The Effectiveness of Epinastine Hydrochloride for Pediatric Sleep-Disordered Breathing Related Symptoms Caused By Hyperesthetic Non-Infectious Rhinitis

Hirotaka Hara*, Kazuma Sugahara, Takefumi Mikuriya, Makoto Hashimoto, Shinsaku Tahara and Hiroshi Yamashita
Department of Otolaryngology, Yamaguchi University Graduate School of Medicine, Ube, Japan

Abstract

Objectives: The aims of this study were to prospectively evaluate the effectiveness of oral epinastine hydrochloride in pediatric outpatients with Sleep-Disordered Breathing (SDB) related symptoms caused by hyperesthetic non-infectious rhinitis, and to assess their Quality of Life (QOL) prior to and following treatment.

Study design: Prospective

Methods: Pediatric outpatients (9 boys and 10 girls; average age, 5.6 years [SD=1.4]), with SDB related symptoms influenced by hyperesthetic non-infectious rhinitis were recruited. The children were all treated with oral epinastine hydrochloride dry syrup for 4 weeks. Before and after the 4-week treatment period, the following data were collected from each participant: otolaryngological findings, obstructive sleep apnea-18 (OSA-18) scores, and evaluation of QOL.

Results: Epinastine hydrochloride significantly improved the swelling of the inferior nasal turbinate mucosa and decreased the quantity of nasal discharge. The initial total mean OSA-18 score was 50.5, whereas the total score reduced to 22.8 after oral epinastine hydrochloride treatment. Significant (p < 0.01) differences were found between pre- and post-treatment total OSA-18 scores as well as pre- and post-treatment measurements of domains of sleep disturbance, physical symptoms, and caregiver concerns.

Conclusions: Epinastine hydrochloride therapy may improve nasal findings and QOL in pediatric outpatients with SDB related symptoms caused by hyperesthetic non-infectious rhinitis.

Keywords: Epinastine hydrochloride; Pediatrics; Hyperesthetic non-infectious rhinitis; Allergic rhinitis; Sleep-disordered breathing; OSA-18

Introduction

Sleep-Disordered Breathing (SDB), which includes Obstructive Sleep Apnea (OSA) syndrome and upper airway resistance syndrome, refers to a spectrum of sleep disorders sufficiently intense to cause clinical symptoms.

The exact prevalence of SDB in children is unknown, but the prevalence of OSA is approximately 2% [1]. Studies have shown that the Quality of Life (QOL) of children with OSA syndrome can be affected, and there is now evidence that children with this syndrome may have emotional problems, impaired school performance, hyperactivity, aggressive behavior, or withdrawal behavior [2,3].

The children with nasal and paranasal sinus diseases represented by allergic rhinitis and sinusitis results in nasal breathing disorder and causes sleep disorder breathing easily. Especially in Japan, the prevalence of pediatric allergic rhinitis has been increasing [4]. Polysomnography of children with allergic rhinitis showed that more microarousals compared to control group [5]. Also, the frequency of OSA in children was increased in subjects with positive multi antigen Radio Allegro Sorbent Test (RAST) results compared to those with negative RAST results [6]. Those reports suggested that the relationship between allergic rhinitis and OSA. On the other hand, Arens et al. [7] reported that children with OSA had significantly more opacification of maxillary sinuses, sphenoid sinuses, prominence of inferior nasal turbinate(s), and deviation of the nasal septum and those results suggested the relationship between OSA and paranasal diseases.

A frequent cause of OSA in children is pharyngeal and palatine tonsillar hyperplasia, which causes nasal obstruction and chronic mouth breathing. For this reason, the initial recommended treatment for pediatric OSA is surgical removal of the adenoids and tonsils. However, the frequency of residual mild OSA after adenotonsillectomy is estimated at 45-50% [8-10]. When residual OSA after adenotonsillectomy exists, other approaches are advocated. Rizzi et al. [11] reported that there was a significant correlation (P<0.005) between total nasal resistance and snoring, oral breathing and daytime sleepiness in SDB children. Sullivan et al. [12] reported that the effectiveness of radiofrequency treatment of inferior nasal turbinates against the residual OSA after adenotonsillectomy. Therefore, we hypothesized that the oral anti-allergic drugs for allergic rhinitis would be effective for pediatric SDB caused by hyperesthetic non-infectious rhinitis which includes allergic rhinitis.

The aim of our study was (1) to evaluate the effectiveness of epinastine hydrochloride, a second-generation antihistamine used to treat allergic rhinitis in Japan, for children with symptoms of Sleep-Disordered Breathing (SDB) caused by hyperesthetic non-infectious rhinitis (allergic rhinitis) and (2) to assess, using the questionnaire, the children's QOL prior to and following treatment.

