.R.R+R.R +R.R+R,R +R.R+R,+R +R,)

Consequence: We have 4'=256 sequences, each of these sequences
corresponds to a 2-dimensional F-algebra.

Let us denote by S the set of these sequences. We have an action of
2.,on S:if e, and s, thus s'=cs is the sequence:

”(eam’eam)’”(eatlwea(z))’”(ecr(zveo(l))’/‘(eam’ea(z))’”(ecr(l)’ea(s) )
“ (ea(z>’ea<3))’” (ea(weau))’”(eawea(z))’” (eau)’ec(z))

with lu(e“(,.),e{r(,)) =R_,  When u(e.e;)=R, and R0

If R,=0, then ,u(eg(i),eg(/.))=0. The classification of the

2-dimensional IF-algebras determination
of the orbits of this action. Recall that the subgroups of X, are

G, ={ld},G, ={Id.7,,},G, ={ld.7,;}.G, = {Id,7,,},G, = {Id,c.c’},G, = %,.

corresponds to the

1. The isotropy subgroup is 2. In this case we have the following
sequence (we write only the 4 first terms which determine the algebras:

s, = (0,0,0,0)
5, = (R, Ry, Ry, R, )
Recall that pu(e,e)=R, means u(e,e)=e pule,e,)=R, means
(e, e,)=e, and so on.
2. The isotropy subgroup is G,={Id, ¢, c’} We have only one orbit:
K (’)(s)
§3 = (RpRz’RzaRl) 53’(R2aR1’RIaR3)
3. The isotropy subgroup is of order 2.
s O(s)
=(0,R,R,,0) s4,(R,Ry\R,,0),(0, R, R, R, )
(0,R,,R,0) s5,(R,R,,R;,0),(0,R,, R, R,)
(0,R37R3,0) 5‘6,(0,R,,Rl,O),(O,RZ,RZ),O)
(
(
(

R,0,0,R,) s,,(R,R,,R,,R,),(R.R,R,R,)
R,R.R,,R,) s..(0,R,0,R,).(R,0,R,,0)
R,R,,R.,R,) 5,,(0,0,R,R,),(R.R,,0,0,)

510 =(R,,0,0,R ) 5,0,(R, Ry, Ry, Ry ), (R;, Ry, Ry, R))
(Rp,R,R,,R) 5,,(0,0,R,R;),(R;,R,,0,0)
(R, R,,R,R) 5,,(0,R,0,R,),(Ry,0,R,,0)
(R,,R,.R,,R)) s,5.(R. R, Ry R, (R R, R R,)
(R,0,0,R;)  5,4,(0,R,R,R),(R,,R,,R,,0)
(
(
(

s,
SS
S
S7
Sg
S,

R}’RI’RZ’RB) 515’(R1~RzaR3’R1)a(RzaR3,R|aR3)
Rs’Rz>RlaR3) 515’(R|’R35R2’Rl)’(RzaRszaRz)
= RB,Rl,RB,RB) S”,(O,O,O,Rl),(RZ,O,O,O)

S
Slz
Si3
Siy
SlS
Si6
S

4. The isotropy subgroup is trivial. In this case any orbit contains 6
elements. As there are 256—-46=46=210 elements having 2., as isotropy
group, we deduce that we have 35 distinguished non isomorphic classes.

Conclusion

We have 52 classes of non isomorphic algebras of dimension 2 on
the field F,.

Applications : 2-dimensional G-associative and Jordan
algebras

G-associative commutative algebras

The notion of G-associativity has been defined in ref. [4]. Let Gbe a
subgroup of the symmetric group 2... An algebra whose multiplication
is denoted by y is G-associative if we have:

z&g, (U)”(”("am”‘a(z))”‘aw) = M3y ) = 0

where £(0) is the signum of the permutation . Since we assume that
y is commutative, all these notions are trivial or coincide with the
simple associativity. Now, if the algebra is of dimension 2, then the
associativity is completely determined by the identities:

ﬂ(ﬂ(ewel)’ez)7#(‘31::“(61782) =0, ,u(,u(e,,ez),ez)7y(e,,u(ez,e2):0

We deduce that the only associative commutative 2-dimensional
algebras are:

o for (a, B,) €{(0,1),(1,0),(0,0)},

s forf=0orl,

. ‘ulZ) Mlé’ ‘ul7 .

if K=R: ,ulf, for $,=1 and A=—1.