*Corresponding author: Hirotaka Hara, Department of Otolaryngology, Yamaguchi University Graduate School of Medicine, Ube, Japan, Tel: 81-836-22-2280; Fax: 81-836-22-2280; E-mail: harahiro@yamaguchi-u.ac.jp

Received November 26, 2013; Accepted December 12, 2013; Published December 20, 2013

Citation: Hara H, Sugahara K, Mikuriya T, Hashimoto M, Tahara S, et al. (2013) The Effectiveness of Epinastine Hydrochloride for Pediatric Sleep-Disordered Breathing Related Symptoms Caused By Hyperesthetic Non-Infectious Rhinitis. Otolaryngology 4: 150. doi:10.4172/2161-119X.1000150

Copyright: © 2013 Hara H, et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.
Methods

The study protocol was approved by the local Ethics Committee (Yamaguchi Society for allergic disease in otolaryngology, Ube, Japan). The prospective cross-sectional study was conducted between April, 2007 and October, 2007. We studied patients who came to the twenty-four Otolaryngology Outpatient Clinic in Yamaguchi Prefecture, Japan and written informed consents were obtained from all patients. Inclusion criteria were pediatric patients ranged between 3 to 7 years old who presented with both SDB related symptoms during sleep like snore, witnessed apnoeas, frequent arousals, nocturnal sweating, failure to thrive, hyper extended neck, and allergic rhinitis defined as hyperesthetic non-infectious rhinitis by Japanese Guideline for Allergic Rhinitis.

The hyperesthetic non-infectious rhinitis is characterized by hypersensitivity [4]. However, this type of rhinitis is not inflammatory, except for the allergic rhinitis. Therefore, this should reasonably be eliminated from the classification of rhinitis and regarded as a disease similar to allergy or hypersensitivity diseases. However, this was placed into this classification in view of potential clinical convenience.

Exclusion criteria were patients with hypersensitivity against the epinastine hydrochloride, palatine tonsillar hypertrophy, bronchial asthma and/or atopic dermatitis for which treatment was being administered.

All of the children were administered oral epinastine hydrochloride dry syrup (0.05 g/kg, once a day before sleep) for 4 weeks. Before the treatment, complete ear, nose, and throat physical examinations were performed. Sleep studies for diagnose of OSA were not examined.

The QOL of the patients was assessed by asking the patients' caregivers to complete the OSA-18 survey [13] before and 4 weeks after treatment. The OSA-18 survey (Figure 1) consists of 18 items grouped into 5 domains: sleep disturbances (4 items), physical suffering (4 items), emotional distress (3 items), daytime problems (3 items), and caregiver concerns (4 items). The score for each item is 1-7, ranging from “none” to “all of the time.” The classification of health-related impact on QOL from the total OSA-18 scores was recommended by Franco et al. [13]. A total score of less than 60 suggests a small impact, whereas scores between 60 and 80 suggest a moderate impact, and scores above 80 suggest a large impact. Wilcoxon rank-sum test were used to evaluate the relationship between patients' QOL, as defined by the OSA-18 scores, and intake of epinastine hydrochloride.

We also conducted a rhinoscopic examination to evaluate the effects of epinastine hydrochloride on inferior nasal turbinate mucosal swelling and nasal discharge before and 4 weeks after treatment. Mucosal swelling and nasal discharge were rated according to the “The Practical Guideline of Management of Allergic Rhinitis criteria” [14]. The extent of inferior nasal turbinate mucosal swelling and nasal discharge was scored (Table 1) before and after epinastine hydrochloride treatment and evaluated with Wilcoxon rank-sum test.

Results

Twenty-one children with hyperesthetic non-infectious rhinitis and sleep-disordered breathing were included in the study. Two subjects did
OSA does not justify its use, and other approaches are advocated. However, the cost–benefit ratio of CPAP in milder cases of residual continuous positive airway pressure (CPAP) is usually recommended when the adenotonsillectomy is moderate-to-severe, administration of nasal surgery and only 25-35% has no symptoms. When residual OSA after adenotonsillectomy is estimated at 45-50%, removal of the adenoids and tonsils. However, the frequency of injury-related pathways.

The initial recommended treatment for pediatric OSA is surgical with epinastine hydrochloride were significant (p<0.001 and 0.01) (Table 2). Furthermore, the initial total mean OSA-18 score was 58.5; whereas this score reduced to 22.8 after four weeks of oral epinastine hydrochloride treatment. The differences in the total OSA-18 scores, the domains of sleep disturbance, physical symptoms, and caregiver concerns between the start of the study and after 4 weeks of treatment with epinastine hydrochloride were significant (p values=0.003, 0.006, 0.007, and 0.003; Table 3).