We find again the classical list [6].
G-associative noncommutative algebras

Let us consider now the noncommutative case. From Theorem 2,
the multiplication y is isomorphic to some y'i=1,---,5 (we consider
here that K is algabraically closed). Let Ay be the associator of y, that
is A4, = po(u®Id)—po(ld ® i) and p is associative if and only if Au=0.
The examination of this list allows to find the classification of the
2-dimensional noncommutative associative algebras: these algebras are
isomorphic to one of the following:

2. ', thatis

Now, foranynonassociativealgebra, weexamine the G -associativity.
Note that all these algebras are Lie-admissible, that is 3. -associative.
We focuse essentially on the G,-associativity, G,={Id, 7,,}, because
we deduce immediately the affine structures on the associated Lie
algebra . Then we compute for any algebra 4, (e,e,,¢)—4,(e,,¢.¢)
and 4,(ee,.e,)—4,(e,.e,e,). We deduce that #;2,ﬁ2>a4,ﬁ4 is G-
associative if and only if 8,=a,=0 and a,=-1, B,=—4. The algebras y*
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. 4 .
and 4’ are never G,-associative, 14; ; is G, -associative for a =—1 or
. 5
(ﬁA:(xz—l). Likewise, 4;

23

is Gz-associative for a=—1ora=1.

Proposition 8: Any 2-dimensional noncommutative G,-associative
algebra is isomorphic to one of the following:

4 . . o an
L. 4, or uf), thatis y is associative,

€e =6,
2. 4 thatis 192~
. atis
Hoi00-4 e, =—2e,
ee, =—4e,.
ee =0,
4 _ |ee, =0,
3. Hoip, thatis )
€6 =—2¢,
e,e, = fe,.
ee =0,

ee, = (az + 1)61,

ee = (a2 - l)el,

ee, = (0(2 + l)ez.

4. 4, , . thatis

ee =0,
. ee, =2e,
5. 4 thatis ee =0,

ee, = e +2e,.

ee =0,
. |ee, =0,
6. ﬂfl thatis { 2
ee, =—2e,

ee, =e —2e,.
Jordan algebras
In a Jordan algebra, the multiplication y satisfies:
()= ()
w(p(vow), 1 (v,v)) = @ pa(w, 1 (v,))

for all v,w. We assume in this section that K is algebraically closed and
that the Jordan algebra are of dimension 2. Thus the multiplication y is
isomorphic to y, for i=11,---,16. To simplify the notation, we will write
vw in place of u(v,w). If v is an idempotent, thus v*=v and the Jordan
identity gives:

v(vw)=v(vw)

for any w, that is, this identity is always satisfied.

Lemma 9: If v, and v, are idempotent vectors, thus:

() (v +v2)w) = (v + 9, ) () w)

for any w.

Proof. In the Jordan identity, we replace v by v, +v,. We obtain:

Vi () +2(v ) (0 + vy W)+ (mw) =, (vjw) +v, (vfw) +2(v +v,)((v) w)
Since v, and (v,) are idempotent, this equation reduces:

(vv, )((v1 +v, )w) =(v + vz)((vlvz)w) .

Proposition 10: If v and v, are idempotent vectors such that v v,
and v,+v, are independent, thus the Jordan algebra is associative.

Proof. Let x and y be two vectors of the algebra. Thus, by hypothesis,
X=X, + X, (y +v,) and y =y, +y,(v +v,). Thus:

() =3, (v (2)w) + (v 0 ) (0w ) (044 w2 ) w) a0 (4 02) (0 +0)w)
and,
x(yw) =y (aw)
By commutativity we obtain:
x(yw)=x(wy) =y (aw) = (xw)y
this proves that the algebra is associative.
If y is given by,
ule,e)=e,
u(e,e)=ae + pre,,
uleye)=e,

the Jordan algebra admits two idempotents e, and e, Since
ee, =ae + fe,» the vectors ee, and e te are independent if and only
if & #f,. In this case the algebra can be associative and we obtain the
following associative Jordan algebra corresponding to:

L a=1,3,=0

2.a=0,4,=1

These Jordan algebras are isomorphic. This gives the following
Jordan algebra:

ee =e,

ee, =ee =e
1€, = 6,6, =€
J, =

ee, =e,.

{f ee, and e +e, are dependent, that is e e,=A(e,+e,), then A=—1

or - or 0. If e,e,=0, the product is not a Jordan product. If A=—1 the
1
product is never a Jordan product. If é= 5> we obtain the following
Jordan algebra,
€e =e,
1

ee, =e,e = E(e1 +e,)

J_

L=
ee, =e,.

u is given by:

;u(el’el)zel’
/u(elrez) = Be,
u(ey,e,)=0.

This product is a Jordan product if 8,=1 or 0. We obtain:

ee =e;, ee =e;,
ee, =ee =ée
16, = 6,6 2
J3: R J4:
=0
ee, =0.

ee, =ee =0

ee, =0.

If y=u,, we have also a Jordan structure,
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€e =¢

ee, =ee =0
Js =

e,e, =0

2%2 T

y=0, we have the trivial Jordan algebra.
« If K is not algebraically closed, we consider,
My’ (elrel) =é

/11852 (61762) = Bey,
Hy (ezaez) =1e,

1-28, & (K')?,

We obtain a Jordan structure:
e =¢
€e, =ee =¢

Jo =
=Ae
ee, -

We find the list established in ref. [1].
2-dimensional Hom-algebra

The notion of Hom-algebra was introduced to generalized form of
Hom-Lie algebra which appeared naturally when we are interested by
the notion of g-derivation on the Witt algebra. In dimension 2, this
notion is equivalent to the classical notion of Lie algebra. In dimension
3, we have shown that any skew-symmetric algebra is a Hom-Lie
algebra. Then our interest concerns Hom-associative algebra [7,8], that
is algebra A=(V,p) such that there exists fe End(V) satisfying the Hom-
Ass identity:

u(u(X.Y). £ (2)) = u(f(X).u(Y.Z))

for any X, Y, ZeV. Using previous notations, we consider the
algebras A%/ and its opposite A® . Their multiplication law are
respectively defined by:

:”R,/‘(X’Y):“(X’f(y))’ ”L,/’(X’Y):”(f(X)’Y)

and the Hom-Ass identity can be written:

#R‘_,-O(,U®]d)_h,/ o(Ido,u):O.

Assume now that the algebra A is regular. In this case, assuming
that the field is algebraically closed, there exists an unital algebra whose
product is denoted X-Y and two endomorphisms u and v of V such
that:

,u(X,Y)zu(X)w(Y)
Then,
Hr (XY ) =u(X)ve f(Y), gy (X.Y)=ue f(X)-v(Y).

Then the Hom-Ass identity becomes:

u(u(X)-v(Y))-VOf(Z)—u Of(X)-(v(u(Y)-v(Z))=0.
Maybe, it is better to look the Hom-Ass identity from the previous
list. Assume that A is non commutative.

L= Afl Bosays P
satisfying the Hom-Ass identity. To simplify notations we write XY for

#(X,Y) and [X,Y] for u (X,Y). We have in particular:
(ele] )f(el) elel I:eza € )] =0.

—(V,,u‘), let f be an endomorphism of V

We deduce fle)=ae, Likewise we have
fle)=k(a e, +B,e,). Other identities give :

(@) (ee,)f(e)—f(e)(ee)=0 implies a=0 or e,e,=0.