Discussion

OSA syndrome is characterized by interactions between nocturnal episodic hypoxemia, hypercapnia, and sleep fragmentation. It is important to emphasize here that delayed treatment of or untreated OSA may result in irreversible morbidity [15]. Gozal et al. reported that in rodent models of OSA oxidative stress and inflammatory processes increase neuronal cell loss in the brain regions responsible for learning, behavior, executive function, and memory [15-18]. Therefore, in addition to OSA symptom severity, the extent of end-organ morbidity may be accounted for by genetic variances in defense mechanisms and injury-related pathways.

The initial recommended treatment for pediatric OSA is surgical removal of the adenoids and tonsils. However, the frequency of residual mild OSA after adenotonsillectomy is estimated at 45-50%, with an additional 20-25% displaying moderate-to-severe OSA after surgery and only 25-35% has no symptoms. When residual OSA after adenotonsillectomy is moderate-to-severe, administration of nasal continuous positive airway pressure (CPAP) is usually recommended [19]. However, the cost–benefit ratio of CPAP in milder cases of residual OSA does not justify its use, and other approaches are advocated.

The effectiveness of nasal steroids against allergic rhinitis has been reported [20-22], but there are few reports concerning the effectiveness of oral anti-allergic drugs for children with allergic rhinitis-induced SDB. In this study, we evaluated the effect of epinastine hydrochloride on both the improvement in nasal findings, as determined by The Practical Guideline of Management of Allergic Rhinitis criteria [14] and the QOL, which was assessed by the OSA-18 survey. Polysomnography was not performed because it is expensive and difficult to perform due to the small number of sleep technicians in our prefecture.

Epinastine hydrochloride is a second-generation antihistamine used in Japan for allergic rhinitis. Okuda and Okubo reported that in a multicenter, randomized, double-blind, placebo-controlled study in children with perennial allergic rhinitis randomly allocated to receive either epinastine or ketotifen for 2 weeks, the total nasal symptom severity scores were -1.42 for those children treated with epinastine [23]. Okubo and Gotoh also reported that, when used during a nasal provocation test with Japanese cedar pollen allergen, epinastine hydrochloride significantly decreased the number of sneezing attacks and the quantity of nasal discharge for 3 h after drug administration as compared to the placebo [24]. In our study, as in previous reports, epinastine hydrochloride significantly decreased both the swelling of the inferior nasal turbinate mucosa and the quantity of nasal discharge.

The nasal finding scores for swelling and nasal discharge significantly decreased after the 4-week treatment. It is well known that the association between SDB and allergic rhinitis appears strongest in children. Epinastine hydrochloride improved swelling of the nasal mucosa and reduced nasal discharge. As a result, nasal obstruction improved and the total mean score of the OSA-18 reduced significantly. The effect of second generation antihistamine drugs for nasal obstruction is limited, but the nasal cavities of children are narrow and easy to obstruct by a small amount of nasal discharge. Therefore, the epinastine hydrochloride significantly improved the nasal obstruction.

In this study, we used the Japanese translation of the OSA-18. To ensure that the questionnaire had been correctly translated into Japanese, we created an English translation of the Japanese version and verified the accuracy of the translation with the author of the OSA-18. Prior to this study, we also used the Japanese version of the OSA-18 to evaluate the QOL of 5 pediatric SDB patients (age range, 3-7 years; median age, 4.6 years) after adenoidectomy or adenotonsillectomy.
Epinastine hydrochloride therapy demonstrated positive clinical effects on both nasal findings and the QOL of pediatric outpatients with symptoms of SDB caused by allergic rhinitis. Epinastine hydrochloride therapy may be a candidate for anti-inflammatory therapy for allergic rhinitis-induced SDB.

Acknowledgment

We are grateful to the individuals and parents who participated in this study. We would like to thank Hideki Inoue, M.D., Shiro Endo, M.D., Masahiko Ogata, M.D., Yoshihiko Okinaka, M.D., Hiroshi Oriita, M.D., Koichiro Kanaya, M.D., Keiko Kanesada, M.D., Yoko Kobayashi, M.D., Hajime Sano, M.D., Shigeko Takemoto, M.D., Kuniyoshi Tanaka, M.D., Tetuya Tahara, M.D., Yasuhiko Tahara, M.D., Mitsui Taiura, M.D., Yuko Nagasue, M.D., Keiko Nishikawa, M.D., Masayoshi Nitta, M.D., Takashi Hakuno, M.D., Masaaki Hiyoshi, M.D., Tetsuji Hori, M.D. and Mitsuee Masuda, M.D. for help recruiting subjects.

References