(b) If a=0, then (ee,)f(e,)(e,e)=0 implies fle,)e,=0 and (e e,)
fle,)—fe,)(e,e,)=0 implies e fle,)=0. Then [e,, fle,)]=0 and fle,)=ke
This gives 0=f(e,)e,=be,e, that is f=0 or e,e,=0. But we have seen that
f(e,)=k(a,e + Be,) - then inall the cases, f=0.

(c) If a0, then ee,=0 and f(e ) 0. We deduce that (e,e,)f(e)
(e,e,)=0 implies (x—/3 =0. Thus (e,e )f(e,)—fle,
and a=0.

ef(e)]=0 and

fle)

)ee)= a(e e,)=—ae =0

We deduce that the algebra 4, , , . is not a Hom-associative
algebra.

2. A= Ai. ay.a, - With similar simple computation we can look that
also this algebra is not a Hom-Ass algebra.
3. A= A; . In this case also, if we compute

(ee) £ ()~ (e)(ee) [el, f(e) ] 0> we obtain fle )=k e, Also
we have (ee,)f(e)-f(&)(ee)=2ke =0 and f(e,)=0. We deduce
e fle,)=0 and f(e,)e,=0 and f(e,)=0. Thus f=0 and A’ is not a Hom-

associative algebra.

4. 4= A:z~d4 . If B,#0, then the Hom-Ass condition implies a,=1 or
—1. We obtain the following Hom-Ass algebras:

,ufﬁ (el,el)zo ,ufw (el,el)=0

,ul i ( ) 2e, ,uf]m (e,,ez)

,ul i (ez,el) , ,ufw (ez,e]) —261,
u " (ez,ez) B.e,, ,uf,m (ez,ez) pie,.

In each of these two cases, fis a diagonal endomorphism. These
algebras are for §,#2 or -2, not associative.

5. 4= A,fz . If a,=0, any linear endomorphism with values in K{e, }
satisfies the Hom-Ass identity. Then the following algebra is Hom-
associative:

Hy (elvel) =0,
,U(f(el’ez) =6,
,uﬂs(ez,el) =€,
ﬂos(ezaez) =eé.

Assume now that a#0. If a, #*1> then any endomorphism
satisfying the Hom-Ass 1dent1ty is trivial. If a,=1 or 1, we have non
trivial solution and the following algebras are Hom associative algebras:

—4x x 4x x
with f:[o ~ j in the first case and f:(

2x 0 2x

Then we have the list of noncommutative Hom-associative
algebras. The commutative case can be established in the same way. In
this case the Hom-Ass identity is reduced to:

) in the second case.
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(ee)f(e;)=(ee,) f(e)=0, (ee,) f(e;)~(ee,) f(e)=0.

Then fis in the kernel of the linear system whose matrix is:

—aa,-Ba, -ai-pa, o +Ba, aa,+pa,
HA, = -a,p - ﬂzz ap-BB af+BpB  ad,+ BB,

—o,0 -, —a0, - o, o tva, o+ pa,

—af-Bf  —af-Bi  awB+p ap+ b,

Then A isaHom-associative algebraifand onlyif H(A)=det(HA ,)=0.
We deduce that the set of 2-dimensional commutative Hom-associative
algebra can be provided with an algebraic hypersurface embedded in
the affine variety K¢ From Theorem 6, when K is algebraically closed,
we obtain:

L H(4)=a,p,(1-a, - B, -3, 3, + 203 B, + a3 B, + 21, B} + 2 f* + a0, 57 ) Itisequal

_3ﬁ2 _ﬂzz _(] +ﬁz)\/ﬁz\/4+ﬁz
25,

toOfora,=0orB,=0ora,=1-f,0r ¢, =
or o o B+ BB B
=
2/,

2. H(A7) = —% and A7 is not a Hom-associative algebra.

2 and A® is not a Hom-associative algebra.

3. H(As):_64

4. H(A)=0 for i=9,10,11,12,13,14,15,16,17 and
A,4°,4", 47,4, 4%, 4%, 4, 4" are a Hom-associative algebras.
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